DEAR EDITOR,
J. A. Scott's conjecture, at the end of his Note 'On a limit for prime numbers', in the March 2000 Gazette ($\mathbf{p} .116$) is indeed correct.

That is, suppose $a_{n} \rightarrow \infty$ with $a_{n}^{n / a_{n}} \rightarrow R>1$. Then $\sum\left(1 / a_{n}\right)$ diverges. To see this, note that the hypothesis about R implies that $\frac{n \ln a_{n}}{a_{n}} \geqslant k>0$ for all essentially large $n .\left(^{*}\right)$

Using the fact that $\ln x<x$ in the form $\ln (\sqrt{x})<\sqrt{x}$ or $\ln x<2 \sqrt{x}$ we deduce from (*) that

$$
k \leqslant n \cdot \frac{2 \sqrt{a_{n}}}{a_{n}} \text { giving } a_{n} \leqslant \frac{4 n^{2}}{k^{2}}
$$

Finally, from (${ }^{*}$) again, $\frac{1}{a_{n}} \geqslant \frac{k}{n \ln a_{n}}>\frac{k}{n \ln \left(4 n^{2} / k^{2}\right)}$ so that $\sum\left(1 / a_{n}\right)$ diverges by comparison with $\Sigma 1 /(n \ln n)$.

Readers may also be interested that there is a very quick derivation of Glaister's formulae for b_{n} on p. 106 of the same issue.

Consider $f(1+z)=\frac{z+1}{z^{2}+2 z+2}=\frac{1}{2}\left[\frac{1}{z-\alpha}+\frac{1}{z-\bar{\alpha}}\right]$ where $\alpha=-1+i=\sqrt{ } 2 e^{3 \pi i / 4}$. Binomial expansions give the Taylor coefficients $\frac{f^{(n)}(1)}{n!}=b_{n}$ as the coefficients of z^{n} :

$$
b_{n}=-\frac{1}{2}\left(\frac{1}{\alpha^{n+1}}+\frac{1}{\bar{\alpha}^{n+1}}\right)=-\operatorname{Re}\left(\frac{1}{\alpha^{n+1}}\right)=\frac{-1}{2^{(n+1) / 2}} \cos \frac{3 n}{4}(n+1)
$$

This neatly illustrates Hadamard's dictum that the shortest path to a real variable result may pass through the complex plane!

Yours sincerely,
NICK LORD
Tonbridge School, Kent TN9 1JP

DEAR EDITOR,*

In Note 84.11 (March 2000, pp. 89-90) Alexander J. Gray considers the Fibonacci numbers $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ and defines

$$
\tau_{n}=\sum_{k=0}^{n} f_{k} .
$$

He observes and proves that $1+\tau_{n}+\tau_{n+1}=\tau_{n+2}$. However, one can also observe that $\tau_{n}=f_{n+2}-1$. This observation is easily verified by mathematical induction and then the recurrence $1+\tau_{n}+\tau_{n+1}=\tau_{n+2}$ follows immediately from the Fibonacci recurrence.

Yours sincerely,
ROBIN CHAPMAN
School of Mathematical Sciences, University of Exeter EX4 4QE
e-mail rjc@maths.exeter.ac.uk

[^0]
[^0]: * Editor's Note: Nigel Hodges of Cheltenham wrote making the same point.

