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Jackson's Theorem for locally

compact abelian groups

Walter R. Bloom

If / is a p-th integrable function on the circle group and

w(p; / ; 6 ) is its mean modulus of continuity with exponent p ,

then an extended version of the classical theorem of Jackson

states the for each positive integer n , there exists a

trigonometric polynomial t of degree at most n for which

\\f-tjp 2 6a)(p; f; 1/n) .

In this paper it will be shown that for G a Hausdorff locally

compact abelian group, the algebra L (C) admits a certain

bounded positive approximate unit which, in turn, will be used

to prove an analogue of the above result for L,(G) .

We shall let A denote a chosen Haar measure on G . The spectrum

(written £(/) ) of f t L°(G) will be defined as in [3], (1*0.21). For

/ f LP(G) [p € [1, °°)) , we define its spectrum by

Uf) = U EC/**)
<*C0Q(G)

(where C AG) denotes the space of continuous functions on G with

compact support). Given K c r , V <^ G and / € If (G) , we put
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LP
K(G) = {/ i lP(G) : £(/) c K} ,LK

EK(p; f) = inf^lf-g\\p : g € LP
R(G)} ,

and

o)(p; / ; V) = ^ p

We require the following theorem, a corollary of which will serve as

the basis of the proof of the main result.

THEOREM 1. Let V be a neighbourhood of zero in G and e > 0 be

given. Suppose p is a locally bounded measurable function on G

satisfying:

(a) p(x) 2: 1 ,

(b) p{x+y) 5 p(x)p(y) j and

n

for all x, y € G . Then there exists a continuous ky on G such that

ky 2 0 j kyd\ = 1 j suppfep is compact, and

I Pk AX < sup p(x) + e .
'G v x*V

Proof. This follows readily from [ J ] , Theorem 2.11 and the proof of

[ / ] , Lenana 1.23- / /

COROLLARY. Suppose V is an open neighbourhood of zero generating

G , E > 0 is given, and rriy is the integer-valued function on G

defined by

mAx) =' min{m € { l , 2 , . . . } : x € mV} .

Then there exists a continuous ky on G such that ky - 0 ,

I kyd\ = 1 j Ky = suppfey is compact, and
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Proof. Put p = 2m in Theorem 1. / /

We are now in a position to prove our promised analogue of the

extended version of Jackson's Theorem as stated in the abstract.

THEOREM 2. Given z > 0 , we can find a base {v.} . f of open

neighbourhoods of zero, and a corresponding family {k.} . ^ , of continuous

functions on G such that for each i € I , k. S 0 , k-dX = 1 ,

K . = suppfe . is compact, and

(1) Wki*f-f\\p s (l+e)">(p; f; vj ,

(2) E (p; f) 5 (l+e)u(p; f; V.)
Ki v

for every f € t,(G) if p € [ l , °°) , or for every bounded uniformly

continuous f if p = °° .

Proof. Since, by [ 2 ] , (2^.30), G is topologically isomorphic with

Rn x G , where n i {0, 1, . . . } and G i s a Hausdorff locally compact

abelian group containing a compact open subgroup H , we need only prove

the theorem for R x G (and the result for G wil l then follow from

[2] , (2U.U1) (c) ) .

Let {^-l-gr t e a b a s e o f open neighbourhoods of zero in R x G

V. = U. x W.
i % v

such that for each i £ I ,

where U. (respectively W. ) i s open in R (respectively H ). Let fc'.

be the subgroup of G generated by W. . Clearly W. c: H i s open and

compact. Let X , X and A,, denote the Haar measures on R , G and
Rn U0 i U

W. respectively, where X^ is chosen such that Aff (U'̂ ) = X^ (it:^) .
i 0 i
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By the corollary to Theorem 1, we can find continuous k , k^ on

i i

R , W. respectively such that k , k.. - 0 ,
tf U • •• •

^ i

% R

= 1 ,

suppik.. and supp/Cj, are compact, and
i i

1/2

Define fe. on Rn x c by
"2- CJ

where

We shall show that {k .} . T has the desired properties.
Z- Is fcx

Clearly each k- is continuous [k! is continuous on C since
Z- W • U

W. i s both open and closed, and k., i s continuous on W. J and non-

negative. An application of [Z1, (13.1*) gives

R

The fact that suppfe' i s compact follows from the compactness of
i

s u p p k . , , [ Z 1 , ( 2 U . 5 ) a n d [ Z ] , ( 5 - 2 4 ) ( a ) . A p p e a l i n g t o [ 3 ] , ( 3 1 - 7 ) ( M ,
"

we see that /;'. = supply is compact.
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/ € iP R " X G J (p € t l , »)) or , i f p = » , take / to be

us. The

* f - f - f

Now le t

uniformly continuous. Then we have

(interpreting the right-hand side as a vector-valued integral) , and

\\k.*f-f\\ -

( „ . V V _ ^ ( * , y)dX x AG ( x , y )
RnxW I t K 0

nn (y)K-(xi y)dx x x (x,
i> K o

I t follows from [ 2 ] , (13.12) t h a t

-*f-/|| < U ( p ; / ; y ) | m (x)fc ( x ) d X ( x ) f mw{y)kw{y)d\ (y)

proving ( l ) .

The proof of (2) is immediate since

and hence k. * f i LP
V {G) . II

If we partially order i" so that

£ > j if and only if V. C- V. ,
I 0

then the case p = 1 of Theorem 2 shows that the k. form a bounded

positive approximate unit in L1(G) [of. [3], (28.51))-

When G is connected, Theorem 2 will hold for any base of open

neighbourhoods of zero since, by [2], (7-9), every neighbourhood of zero

generates the group; in this case the proof is greatly simplified, needing
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only the corollary to Theorem 1 and the final two paragraphs of the proof

of Theorem 2.

When G is totally disconnected, then (see [2], (7-7)) taking each

V. to be a compact open subgroup of G , Theorem 2 holds with e = 0 ,

and

K . = A [ T , V . )
i *• ' i'

(the annihilator of V. in I" j ; see [ 3 ] , (31-7) (a) .

In the classical si tuation when G is taken to "be the circle group

T , i t is easily shown that the so-called kernel {k } _ of Fejer-

Korovkin (see [ 4 ] , p. 75 with k = 2u ] sat isf ies the conditions of the

corollary to Theorem 1 with e = 5 ,

Vn = {eZ& : 6 £ R and |6 | < 1/n}

and

K = suppfe

= {-n, -n+1, ..., n-1, n) .

This simple dependence of K on V also appears when G = R .

THEOREM 3. There exists a number C > 0 and {fc } wiifc the

follouing properties: for each w € { l , 2 , . . . } . , k i s continuous and

non-negative, k (x)dx = 1 , suppfe r: [-«, n] 3 and

(1) likn*y-/ll 5 Cu[p; f; (-1/n, 1/n)) ,

(2) E, ,(p; f) < Cu{p; f; (-1/n, 1/n))
I — n , n i

for every f € lP(R) if p £ [ l , °°) } or for every bounded uniformly

continuous f if p = °° •

https://doi.org/10.1017/S0004972700040624 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040624


Jackson's Theorem 65

Proof. Choose g to be a non-negative function on R with two

continuous derivatives such that supple [-1/2, 1/2] and g{0) > 0 . Put

h = g*g^/g*g*(O) ,

where g* : x •* g(-x) . Then h, h > 0 , h(0) = 1 , suppft c [-1, l ] , 7i

has four continuous derivatives,-and hence

fc(iv)(x) = xkh(x)

for all a: € R . I t follows that

h(x) < Bfl+x1*)"1 , ( -" < a; < » ) ,

where B = H*.^ + | | ^ ( i v ) | l 1 .

Now define t h e continuous non-negative funct ion k (. L (R) by

k = h ,

and for each « € ( l , 2, . . .} , k by

k (x) = rik{nx) , x € R .n

Then fe is non-negative, continuous and integrable, and for al l x (. R ,

kn(x) = k{x/n) .

Hence ?c (0) = 1 , suppfc c [-n, n] , and

« V ' A 5 iR »vA*»(x)dB

< io(p; / ; (-l/n, 1/n)) j i«(.1/n

K

s - t i / j (-l/n, 1/,)) f ^ J f
J R l+x

< Co)(p; / ; (-l/n, l/n)) ,

proving ( l ) .
Once again (2) follows immediately from the fact that

c [-n, n] . / /

REMARK. It is easily ^hown that an analogue of Theorem 2, exhibiting
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a simple dependence of K. on V. , can be obtained for a l l groups of the

form Rm x TW x G_ , where m, n are non-negative integers and C_ is

t o t a l l y disconnected.
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