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Abstract

In this paper we shall develop existence-uniqueness as well as constructive theory for the
solutions of systems of nonlinear boundary value problems when only approximations
of the fundamental matrix of the associated homogeneous linear differential systems are
known. To make the analysis widely applicable, all the results are proved component-wise.
An illustration which dwells upon the sharpness as well as the importance of the obtained
results is also presented.

1. Introduction

In this paper we shall consider the boundary value problem

x' = f(t,x), / e / = [a ,6] , (1.1)

g[x] = 0, (1.2)

where x and / are /i-dimensional vectors, g is an operator from C(J) into R" and
C ( / ) is the space of n vector functions which are continuous on J. The motivation
to study (1.1), (1.2) comes from the fact that it includes various practical problems,
including those arising in optimal control theory [21]. In existence-uniqueness as
well as constructive theory of (1.1), (1.2) the explicit form of the fundamental matrix
of the associated homogeneous linear differential systems plays an important role
[1-3,5,7,9,10,13-17,19-25]. However, in [11] it has been noted that in practice the
explicit form of this matrix is rarely known. Therefore, to have a wider applicability
of the methods it is necessary to restudy (1.1), (1.2) when only approximations of the
fundamental matrix are known.
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The plan of this paper is as follows. In Section 2 we list some properties of square
matrices which are used throughout this paper without further mention; state a con-
traction mapping theorem in generalized Banach spaces, and for the invertability of a
linear operator which maps a generalized Banach space to another generalized Banach
space provide necessary and sufficient conditions. In Section 3, we shall follow Hay-
ashi [11] to obtain explicit representations of the solutions of the linear boundary
value problems in terms of the exact as well as approximate fundamental matrices
of the associated homogeneous differential systems. These explicit representations
are used in Section 4 to prove the convergence of Picard's iterative methods for the
boundary value problem (1.1), (1.2). The obtained results here are more general and
precise than those available in [11]. Section 5 is devoted to the computational aspects
of Picard's iterative schemes developed in Section 4. An example which dwells upon
the importance as well as the sharpness of the obtained results is included in Section 6.
All the results in this paper are proved in generalized (vector) normed spaces. The
significance of such a study for systems is now well recognized from the fact that it en-
larges the domain of existence and umqueness of solutions, weakens the convergence
conditions and provides sharper error estimates; for example, see [1-8,12,18,20,25].

2. Preliminaries

Throughout this paper we shall consider the inequalities between two vectors in
R" component-wise, but between two n x n matrices, elementwise. The following
well-known properties of matrices will be used frequently.

(1) Forany/i xn matrix •A,limm_o0 A
m = 0 if and only if p (A) < 1, wherep(A)

denotes the spectral radius of A.
(2) For any n x n matrix A, (/ - A)~x exists and (/ - A)~l = J^^A"1 if

p(A) < 1, where / denotes the unit matrix. Also, if A > 0, then (/ — A)~{

exists and is nonnegative if and only if p (A) < 1.
(3) If 0 < B < A and p(A) < 1 then p(B) < 1.
(4) (Toeplitz Lemma). For a given n xn matrix A > 0 with p(A) < 1 and a se-

quence of vectors {dm}, we define the sequence {sm}, where sm = Yi7=o A.m~'dj\
m = 0, 1, 2, Then lim^oo sm = 0 if and only if dm -*• 0.

THEOREM 2.1 (Contraction Mapping Theorem [1]). Let B be a 'generalized (vector)
Banach Space' and let r € R"+, r > 0 : S (x0, r) = {x € B : \\x - xo\\ < r). Let T
map S (x0, r) into B and

(i) for all x,y e S (x0, r), \\Tx - Ty\\ < K ||x - >>||, where K > 0 is an n x n
matrix,

(ii) p(K) < l,andr0 = (I - K)~l \\Tx0 - xo\\ < r.
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Then the following hold:

(1) T has a fixed point x* inS(xo, r0),
(2) x* is the unique fixed point of T in S (x0, r),
(3) the sequence {xm} defined by xm+i = Txm, m = 0, 1, 2 , . . . , converges to x*

wir/i||jc'-jcm|| < Kmr0,

(4) for any x e S(x0, r0), x* = lim^,*, Tmx,
(5) any sequence {xm} such that xm G S(xm, Kmr0), m = 0, 1, 2 , . . . , converges

tox*.

For x(t) = (*i(0, • • •, xn(t)) € C (/) we shall denote by \x(t)\ = (\xx{t)\,...,
\xn(t)\) and ||A:|| = (sup,e/ |*,(f)|, • •., sup/ey \xn(t)\). The space C(J) equipped
with this norm is a generalized normed space. If* G R", then obviously x € C ( /) ,
and hence |JC| = ||x|| = ( | ^ ] | , . . . , \xn\). Let M(/ ) denote the Banach space of all
real n x n matrix valued functions A(t) which are continuous on / with the norm
analogous to the n vector functions.

For any fixed t0 € / , let Co(/) = {x G C (/) : x(t0) = 0}. Then, Bo = Co(/) x R"
is a Banach space with the norm ||y|| = max(||M||, ||g||) fory = (u, e) e Bo. As usual
L(BU B2) denotes the set of all bounded linear operators from the Banach space Bx

into the Banach space B2.
Let Q : C{J) -> Co(/) and F : C{J) -» Bo be the operators defined by

Qx = x{f) - x(to) - [ f(s, x(s)) ds, (2.1)
Jto

Fx = (Qx,g[x-\). (2.2)

Clearly, Qx = 0 if and only if x e C (7) is a solution of (1.1). Thus, the boundary
value problem (1.1), (1.2) is equivalent to finding a solution* e C(J) of the equation

Fx = 0. (2.3)

In (1.1), (1.2) the function /(f ,x) is assumed to be continuous in / x R" and
continuously differentiable with respect to x, and fx(t,x) represents the Jacobian
matrix of f(t,x) with respect to x; g[x] is continuously Frechet differentiable in
C( / ) , and gx[x] denotes the Frechet derivative of g at x.

For h G C(J), we define the linear operator Fx(x) : C(J) ->• Bo by

FAx)h = {Qx{x)h, gx[x)h), (2.4)

where Fx(x) denotes the Frechet derivative of F at x and

Qx(x)h = h(t) - h(t0) - [ fx(s, x(s))h(s)ds. (2.5)
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Let L e L(C(J), Bo) be the operator independent of x which approximates Fx(x)
and is defined by

Lh = (Ph, t[h]), h e C(J) (2.6)

where the linear operator P : C(J) -*• C0(J) in relation to Qx(x) is

Ph = h(t) - h(t0) - I A(s)h(s)ds, A e M[J], and I e L(C(J), R"). (2.7)
Jto

Let B\ and B2 be two Banach spaces. A linear operator T : B2 —> B\ is said to be
invertible if the equation Tb2 = £»i has a unique solution b2 6 B2 for each b{ € Bi.

LEMMA 2.2. Let L : B\ —> B2be a linear operator and T : B2 —>• fi] be an invertible
linear operator. Then, L is invertible if and only if there exists a nonnegative n x n
matrix M, with p(M) < 1, such that

\\I-TL\\<M. (2.8)

If L~l exists, then
00

L'1 = ^ ( / - TL)"T (2.9)
«=o

and
|L-I|-<(7-M)-||r|. (2.10)

PROOF. Assume that T, T~x exist and (2.8) is satisfied. Since

n=0

<(I + M + M2 + ---)\\T\\ = . ( 7 - M r 1 | | r | , (2.11)

the infinite series in (2.9) defines a bounded linear operator in B2. Hence, for each
b2 e B2,

oo

b* = £^(7 - TL)"Tb2 (2.12)
n=0

is a uniquely defined element of B\.

From (2.12), we have
oo

(/ - TL)b* = J^(7 - TL)"Tb2 = b* - Tb2,
n=l

and thus
TLb* = Tb2.
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Since T~l exists, Lb* = b2, so that Lb\ = b2 has at least one solution b\ = b* for
each b2 e B2. To show that this solution is unique, we assume that Lb\ = b2 and
bi^b*. Then, L(bx -b*)=0 and hence

(/ - 7L)0>, - b*) = bx - b* ± 0,

which implies that p(\\I — TL||) > 1. But since p(M) < 1, this contradicts the
assumption (2.8). Hence, L"1 exists and is given by (2.9). Inequality (2.10) follows
immediately from (2.11) and (2.9).

To prove the necessity part, we assume that L~l exists. For T = L~x it is clear that
T~l = L exists and

|/-TL| = | / - / | | =0<M,

so that (2.8) is satisfied.

COROLLARY 2.3. In Lemma 2.2, (2.8H2.10) can be replaced by

\\I-TL\\<M, (2.13)

-LT)n (2.14)

and
| L - I | < | r | ( 7 - A f ) - 1 , (2.15)

respectively.

3. Linear problems

Let A e M[J] and <t>(f) be the fundamental matrix solution of the homogeneous
system y' = A{t)y such that <J>(f0) = / . For t e L(C(J), /?") we define a n « x n
matrix G by

G = £[*], (3.1)

whose column vectors are £0,-; i = 1 , . . . , n and 0, is the /-th column vector of <I>. If
G is nonsingular, then we shall denote by

. (3.2)

For h e C(J), let £ be the element of L(C(J), C(/)) defined by

Eh= [ <i>(t)<t>-\s)h(s)ds. (3.3)
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Let K : C(J) -> C(7) be the operator defined by

Kx = f(t, x(t)) - A(t)x(f), xeC(J). (3.4)

Now for h € C(J), y = (M, e) € So. we consider the system

Ph = «(0, (3.5)

together with
l[h] = e. (3.6)

LEMMA 3.1. If the matrix G is nonsingular, then (3.5), (3.6) has a unique solution
h(t), that is, for the operator L defined in (2.6), L~x exists, and can be represented as

L-ly = h(t) = SlElu + Se, (3.7)

where
5, = / - 5 € , H = SiE. (3.8)

PROOF. Any solution of (3.5) can be expressed as

h{t) = *(0c + u{t) + <D(0 f 4>-\s)A(s)u(s)ds, (3.9)

where c is an arbitrary constant vector. The solution (3.9) satisfies (3.6) if and only if

Gc + l(I + EA)u = e. (3.10)

Since det G ^ 0, from (3.10) we get

c = G~xe - G-'UI + EA)u.

Substituting this in (3.9) and following the definitions of 5, E\ and S\, the result (3.7)
follows.

COROLLARY 3.2. Assume that the matrix G is nonsingular, and for <j> e C(J), let

T<p = cp-SlEl[Q<t>]-S[g[<l>]l (3.11)

Then
T<p = (HK + S(e-g))(/>. (3.12)

PROOF. Since an integration by parts of S, Ex = [I + HA- S£] gives that 5! Ex Q<p =
[/ -HK - Sl](f>, it follows that

= [HK
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In the existence and uniqueness theory of solutions of (1.1), (1.2) matrices <t>(0 and
<t>~' (t) play a vital role. However, in practical evaluation it often becomes necessary
to approximate these matrices by the computed fundamental matrices. Let 4>(0 and
<J>(0 be the matrices that approximate <t>(f) and 4>~' (r), respectively. Hereafter, for an
operator Z = Z(<f>, <D~') depending on <t> and 4>~', we shall denote by Z the operator

We shall consider the following two cases:

Case 1. <f>(f) and <t>(0 are continuous on / .
Case 2. 4>(r) and <t>(0 are continuously differentiable on / .

Case 1. Let
(3.13)

(3.14)

a =max(b-tQ, t0 -a), (3.15)

= ®(t)-I - [ A(s)Q>(s)ds, (3.16)- I - 1
Jto

(3.17)
'0

(3.18)

Let R, Ri G L(C(J), C(/)) and R2 : C(/) -> C(/) be the operators defined by

Rh = vl/2(r) / h(s)ds -4>(0 / *,(5)/i(5)ds, heC(J) (3.19)

hzC(J) (3.20)

= *2JC(/0) + /?/(;, *(/)), x e C (7). (3.21)

LEMMA 3.3. Aww/ne that

G is nonsingular, (3.22)

| |G-1 | | |£ |exp(a | |A|) |* | |<M, (3.23)

and also
lSiRi\<M, (3.24)

where M and M are nonnegative n x n matrices with p(M) < 1 and p(M) < 1.
Then L~l exists and is invertible.
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PROOF. Clearly (3.22) implies that L~l is defined. Since

-'-IA(s)<t>(s)ds = 0
Jt0

from (3.16), we have

/"
<I>(0 — <I>(0 = * ( 0 + I A(s)[<I>(s) — <$>(s)]ds

Jto

and hence

I f
*(/) - $(0 < * + / Mil l4*^) ~ *(s) Ufa

lJto

Thus, by Gronwall's inequality we find that

I * — *| | < exp(cr| |A|) | |* | , (3.25)

and since

in view of (3.25), (3.23) and Lemma 2.2, it follows that G is nonsingular, and in
conclusion L is invertible.

We will now show that
\\l -L~lL\\ <M. (3.26)

Let

A(0 = * ( 0 - * " I ( 0 . and Q(t) = / A(s)A(s)ds. (3.27)

Since
4>-'(f) -I + [ <*>-\s)A(s)ds = 0,

by (3.17) we have
(3-28)

Let u(t) = fl p(s)ds, p € C(J). In view of (O"1)' = —<t>~M, an integration by
parts gives that

<t>~l(s)A(s)u(s)ds = - * ~ ' ( 0 « ( 0 + / O"'(5)p(s)d5 (3.29)
./fo
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and

f A(s)A(s)u(s)ds = S 2 ( 0 u ( 0 - f tt(s)p(s)ds. (3.30)

Thus, by (3.27H3.3O) we have

r c c I
EAH = <&(*) I <i>-i(s)A(s)u(s)ds+ A(s)A(s)u(s)ds\

= -u + Ep + Rp. (3.31)

From this and (3.20), we have

ExPh = h- Qh(t0) - Rxh, h e C(/). (3.32)

Finally, since by (3.1) and (3.2)

5i4> = (/ -4>G"1€)4> = 0 (3.33)

from (3.7), (3.32) and (3.33) for A e C(7), we find that

(/ - L~xL)h =h- SxExPh - Sl[h] = SxRxh.

Hence, in view of (3.24) we find that (3.26) holds. Corollary 2.3 now implies that L~l

is invertible.

COROLLARY 3.4. Assume that (3.22) holds and let

f4> = <t>-SiEi [Q4>] - S[g[(t>]], cf> e C(J). (3.34)

Then

S(t -g) + Si R2]<p. (3.35)

PROOF. By (3.31), we have

ElQ<t> = 4>-EK(p- 4>0(<b) - R2<i> (3.36)

and hence (3.33) gives that

SxExQ<t> = 4>-St[<t>]-HK<t>-SxR2<l>. (3.37)

Substituting (3.37) into (3.34), we obtain (3.35).

https://doi.org/10.1017/S0334270000007578 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007578


[10] General iterative methods for nonlinear boundary value problems 67

Case 2. Let
(0, (3.38)

A2(t) = -<§>-'(0<t>'(0; (3.39)

P2, R3, R4 e L(C(J), C(J)) and R5 : CiJ) -» C(J) be the operators defined by

P2h = hit) - h(to) ~ f Al(s)his)ds, h e C(7), (3.40)

R3h = EiA - A2)h + r{h, h € C(7), (3.41)

R4h = R3ih - P2h) - EiA - Ax)h, h e C( / ) , (3.42)

R5x = R3ix - Qx), x e CiJ). (3.43)

LEMMA 3.5. Assume that (3.22) holds. Then L~x is invertible if

a\\Ai-FA\\<N (3.44)

or
|| £1*41| < N, (3-45)

where N and N are n x n nonnegative matrices with piN) < 1 and piN) < 1.

PROOF. Let L\ be the operator defined by

Lxh = iP2h, £[h]), h e CiJ). (3.46)

Clearly, in view of (3.22), this operator Lx is invertible.
For any y = (u, e) e Bo by (3.7), we find that

[ (3.47)

Since P2Q> = 0 and G = £[*], we have

P2S = (P2®)&-1 = 0 (3.48)

and
i[S] = €[*])G-' = /. (3.49)

Now suppose that (3.44) holds. By (3.47) and (3.49), we get

ly] = e (3.50)
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and by (3.47) and (3.48), P2L~ly = P2Exu. Since <t>' = A,<f> and u e Co(/),
integration by parts gives that

P2L-ly = P2E]u = u(t)- I [Ai(s)-r(s)A(s)Ms)ds.
Jto

Using this relation and (3.50), we find that

(/ - LxL~l)y = (f [A^s) - r(s)A(s)Ms)ds, o\ .

Thus, it follows that ||(/ - L^'^y]] < a\\Ax - r A | | y | and hence (3.44) and
Lemma 2.2 implies that L~l is invertible.

Next suppose that (3.45) holds. For q 6 C(J), let u(t) = fjoq(s)ds. Since

<!>' = — <J>A2, integration by parts gives that

EAu = E(A - A2)u -Tu + Eq = -u + Eq + R3u. (3.51)

By this, for h e C(J) we get

E\P2h = h — <j><t>(fo)/i(fo) ~ ^4^- (3.52)

Now substituting u = P2h and e = £[h] into (3.47) and using the resulting relation
together with (3.52) and (3.33), we obtain (/ - L'lLi)h = SxR4h. Thus, (3.45) and
Corollary 2.3 imply that L~l is invertible.

COROLLARY 3.6. Assume that (3.22) holds and let f<j> be as in (3.34). Then

f4> = [HK + S(l-g) + SlR5]<l>. (3.53)

PROOF. By (3.51), we have

E\ Q<f> = <P - EK<f> - 4>&(r o )0Ob) - Rs4> (3.54)

and hence (3.33) gives that

S1E1Q4> = (p-Si[<l>]-HK(l)-SiR5<p. (3.55)

Substituting (3.55) into (3.34), we get (3.53).
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4. Convergence of Picard's Method

Using no approximation of Green's function in our earlier paper [20] we proved
the following result, its proof being based on Theorem 2.1.

THEOREM 4.1. With respect to the boundary value problem (2.3) assume that there is
an approximate solution x(t) e C(J), and

(i) there exists an n x n continuous matrix A(t) and a bounded continuous
linear operator I such that G = £[<J>(0] is nonsingular, where 4>(/) is the
fundamental matrix solution of the homogeneous differential system y' =
A(f)y,

(ii) there exist nonnegative n x n matrices M\ and M2 such that \\H\\ < Mi and
IIS|| < M2,

(iii) there exist nonnegative nxn matrices M3 and M4 and a positive vector r such
that for all x(t) e S(x,r) = {z e C(J) : \\z - x\\ < /•}, \\fx(t,x(t)) - A(t)\\
<M3and\\gx[x~\-l\\<M4,

(iv) there exists a nonnegative vector r\o such that || S\ Ex [Qx] + S[g[x]] | < rj0,
(v) Ko = M{M3 + M2M<, p(K0) < 1 and r0 = (/ - ^o)"'»?o < r.

Then

(1) there exists a solution x*(t) of (2.3) in S(x, r0),
(2) x*(t) is the unique solution of (2.3) in S(x, r),
(3) the sequence {xm(t)} defined by

xm+l(t) = xm(t) - SxEAQxn] - S[g[xm]],

xo(f)=x(t); in = 0 , 1 , . . . (4.1)

converges to x*(t) with
\\x*-xm\\ <K^r0,

(4) for xo(t) = x(t) € S(x, r0) the iterative process (4.1) converges to x*(t),
(5) any sequence {xm(t)} such thatxm(t) € S(xm, K™r0); m = 0, 1 , . . . converges

tox*(t).

Now we shall discuss the convergence of Picard's method when the fundamental
matrices are replaced by the approximate fundamental matrices. First we shall consider
Casel.

THEOREM 4.2. With respect to the boundary value problem (2.3) we assume that there
is an approximate solution x(t) € C(J) and

(i) L~l is invertible,
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(ii) there exist nonnegative n x n matrices Mi and M2 such that \\H\\ < Mi and
IIS|| < M2,

(iii) there exist nonnegative n x n matrices M3, M4 and M5 and a positive vector
r such that for all x(t) e S(x,r) = {z e C(J) : \\z - x\\ < r), \\fx{f,x{f))
-A(t)\\ < M3, \\gx[x] - l\\ < M4 and ||/,(f, x(t))\\ < M5, _

(iv) there exist nonnegative n x n matrices M6, M7 such that \\SiR\\ < M6 and
\\Si*2\\<M7,

(v) there exists a nonnegative vector r)x such that

(vi) Kx = M1M3 + M2M4 + M6M5 + M7, p(K{) < \andrx = (I-K^m < r.

Then

(1) there exists a solution x*(t) of (23) in S(x, r{),
(2) x*(t) is the unique solution of (23) in S(x, r),
(3) the sequence {um (t)} defined by

««+i(O = H[Kum] + S[l[um] - g[um]] + S{[Rf{t, um(t)) + *2K™('O)],

= xo(t)=x(t), m=0, 1 , . . . , (4.2)

converges tox*(t) with \\x* — um\\ < K™rx,
(4) for uo(t) = x(t) 6 S(x, rx) the iterative process (4.2) converges to x*(t),
(5) any sequence {um(t)} such that um(t) e S(um, K™r\), m = 0, 1 , . . . , con-

verges tox*(t).

PROOF. Define an operator f : S(x, r) ->• C(J) by

fx(t) = H[Kx] + S[i[x] - g[x]] + Sx[Rf(t,x(.t)) + V2*fo>)]- (4-3)

If x(t) is a solution of (4.3), that is, fx{t) = x(t), then from Corollary 3.4 it is clear
that S]E\[Qx] + 5[g[;t]] = 0. But this is the same as L~lFx = 0. Thus, in view
of condition (i) it follows that Fx = 0, that is, x{t) is a solution of (2.3). Thus, it
suffices to show that the operator T satisfies the conditions of Theorem 2.1. For this,
if x(t), y(t) 6 S(x, r) then we have

fx(t) - fy(t) = H\J [/,(f, x(t) + 0,(y(O - *(/))) - A(0](*(0 - y(f))

+5 U [I -gx{x + 92(y - x))][x - y] d

+5, \RJ fx(t,x(t) + e,(y(o -JC(O))(JC(O -y(t))dex

+ V2{x(t0)-y(t0))].
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Therefore, it follows that

I (M{M3 + M2M4 + M6M5 + M^jx - y\\ = Kx\x - y\

Next from Corollary 3.4 and (4.3), we have

fxo(t)-xo(t) = fx(t)-x(t) = -S.EdQx] - S[g[x]]

and hence

Thus we find that (/ - A " ] ) " ' ! ^ - ^0|| < (/ - ^ I ) " 1 ^ = n < r. Hence the
conditions of Theorem 2.1 are satisfied and the conclusions (l)-(5) follow.

REMARK 4.1. For computational purposes let us assume the following: Pj and P2 are
n x n nonnegative matrices such that

Then, for any h e C{J) by (3.19), \\RAh\\ < Px\\h\\, and \\Rh\\ < P2 \\h\\.

Hence (3.24) can be replaced by

l ^ l + pilA^M. (4.4)

Also, || Si R || < M6 in (iv) of Theorem 4.2 can be changed to

| | 5 , | P 2 < ^ 6 . (4.5)

Next we shall consider Case 2.

THEOREM 4.3. With respect to the boundary value problem (2.3) we assume that there
is an approximate solution x(t) e C(J), and

(i) the conditions (i)-(iii) and (v) of Theorem 4.2 are satisfied,
(ii) there exists ann x n nonnegative matrix Ms such that ||5i^3|| < A/8,

(iii) K2 = MlM3+M2M^+Ms(I+aM5);p{K2) < 1 andr2 = (I-Ki^m < r.

Then

(1) there exists a solution x*(t) of (23) in S(x, r2),
(2) x*(t) is the unique solution of (2.3) in S(x, r),
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(3) the sequence {um (t)} defined by

««+i(0 = H[Kun] + S[£[um] - g[um]] + SdRi(um - Qum)],

«o(0=*o(0 = *(0 , TO = 0 , 1 , . . . , (4.6)

converges to x*(t) with \\x* — um || < K™ri,
(4) for uo(t) — x(t) e S(x, r2) the iterative process (4.6) converges to x*(t),
(5) any sequence {um(t)} such that um(t) e S(um, K?r2), m = 0, 1 , . . . , con-

verges to x*(t).

PROOF. Define an operator f : S(x, r) -+ C(J) by

fx(t) = H[Kx] + S[l[x] - g[x]] + SdR3(.x - Qx)]. (4.7)

Now as in Theorem 4.2, we can show that the operator T satisfies the conditions of
Theorem 2.1.

REMARK 4.2. Again for computational purposes we assume that p(|| Ti ||) < 1 and let
Z = (/ - || r , II)"1. Then, since from Lemma 2.2, || T"11| < Z we have the following:

I A, - T A | < | |« '« - rAr |z , (4.8)

llA-A,! < ||Ar-*'4>|Z, (4.9)

| |A-A2 | |<Z| | rA + *4>'|, (4.10)

|A,|<||*'*|Z. (4.11)

Now let P3 be an n x n nonnegative matrix such that

| | // | | | |A-A2| | + ||5,||||r1|| </>3, (4.12)

then

l l l l l heC(J). (4.13)
Hence it follows that

and
| | | < P3(I +aM5). (4.15)

Thus, by (4.8H4.15) we can compute the left sides of (3.44), (3.45) and (ii) of
Theorem 4.3 without computing <t>~' and <t>-1.

REMARK 4.3. If<l>(0 = 3>(0and<t>(0 = Q'1 (t), then both the Theorems 4.2 and 4.3
reduce to Theorem 4.1.
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5. Convergence of approximate Picard's Method

In our earlier paper [20], we have provided necessary and sufficient conditions
for the convergence of the approximate Picard's sequence {ym(t)} generated by the
scheme

>W.(0 = >«(O - SiE^O) - ym(t0) - f fm(s, ym(s))ds] - S[gm[ym]\,

yo(0 = xo(t) = x(t), m = 0, 1 (5.1)

to the solution x*(t) of the boundary value problem (2.3). In (5.1) for each m, the
function fm and the operator gm, respectively, approximate / and g and are assumed
to be continuous.

In relation to the function fm we define Qm : C(J) -*• Co(/) by

Qmx = x(t) - x(t0) - / fm(s,x(s))ds, xeC(J), m = 0, 1,

LEMMA 5.1. Assume that the matrix G is nonsingular and let

f0 = 0-S,£,[em0]-S[gm[0]], 0€C(/).

Then for Case 1,

f 0 = //[/m(f, 0(0) - 4(00(0] + 5[£[0] - gm[0]]

+S{[Rfm(t, 0(0) + *20«b)], (5-2)

and for Case 2,

H = H[fm{t, 0(0) - A(O0(O] + S[€[0] " gmW] + 5,[/?3(0 ~ Qm<P)\ (5.3)

PROOF. The proof of (5.2) is similar to that of Corollary 3.4, whereas (5.3) follows as
in Corollary 3.6.

We shall now consider the following approximate Picard's scheme for Case 1.

iW,(0 = H[fm(t, vm(t)) - A(0vm(0] + S[i[vm] - gm[vm]]

v0(t)=x0(t)=x(t), m = 0 , 1 , . . . . (5.4)

In (5.4) once again for each m, the function fm and the operator gm are assumed to be
continuous. In addition, with respect to fm and gm we shall assume that the following
conditions are satisfied.
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CONDITION ct: For all t e / and each vm(t) obtained from (5.4) the inequality

\f{t, vm(t)) - fm(t, vm(t))\ < A, \f(t, vm(t))\ (5.5)

holds, where Aj is an n x n nonnegative matrix with p(Ai) < 1.
CONDITION C2: For each vm(t) obtained from (5.4) the inequality

(5.6)

holds, where A2 is an n x n nonnegative matrix with p (A2) < 1.
Inequalities (5.5) and (5.6) correspond to the relative error in approximating / and

g by fm and gm. Further, the above inequalities respectively imply that

\f(t, vm(t))\ < (/ - A,) '1 \fm{t, vm(t))\ (5.7)

and
|U[vm]|<(/-A2)-1|^[l;m]| | . (5.8)

THEOREM 5.2. With respect to the boundary value problem (2.3) we assume that there
exists an approximate solution x(t) e C{J), and

(i) the conditions (i)—(iv) of Theorem (4.2) are satisfied,
(ii) conditions C\ and c2 are satisfied,

(iii) there exists a nonnegative vector fji such that \SIE\[QQX] + 5go[*]| 5 i)\
andr] = max(?ji, ̂ i ) ,

(iv) Kx = Kt + (M, + M6)A,(M3 + ||A(r)||) + M2A2(M4 + U\\); p{Kx) < 1
and r, = (/-^,)-1[^+2(M1+M6)A1(/-A0-| |/o(?, Vo(0)l+2M2A2(/-A2)-'

Then

(1) all the conclusions (1 )-(5) of Theorem 4.2 hold,
(2) the sequence [vm(t)} obtained from (5.4) remains in S{x,?\),
(3) the sequence [vm(t)} converges to x*(t), the solution of (2.3) if and only if

lim^oo bm = 0, where

bm = \\vm+l(0 - H[f(t, vm(t)) - A(t)vm(O] - S[l[vm] - g[vm]]

- Si[Rf(t, vm(t)) + V2Vm(to)]\\, (5.9)

(4) the following error estimate holds

— x || < U -
+ (M, + M6)A,(/ - A,)"1 |/m(r, vm(t))\

^(/-Ajr'll^twJlll. (5.10)
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PROOF. Since Kx < Kx, p(Kt) < 1 implies that p(K{) < 1 and r{ > /-,. Hence the
conditions ofTheorem 4.2 are satisfied and (1) follows.

To show (2), it is obvious that x(t) € S(x, ?\). Further, from (5.4) and Lemma 5.1
we have

w,(0 - vo(t) = vi(t)-x(t) = -SiEilQox] - S[go[x]],

and hence in view of (iii) and (iv) it follows that |ui — vo\\ < fj\ < r} < ru that is,

Now we shall show that vm+i(t) e S(x, rt) provided vm(t) e S(x, F]). From (5.4)

we have

um+i(O - vo(t) = (vdt) - vo(t))

+ HUfm(t, vm(t)) - f(t, i/n(0)) + (f(t, «b(0) - fo(t, «o

+ f (fx(t, «o(/) +0,(wB(O - wo(0)) - > 1 ( 0 ) K (

+ 5[(g[wm] - gm[vm]) + (go[vo] - g[vo\)

- I {g* [vo + 9i (vm - vo)] - e) [iv, - «o] dO2]
Jo J

+ 5,[i?{(/„(/, vm(f)) - f(t, «„,(/))) + (/(?, vo(t)) - fo(t,

+ f fx(t, vo(t) + 9x{vm(t) - n,(

T h u s in v iew of vo(t) + 9i(vm{t) - vo(t)) e S(x, rx),i = 1, 2, w e find that

| K + i -wo| | < |wi - v o |

f, vm(t))\ + \f(t, wo(0)|)]

+[M,M3 + M2M4 + M6M5 + Af7]||w« - wo|.

However, since

\f(t, vm«))\ < \f{t, Wm(0) - /(*, v0(0) - A(r)(wm(O - wo(0)|

< M3\\vm - vo\\ + |A(f)| | |i;m - vo|| + \f(t, vo(t))\

and similarly

\\g[vm]\\ < M,\\vm - vo\\ + \\t\\\\vm - vo\\ + \\g[vo]\\,
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- vo\

+M2[A2(M4

+Ki\\vm-v0\\

2Ai(l-Aiy
i\f0(t,v0(t))\]

i/m - «o|| +2A 2 ( / - A2)"1|g

[19]

Thus, vm+i(t) e 5(x,r,).
To prove (3), from (4.2) and (5.4) we have

wm+i(f) - vm+l0) = -v«+i(O + H[f(t, vm(t)) - A(t)vm(t)]

+S[l[vm] - g[vm]] + S^Rfit, vm(t)) +

wB(r) + ex(um(t) - U B (

- f
\_Jo

R I fJt,Vm(t)+03(Um(t)-Vn
. JO V

+5

and hence

The above inequality, on using the fact that ||«0 — foil = 0. gives that

Thus, in view of the triangle inequality, we get

- vm+l I < \\x* - um+x | . (5.11)
i = 0

In (5.11), Theorem 4.2 ensures that limm_oo ||JC* — Mm+i|| = 0. Thus the condition
linim-Hx, bm = 0 is necessary and sufficient for the convergence of the sequence {vm (t)}
to x*(t) follows from the Toeplitz lemma.
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Finally, we shall prove (4). For this, we have

( 0 x ( 0

= fiUfm(t,vm(t)) - f(t, vm(t)))

(g[um] - gm[vm]) - J (gx[x* + 92(vm - x*)] - i)[vm - x*]d92~\

R\J fx(t,x*{

Thus it follows that

+M 6 [A, j / ( r , u M (0) | + M5\\vm - ^ | ] + M 7 | V m — JC*||. (5.12)

Using (5.7), (5.8) and the triangle inequality in (5.12), we obtain

I "m+i - x* I < Ki || um+i - x* I + A", || vm+i - vm I

+ M6)A,(/ - A,)"' |/m(r, wm(0)|

which is the same as (5.10).

In our next result we shall need the following:
CONDITION C3: Condition C] holds with (5.5) replaced by

\f(t, MO) - fm(t, vm(t))\ < r3, (5.13)

where r3 is a nonnegative n x 1 vector.
CONDITION C4: Condition c2 holds with (5.6) replaced by

\\g[vm]-gm[vm]\\<r4, (5.14)

where r4 is a nonnegative n x l vector.
Inequalities (5.13) and (5.14) correspond to the relative error in approximating /

and g by fm andgm.
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THEOREM 5.3. With respect to the boundary value problem (2.3), assume that there
exists an approximate solution x(t) s C(J), and

(i) conditions (i), (iii) of Theorem 5.2 are satisfied,
(ii) conditions c3 and c4 are satisfied,

(iii) />(*,) < 1 and r5 = (/ - AT,)"1^ + 2(M, + M6)r3 + 2M2/-4] < r.

Then

(1) a// the conclusions (1 )-(5) of Theorem 4.2 AoW,
(2) the sequence {vm(t)} obtained from (5.4) remains in S(x,r$),
(3) conclusion (3) of Theorem 5.2 holds,
(4) the following error estimate holds:

M6)r3 + M2r4].

PROOF. The proof is contained in Theorem 5.2.

Next we shall consider the following approximate Picard's scheme for Case 2.

vm+1(0 = H[fm{t, vm(t)) - A(t)vm(t)] + S[l[vm] - gm[vm]]

[ ( ) ] = x(f), m = 0, 1 , . . . . (5.15)

In (5.15), for each /n the function fm and the operator gm are assumed to be continuous.
In addition, with respect to fm and gm we shall assume that the following conditions
are satisfied.
CONDITION C5: For all t e C(J) and each vm(t) obtained from (5.15), the inequal-
ity (5.5) holds, where At is an n x n nonnegative matrix with p(Ai) < 1.
CONDITION C6: For each vm(t) obtained from (5.15), the inequality (5.6) holds, where
A2 is an n x n nonnegative matrix with p(A2) < 1.

THEOREM 5.4. With respect to the boundary value problem (2.3), assume that there
exists an approximate solution x(t) € C(J), and

(i) the conditions (i) and (ii) of Theorem 4.3 are satisfied,
(ii) the condition (iii) of Theorem 5.2 and conditions c5 and c6 are satisfied,

(iii) K2 = /C2 + (M1+aM8)A1(M3 + ||/l(0ll) + M2A2(M4 + ||£||);p(^2) < land
r2 = (/ - K2)-

l[ri + 2(M1 + C T M 8 ) A , ( / - A,)"1 1/oC, «b(0)| +2M2A2(/ -

Then

(1) all the conclusions (l)-(5) of Theorem 4.3
(2) the sequence {vm(t)} obtained from (5.15) remains in S(x, r2),
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(3) the sequence {vm(t)} converges to x*(t), the solution of (2.3) if and only if
limm^00 cm = 0, where

cm = ||iw,(0 - H[f(t, vm(t)) - A(t)vm(t)] ~ S[t[vm] - g[vj]

- S^ivm - Qvm)]\, (5.16)

(4) the following error estimate holds:

\\vm+i -x*\\ < ( / - / ^ ^

+ (Af, +aM 8 )A,( / - A!)'1 \fm{t, vm(t))\

(5.17)

PROOF. The proof is similar to that of Theorem 5.2.

In our next result we shall need the following:
CONDITION C7: Condition c5 holds with (5.5) replaced by (5.13).
CONDITION C8: Condition c6 holds with (5.6) replaced by (5.14).

THEOREM 5.5. With respect to the boundary value problem (2.3), assume that there
exists an approximate solution x(t) e C(J), and

(i) condition (i) of Theorem 5.4 and (iii) of Theorem 5.2 are satisfied,
(ii) conditions c7 and c8 are satisfied,

(iii) p(K2) < 1 andr5 = (/ - K2)
ui[ri + 1(MX + aMs)r3 + 2M2r4] < r.

Then

(1) all the conclusions (1 )-{5) of Theorem 4.3 hold,
(2) the sequence [vm(t)} obtained from (5.15) remains in S(x,r5),
(3) conclusion (3) of Theorem 5.4 holds,
(4) the following error estimate holds:

|um+i -x*\\ < (/ - K2)
 x[K2\vm+\ -vm\+ (Mi +crMs)r3 + M2r4].

PROOF. The proof is similar to that of Theorem 5.2.

6. An example

The following example illustrates the sharpness as well as the importance of our
results.
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EXAMPLE 6.1. The boundary value problem

u" + « + ( M - 0 3 = t + 0.1 (6.1)

M ( - 1 ) = - 0 . 9 , «(1) = 1.1

is due to Urabe [22], and has also appeared in [1,5, 11,25].
In system form (6.1) is the same as

x[ =x2

x'2 =-Xi - (xi - t)3 +1 + 0.1 (6.2)

* i ( - l ) = -0.9,

For (6.2) choose jc(O = (r + 0.1,1)7"

M0 =

and

ô oyv*2(-D.
As in [11], let e = 10"3,/A = 1 + e, v= 1 - e,

and
''cos ( 1 + 0 — vsin(l

i ( l + 0 /xcos(l
so that

+ 0\
+0/

= f M ° V
\/j. COS 2 î sin 2 / '

/
(fJ- sin ( 1 - Q
V - C ( 0 v cos ( 1 + 0

and

H[<t>{t)]= I H(t,s)4>(s)ds,

where

-Ocos(l +s) -/Ltvsin(l - 0sin(l

- 1 < s < t < 1
_ /ptsin(l +r)cos(l - s) fu, sin (1 +1) D(s)\
~ ~ \v cos (1 + 0 cos (1 - s) v cos (1 + 0 D(s)J '

- 1<t<s< 1
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and C(t) = cos(l - t) - e cos(3 + /), D(t) = sin(l - t) + e sin(3 + 0-
Thus it follows that

II.II Z1 ° \ IIAH / I 0010 0.9103\ ,, =,_,,, /0.9991 0.0000\
«£« = ( l O) ' ^ ~ (o.91O3 0.9990J : i G " ^ (o.4573 1.098?) ;

\H <
/Li(2sin 1 - s i n 2 + 2esin2)\

< /2.2017 0.8537\ _
- \2.2017 1.5612/ ~ ' '

l-0998\ =

l-0998 1.0976/ 2>

3.1996 0

for (r, J:) such that r € [—1, 1], x e Six, r), r = (r0ur02)

0
3(0.1+ r01)

2

1 1001V M<
l 0 . 0 0 1 / ' I I ^ I I -

°°8 5
«>68 0.001oJ

L 8 1 8 6 V
1.8323^'

f. Remark4.,,;

= M ' ;

https://doi.org/10.1017/S0334270000007578 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000007578


82 Radha Shridharan and Ravi P. Agarwal [25]

e
\A\\ /cosh 2 sinh2\ Z3.7622 3.6269N

~ \sinh2 cosh 2/ ~ \3.6269 3.7622/ '

10-3

L0204 + 2.5968(0.1 + r0i)
2 0.0317\

1.0207 + 4.7253(0.1+r01)2 0.0291/ ' {

< 0.002

r . /1.0011 0.001

< 10i - 3 A.001 1.001N
Vl.001 2.000/

\H\\z\\rA + *<t»'|| + Is.llr,! < io-3 i^Z - ^ ) = P3 =5.2640 7.1225\
7.5362^

(cf. (4.10), (4.12), (4.13));

/0.0206 +2.6039(0.1+/-0,)2 0.0197\
2 1,0.0221+4.7289(0.1+r0[)

2 0.0215/' { ;

To apply Theorem 4.2 we note that from the above computation, p(M) < 1 and
p (M) < 1, and therefore in view of Remark 4.1, conditions of Lemma 3.3 are satisfied,
and in conclusion L~l is invertible. Next, p(K{) < 1 if and only if

0 < rm < 0.4965. (6.5)

Further, the condition (/ — Ki)~
lr}l < r implies that

6.35204 x 10-3 < Toi < 0.492783 (6.6)

and
> l°~3(5-9984+ 11.9417(0.1 +r01)2)

r ° 2 - 0.9504- 2.671025(0.1 +r0 1)2 "
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For rOi = 6.4 x 10~3, both (6.5) and (6.6) are satisfied. Also, for this value of rOi

from (6.3) and (6.7), we have

/0.0498 0.0317\ , , , , . _ . in_3

* 1 = (o.O742 0.029lJ a n d ^ < 6.66578 x 10 3.

In conclusion, the following hold:

(1) there exists a solution x*(t) of (6.2) in S(x, r) = {(xu x2) : \xx - (t + 0.1)|
< 6.4 x 10"3, \x2 - 1| < 6.66578 x 10~3},

(2) x*(t) is the unique solution of (6.2) in S(x, r) = {(*,, x2) : \xx - (t + 0.1)|
< 0.492783},

(3) the sequence {um(t)} generated by (4.2) for the problem (6.2) remains in
S(x,r) = {(xux2) : | x , - ( f + 0.1)| < 6.4 x 10""3, \x2 - 1| < 6.66578
x 10~3} and converges to x*(t),

(4) the following error estimate is valid:

0.0317\m /6.40000\
0.0291/ ^6.66578/'

To apply Theorem 4.3 from the above computation, it is clear that p(N) < 1, and
therefore conditions of Lemma 3.5 are satisfied, and in conclusion L"1 is invertible.
Next, p(K2) < 1 if and only if

0 < r01 < 0.502243. (6.8)

Further, the condition (/ — K2)~
xr)x < r implies that

6.26839 x 10"3 < r01 < 0.498563 (6.9)

and

> 10-3 (6.005 + 11.9200(0.1 +r01)2)
r ° 2 - 0.9579-2.6411(0.1+r01)2 '

Once again for rOi = 6.4 x 10~3 both (6.8) and (6.9) are satisfied. Also, for this
value of r01 from (6.4) and (6.10), we have

/0.0501 0.0197\ . , . , , . , i n_3
Kl= 1,0.0757 0.021sJ md ^ > 6.61632 x 10 .

In conclusion, the following hold

(1) there exists a solution x*(t) of (6.2) in S(x, r) = {(xt, x2) : |*, - (t + 0.1)|
< 6.4 x 10"3, \x2 - 1| < 6.61632 x 10"3},

(2) x*(t) is the unique solution of (6.2) in S(x, r) = {(*,, x2) : |x, - (t + 0.1)|
< 0.498563,
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(3) the sequence {um(t)} generated by (4.2) for the problem (6.2) remains in
S(x,r) = {(xux2) : I* - ( f+ 0.1)| < 6.4 x lO"3, |JC2 — 1| < 6.61632
x 10~3} and converges to x*(t),

(4) the following error estimate is valid:

0.0197
0 0 2 1 5

\m /6.40000\

j ( 6 6 1 6 3 2 j .
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