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Abstract

Let µ and ν be Borel probability measures on complete separable metric spaces X and Y respectively.
Each Borel probability measure γ on X × Y with marginals µ and ν can be described through its disin-
tegration

(
γx

)
x∈X

with respect to the initial distribution µ. Assume that µ is continuous i.e. µ
(
{x}

)
= 0

for all x ∈ X. We shall analyze the structure of the support of the measure γ provided card
(
spt(γx)

)
is

finitely countable for µ−a.e. x ∈ X. We shall also provide an application to optimal mass transportation.

1 Introduction

Let X and Y be Polish spaces equipped with Borel probability measures µ on X and ν on Y. Recall that
a measure is called continuous if µ

(
{x}

)
= 0 for all x ∈ X. Let Π(µ, ν) be the set of Borel probability

measures on X × Y which have X-marginal µ and Y−marginal ν. Let γ ∈ Π(µ, ν). In what follows we say
that γ ∈ Π(µ, ν) is concentrated on a set S if the outer measure of its complement is zero, i.e. γ∗(Sc) = 0.
The support of the measure γ is denoted by spt(γ) and is the smallest closed set such that γ is zero on its
complement. We now define precisely some notation describing measures concentrated on several graphs.

Definition 1.1 Let X and Y be Polish spaces with Borel probability measures µ on X and ν on Y. Let
k ∈ N∪ {∞}. We say that a measure γ ∈ Π(µ, ν) is concentrated on the graphs of measurable maps {Gi}ki=1

from X to Y , if there exists a sequence of measurable non-negative functions {αi}ki=1 from X to R with∑k
i=1 αi(x) = 1 (µ-almost surely) such that for each bounded continuous function f : X × Y → R,∫

X×Y

f(x, y) dγ =

k∑
i=1

∫
X

αi(x)f(x,Gix) dµ,

In this case we write γ =
∑k

i=1(Id×Gi)#(αiµ).

Setting Γ = spt(γ), for every x ∈ X we denote by Γx the x−section of Γ, i.e.

Γx =
{
y ∈ Y ; (x, y) ∈ Γ

}
.

Here is our main result in this paper.

Theorem 1.2 Let µ and ν be Borel probability measures on complete separable metric spaces X and Y
respectively. Assume that at least one of µ or ν is continuous. Let γ ∈ Π(µ, ν) and Γ = spt(γ). The
following assertions hold;
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1. If there exists m ∈ N such that card
(
Γx

)
≤ m for µ−a.e. x ∈ X, then there exists k ≤ m and a

sequence of Borel measurable maps {Gi}ki=1 from X to Y such that the measure γ is concentrated on
their graphs.

2. If card
(
Γx

)
<∞ for µ−a.e. x ∈ X, then there exist k ∈ N ∪ {∞} and a sequence of Borel measurable

maps {Gi}ki=1 from X to Y such that the measure γ is concentrated on their graphs.

This theorem has direct applications in the theory of optimal transportation as it provides a precise descrip-
tion of the structure of optimal plans [1, 6, 7, 11, 12]. Theorem 1.2 has a straightforward generalization to
the multi-marginal case (see Corollary 2.9). We refer to [10] for applications of this result in multi-marginal
mass transportation. We also remark that a weaker version of Theorem 1.2 is proved implicitly in [9]. The
next section is devoted to the proof of the main theorem.

2 Preliminaries and the proof of Theorem 1.2.

We shall need some important preliminaries from the theory of measures before proving Theorem 1.2. Let
(X,B, µ) be a finite, not necessarily complete measure space, and (Y,Σ) a measurable space. The completion
of B with respect to µ is denoted by Bµ. When necessary, we identify µ with its completion on Bµ. The push
forward of the measure µ by a map T : (X,B, µ) → (Y,Σ) is denoted by T#µ, i.e.

T#µ(A) = µ(T−1(A)), ∀A ∈ Σ.

Definition 2.1 Let T : X → Y be (B,Σ)-measurable and ν a positive measure on Σ. We call a map
F : Y → X a (Σν ,B)-measurable section of T if F is (Σν ,B)- measurable and T ◦ F = IdY .

If X is a topological space we denote by B(X) the set of Borel sets on X. The space of Borel probability
measures on a topological space X is denoted by P(X). The following definition and proposition are essential
in the sequel.

Definition 2.2 Let X be a Polish space, T : X → X a surjective Borel measurable map and µ a positive
finite measure on B(X). Denote by S(T ) the set of all measurable sections of T i.e.,

S(T ) =
{
F :

(
X,B(X)µ

)
→

(
X,B(X)

)
; T ◦ F = IdX

}
.

Let K ⊂ S(T ). We say that a measurable function F :
(
X,B(X)µ

)
→

(
X,B(X)

)
is generated by K if there

exist a sequence {Fi}∞i=1 ⊂ K such that

X = ∪∞
i=1

{
x ∈ X; F (x) = Fi(x)

}
.

We also denote by G(K) the set of all functions generated by K. It is easily seen that K ⊆ G(K) ⊆ S(T ).

Proposition 2.1 Let X be a Polish space, T : X → X a surjective Borel measurable map and µ a positive
finite measure on B(X). Let K be a nonempty subset of S(T ). Then there exist k ∈ N∪ {∞} and a sequence
{Fi}ki=1 ⊂ G(K) such that the following assertions hold:

1. for each i ∈ N with i ≤ k we have µ(Bi) > 0 where {Bi}ki=1 is defined recursively as follows

B1 = X & Bi+1 =
{
x ∈ Bi; Fi+1(x) ̸∈ {F1(x), ..., Fi(x)}

}
provided k > 1.

2. For all F ∈ G(K) we have

µ
({
x ∈ Bc

i+1 \Bc
i ; F (x) ̸∈ {F1(x), ..., Fi(x)}

})
= 0.

3. If k ̸= ∞ then for all F ∈ G(K)

µ
({
x ∈ Bk; F (x) ̸∈ {F1(x), ..., Fk(x)}

})
= 0.
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Moreover, if either k ̸= ∞ or, k = ∞ and µ(∩∞
i=1Bi) = 0 then for every F ∈ G(K) the measure ϱF = F#µ

is absolutely continuous with respect to the measure
∑k

i=1 ϱi where ϱi = Fi#µ.

We refer to Proposition 3.1 in [9] for the proof of Proposition 2.1.

The following result shows that every (Σν ,B(X))-measurable map has a (Σ,B(X))-measurable represen-
tation ([3], Corollary 6.7.6). Recall that a Souslin space is the image of a Polish space under a continuous
mapping.

Proposition 2.2 Let ν be a finite measure on a measurable space (Y,Σ), let X be a Souslin space, and let
F : Y → X be a (Σν ,B(X))-measurable mapping. Then, there exists a mapping G : Y → X such that G = F
ν-a.e. and G−1(B) ∈ Σ for all B ∈ B(X).

For a measurable map T : (X,B(X)) → (Y,Σ, ν) denote by M(T, ν) the set of all measures λ on B so
that T pushes λ forward to ν, i.e.

M(T, ν) = {λ ∈ P(X); T#λ = ν}.

Evidently M(T, ν) is a convex set. A measure λ is an extreme point of M(T, ν) if the identity λ =
θλ1 + (1 − θ)λ2 with θ ∈ (0, 1) and λ1, λ2 ∈ M(T, ν) imply that λ1 = λ2. The set of extreme points of
M(T, ν) is denoted by extM(T, ν).

We recall the following result from [5] in which a characterization of the set extM(T, ν) is given.

Theorem 2.3 Let (Y,Σ, ν) be a probability space, (X,B(X)) be a Hausdorff space with a Radon probability
measure λ, and let T : X → Y be an (B(X),Σ)-measurable mapping. Assume that T is surjective and Σ is
countably separated. The following conditions are equivalent:
(i) λ is an extreme point of M(T, ν);
(ii) there exists a (Σν ,B(X))-measurable section F : Y → X of the mapping T with λ = F#ν.

By making use of the Choquet theory in the setting of non-compact sets of measures [13], each λ ∈M(T, ν)
can be represented as a Choquet type integral over extM(T, ν). Denote by ΣextM(T,ν) the σ-algebra over
extM(T, ν) generated by the functions ϱ → ϱ(B), B ∈ B(X). We have the following result (see [9] for a
proof).

Theorem 2.4 Let X and Y be complete separable metric spaces and ν a probability measure on B(Y ). Let
T : (X,B(X)) → (Y,B(Y )) be a surjective measurable mapping and let λ ∈ M(T, ν). Then there exists a
probability measure ξ on

∑
extM(T,ν) such that for each B ∈ B(X),

λ(B) =

∫
extM(T,ν)

ϱ(B) dξ(ϱ),
(
ϱ→ ϱ(B) is measurable

)
.

We now recall the notion of isomorphisms for measures.

Definition 2.5 Assume that X and Y are topological spaces with Borel probability measures µ on X and ν
on Y. We say that (X,B(X), µ) is isomorphic to (Y,B(Y ), ν) if there exists a one-to-one map T of X onto
Y such that for all A ∈ B(X) we have T (A) ∈ B(Y ) and µ(A) = ν

(
T (A)

)
, and for all B ∈ B(Y ) we have

T−1(B) ∈ B(X) and µ
(
T−1(B)

)
= ν(B).

Here is the well-known measure isomorphism theorem (see Theorem 17.41 in [2] for a proof).

Theorem 2.6 Let µ be a Borel probability measure on a Polish space X. If µ is continuous then (X,B(X), µ)
and ([0, 1], λ), where λ is Lebesgue measure, are isomorphic.

Lemma 2.7 Let γ ∈ Π(µ, ν). If either µ or ν is continuous then so is γ.

3

https://doi.org/10.4153/S0008439524000377 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000377


Proof. Assume that µ is continuous. Take (x, y) ∈ X × Y. It follows that

µ({x}) = γ
(
{x} × Y

)
≥ γ

(
{x} × {y}

)
,

from which the desired result follows. The proof is similar if ν is continuous. □

Proof of Theorem 1.2. We assume that µ is a continuous measure. It follows from Lemma 2.7
that γ is also continuous. It follows from Theorem 2.6 that the Borel measurable spaces (X,B(X), µ) and
(X × Y,B(X × Y ), γ) are isomorphic. Thus, there exists an isomorphism T = (T1, T2) from (X,B(X), µ)
onto (X × Y,B(X × Y ), γ). It can be easily deduced that T1 : X → X and T2 : X → Y are surjective maps
and

(T1)#µ = µ & (T2)#µ = ν.

Consider the convex set
M(T1, µ) =

{
λ ∈ P(X); (T1)#λ = µ

}
,

and note that µ ∈ M(T1, µ). Since µ ∈ M(T1, µ), it follows from Theorem 2.4 that there exists a probability
measure ξ on

∑
extM(T1,µ)

such that for each B ∈ B(X),

µ(B) =

∫
extM(T1,µ)

ϱ(B) dξ(ϱ),
(
ϱ→ ϱ(B) is measurable

)
. (1)

Since Γ = spt(γ), it follows that T−1(Γ) is a measurable subset of X with µ
(
T−1(Γ)

)
= 1. Let Aγ ∈ B(X)

be the set such that Aγ ⊆ T−1(Γ) and for all x ∈ Aγ the cardinality of the set Γx does not exceed m. It
follows from the assumption that µ(Aγ) = 1. Since µ(X \Aγ) = 0, it follows from (1) that∫

extM(T1,µ)

ϱ(X1 \Aγ) dξ(ϱ) = µ(X \Aγ) = 0,

and therefore there exists a ξ-full measure subset Kγ of extM(T1, µ) such that ϱ(X \Aγ) = 0 for all ϱ ∈ Kγ .
Let S(T1) be the set of all sections of T1 and define

K :=
{
F ∈ S(T1); ∃ϱ ∈ Kγ with µ = F#ϱ

}
.

Let G(K) be the set of all measurable sections of T1 generated by K as in Definition 2.2. By Proposition
2.1, there exists a sequence {Fi}ki=1 ⊂ G(K) with k ∈ N ∪ {∞} satisfying assertions 1), 2) and 3) in that
proposition. Let Bγ := ∩k

i=1F
−1
i (Aγ), and for each k ∈ N ∪ {∞} define

Nk =

{
{1, 2, ..., k}, k ∈ N,
N, k = ∞.

Let ϱi := Fi#µ for each i ∈ Nk. We shall now proceed with the proof in several steps.

Step I: In this step we show that µ
(
Bγ

)
= 1 and(

x, T2 ◦ Fi(x)
)
∈ Γ, ∀x ∈ Bγ , ∀i ∈ Nk. (2)

Note first that ϱi(X \Aγ) = 0 for each i ∈ Nk. In fact, for a fixed i ∈ Nk, since Fi ∈ G(K) there exists a
sequence {Fσj

}∞j=1 ⊂ K such that X = ∪∞
j=1Aj where

Aj = {x ∈ X; Fi(x) = Fσj
}.
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Let σj ∈ Kγ be such that the map Fσj is a push-forward from σj to µ. It follows that

ϱi(X \Aγ) = µ
(
F−1
i (X \Aγ)

)
= µ

(
(∪∞

j=1Aj) ∩ F−1
i (X \Aγ)

)
≤

∞∑
j=1

µ
(
Aj ∩ F−1

i (X \Aγ)
)

=

∞∑
j=1

µ
(
Aj ∩ F−1

σj
(X \Aγ)

)
≤

∞∑
j=1

µ
(
F−1
σj

(X \Aγ)
)
=

∞∑
j=1

σj(X \Aγ) = 0.

This proves that ϱi(X \Aγ) = 0. Since ϱi is a probability measure we have that ϱi(Aγ) = 1 for every i ∈ Nk.
Therefore, µ

(
F−1
i (Aγ)

)
= ϱi(Aγ) = 1. This implies that µ(Bγ) = µ

(
∩k
i=1 F

−1
i (Aγ)

)
= 1. We shall now

prove that (
x, T2 ◦ Fi(x)

)
∈ Γ, ∀x ∈ Bγ , ∀i ∈ Nk.

Since for all x ∈ Aγ we have T (x) = (T1x, T2x) ∈ Γ, it follows that for each i ∈ Nk,(
T1 ◦ Fi(x), T2 ◦ Fi(x)

)
∈ Γ, ∀x ∈ F−1

i (Aγ),

from which together with T1 ◦ Fi = IdX one obtains(
x, T2 ◦ Fi(x)

)
∈ Γ, ∀x ∈ F−1

i (Aγ). (3)

Thus, (
x, T2 ◦ Fi(x)

)
∈ Γ, ∀x ∈ Bγ , ∀i ∈ Nk.

This completes the proof of Step I.

Step II: In this step we assume that assumption 1) of the theorem holds. In this case we show that k ≤ m.
To do this let us assume that k > m. It follows from Step I that(

x, T2 ◦ Fi(x)
)
∈ Γ, ∀x ∈ Bγ , ∀i ∈ {1, ...,m+ 1}. (4)

Note that by assertion 1) in Proposition 2.1 we have µ(Bm+1) > 0. Since µ(Bγ) = 1 and µ(Bm+1) > 0
it follows that Bγ ∩ Bm+1 ̸= ∅. Take x ∈ Bγ ∩ Bm+1. We have that the cardinality of the set Γx is at most
m. On the other hand it follows from (4) that T2 ◦ Fi(x) ∈ Γx for all i ∈ {1, 2, ...,m+ 1}. Thus, there exist
i, j ∈ {1, 2, ...,m + 1} with i < j such that T2 ◦ Fi(x) = T2 ◦ Fj(x). Since T1 ◦ Fi = T1 ◦ Fj = IdX and the
map T = (T1, T2) is injective it follows that Fi(x) = Fj(x). On the other hand x ∈ Bm+1 ⊆ Bj from which
we have Fj(x) ̸∈ {F1(x), ..., Fj−1(x)}. This leads to a contradiction and therefore k ≤ m in this case.

Step III: In this step we assume that assumption 2) of the theorem holds. In this case we prove that if
k = ∞ then µ(∩∞

i=1Bi) = 0.
To prove this, let us assume that k = ∞ and µ(∩∞

i=1Bi) > 0. By Step I, we have that µ(Bγ) = 1 and(
x, T2 ◦ Fi(x)

)
∈ Γ, ∀x ∈ Bγ , ∀i ∈ N (5)

Take x ∈
(
∩∞
i=1 Bi

)
∩ Bγ . It follows from (5) that T2 ◦ Fix ∈ Γx for each i ∈ N. On the other hand by

assumption we have that card(Γx) <∞. Thus, there exist i, j with i < j such that T2◦Fi(x) = T2◦Fj(x). As
in Step II, since T1 ◦Fi = T1 ◦Fj = IdX and the map T = (T1, T2) is injective it follows that Fi(x) = Fj(x).
On the other hand x ∈ ∩∞

i=1Bi ⊆ Bj from which we have Fj(x) ̸∈ {F1(x), ..., Fj−1(x)}. This leads to a
contradiction and step III follows.

It now follows from Steps II and III that either k ̸= ∞ or, if k = ∞ then µ(∩∞
i=1Bi) = 0. On the other

hand Proposition 2.1 yields that if either k ̸= ∞ or, k = ∞ and µ(∩∞
i=1Bi) = 0 then for every F ∈ G(K)
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the measure ϱF = F#µ is absolutely continuous with respect to the measure
∑k

i=1 ϱi where ϱi = Fi#µ for
i ∈ Nk. This together with the representation

µ(B) =

∫
extM(T1,µ)

ϱ(B) dξ(ϱ) =

∫
Kγ

ϱ(B) dξ(ϱ),
(
∀B ∈ B(X)

)
,

imply that µ is absolutely continuous with respect to
∑k

i=1 ϱi. It then follows that there exists a non-negative
measurable function α : X → R ∪ {+∞} such that

dµ

d
(∑k

i=1 ϱi
) = α.

Define αi = α ◦ Fi for i ∈ Nk. We show that
∑k

i=1 αi(x) = 1 for µ-almost every x ∈ X. In fact, for each
B ∈ B(X) we have

µ(B) = µ(T−1
1 (B)) =

k∑
i=1

∫
T−1
1 (B)

α(x) dϱi =

k∑
i=1

∫
F−1

i ◦T−1
1 (B)

α(Fix) dµ =

k∑
i=1

∫
B

αi(x) dµ,

from which we obtain µ(B) =
∑k

i=1

∫
B
αi(x) dµ. Since this holds for all B ∈ B(X) we have

k∑
i=1

αi(x) = 1, µ− a.e.

It now follows from Proposition 2.2 that each Fi is µ-a.e. equal to a (B(X),B(X))-measurable function for

which we still denote it by Fi. For each i ∈ Nk, let Gi = T2◦Fi.We now show that γ =
∑k

i=1(Id×Gi)#(αiµ).
For each bounded continuous function f : X × Y → R it follows that∫

X×Y

f(x, y) dγ =

∫
X

f(T1x, T2x) dµ =

k∑
i=1

∫
X

α(x)f(T1x, T2x) dϱi

=

k∑
i=1

∫
X

α
(
Fi(x)

)
f
(
T1 ◦ Fi(x), T2 ◦ Fi(x)

)
dµ

=

k∑
i=1

∫
X

αi(x)f
(
x,Gi(x)

)
dµ.

Therefore,

γ =

k∑
i=1

(Id×Gi)#(αiµ).

□

Remark 2.8 It follows from the last part of the proof of Theorem 1.2 that if Gi(x) = Gj(x) for some
x ∈ X then αi(x) = αj(x). In fact, let us assume that Gi(x) = Gj(x) for some x ∈ X. It implies that
T2 ◦ Fi(x) = T2 ◦ Fj(x). Since T1 ◦ Fi(x) = T1 ◦ Fj(x) = x and T = (T1, T2) is injective we obtain that
Fi(x) = Fj(x). This yields that

αi(x) = α ◦ Fi(x) = α ◦ Fj(x) = αj(x),

as claimed.

It is worth noting that Theorem 1.2 has a straight forward generalization to the multi-marginal case.

Corollary 2.9 Let µ1, ..., µn be Borel probability measures on complete separable metric spaces X1, ..., Xn

respectively. Assume that µ1 is continuous. Let γ be a probability measure on X1 × ... × Xn with fixed
marginal µi on Xi, and let Γ = spt(γ). The following assertions hold;

6

https://doi.org/10.4153/S0008439524000377 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000377


1. If there exists m ∈ N such that the cardinality of the set

Γx1
:=

{
(x2, ..., xn) ∈ X2 × ...×Xn; (x1, ...xn) ∈ Γ

}
does not exceed m for µ1−a.e. x1 ∈ X1, then there exists k ≤ m and a sequence of Borel measurable
maps {Gi}ki=1 from X1 to X2 × ....×Xn such that the measure γ is concentrated on their graphs.

2. If card
(
Γx1

)
< ∞ for µ1−a.e. x1 ∈ X1, then there exist k ∈ N ∪ {∞} and a sequence of Borel

measurable maps {Gi}ki=1 from X1 to X2 × ... ×Xn such that the measure γ is concentrated on their
graphs.

Proof. Let Y = X2 × ... ×Xn and ν be the projection of γ on Y. It follows that γ ∈ Π(µ1, ν). Since µ1 is
continuous the desired result follows from Theorem 1.2. □

3 Applications in Optimal Transportation

Here we shall provide an application of Theorem 1.2. Let T be a (2, 3)-torus knot in R3 (see Fig. 1). Our
goal is to describe the structure of optimal plans for the cost c : T × T → R given by

c(x, y) =
1

2
|x− y|2.

Let µ and ν be two probability measures on T . Since the function c is bounded and continuous on T × T it
follows that the problem

inf
{∫

T ×T
c(x, y) dγ; γ ∈ Π(µ, ν)

}
, (6)

admits a solution. We have the following result.

Theorem 3.1 Assume that the non-atomic measure µ is absolutely continuous in each coordinate chart on
T . Then any optimal plan of (6) is concentrated on the graphs of at most eight measurable maps.

Proof. By standard results in the theory of optimal transportation there exist measurable functions φ :
T → R and ψ : T → R with

ψ(y) = inf
x∈T

{c(x, y)− φ(x)} & φ(x) = inf
y∈T

{c(x, y)− ψ(y)}, (7)

such that for any optimal plan γ of (6),

Spt(γ) ⊆
{
(x, y) ∈ T × T : φ(x) + ψ(y) = c(x, y)

}
.

Since T is bounded, it follows from Lemma C.1 in [4] that φ is locally Lipschitz on T . Let M = Dom(Dφ).
It follows from Rademacher’s theorem together with the absolute continuity of µ that µ(M) = 1. For x0 ∈M
if there exist y0, y ∈ T with (x0, y0) and (x0, y) ∈ Spt(γ), then we must have D1c(x0, y0) = D1c(x0, y). Let

N⃗(x0) be the outward normal vector at xo. If

D1c(x0, y0) = D1c(x0, y),

then y − y0 = αN⃗(x0) for some α ∈ R. This implies that y = y0 + αN⃗(x0). The latter argument shows that
all the points in the set {

y ∈ T ; D1c(x0, y0) = D1c(x0, y)
}
,

live on a straight line through y0 and parallel to the normal vector N⃗(x0). On the other hand, one can
easily observe that any straight line can intersect the manifold T in at most 8 points. This proves that
card

(
Γx

)
≤ 8 is for µ−a.e. x ∈ T where Γx =

{
y ∈ T ; (x, y) ∈ spt(γ)

}
. Therefore by Theorem 1.2 there

exist k ∈ {1, 2, ..., 8} and a sequence of Borel measurable maps {Gi}ki=1 from T to T such that the measure
γ is concentrated on their graphs. □
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Figure 1: (2, 3)-torus knot T .
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