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Abstract

Fractional Lévy processes generalize fractional Brownian motion in a natural way. We
go a step further and extend the usual fractional Riemann–Liouville kernel to a regularly
varying function. We call the resulting stochastic processes generalized fractional Lévy
processes (GFLPs) and show that they may have short or long memory increments and
that their sample paths may have jumps or not. Moreover, we define stochastic integrals
with respect to a GFLP and investigate their second-order structure and sample path
properties. A specific example is the Ornstein–Uhlenbeck process driven by a time-
scaled GFLP. We prove a functional central limit theorem for such scaled processes with
a fractional Ornstein–Uhlenbeck process as a limit process. This approximation applies
to a wide class of stochastic volatility models, which include models where possibly
neither the data nor the latent volatility process are semimartingales.
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1. Introduction

This paper contributes to current discussions in various areas of applications, where high-
frequency and unequally spaced data lead to continuous-time modeling. This applies in
particular to financial and computer network traffic data, but also to environmental and climate
data, where remote sensing, satellite, and/or radar data have become available.

Practitioners, engineers, and scientists observe different characteristics in such data. In
particular, we have to distinguish Gaussian and non-Gaussian distributions (specifically heavy
tails), no jumps or jumps, which are triggered by market forces or discontinuities in physical
processes, short and long memory of various origin, as well as stochastic variability (volatility)
observed in high-frequency measurements. We shall define a new class of models, which
allows for flexible modeling of the three essential properties: distributions, memory, and jump
behavior.

All stochastic objects used in this paper are defined on a filtered probability space
(�,F , (Ft )t∈R,P), which satisfies the usual conditions of completeness and right continuity
of the filtration. Recall from Marquardt (2006) that a fractional Lévy process (FLP) on R has
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Generalized fractional Lévy processes 1109

the representation

S(t) =
∫

R

{(t − x)
H−1/2
+ − (−x)H−1/2

+ } dL(x), t ∈ R, (1.1)

where u+ = max(u, 0),H ∈ (0, 1), and L is a two-sided Lévy process. For L being Brownian
motion (BM) this process defines fractional Brownian motion (FBM) denoted by BH and has
been studied extensively. We extend the class of processes (1.1) to

S(t) =
∫

{g(t − x)− g(−x)} dL(x), t ∈ R (1.2)

for appropriate functions g and call S a generalized fractional Lévy process (GFLP). The class
of functions g is determined such that S(t) exists for all t ∈ R.

As a classic approach, short range dependence models are integrated over a fractional kernel,
thus obtaining long memory versions of such processes. This applies in particular for processes
driven by BM; see Comte et al. (2012) and the references therein.

A different approach modifies the driving BM to an FBM, thus obtaining stochastic differ-
ential equations driven by an FBM; see Buchmann and Klüppelberg (2006) and Zähle (1998).
It is then a natural step to extend an FBM to FLPs providing more flexible distributions and
tail behavior than Gaussian processes, retaining the long memory increments. This implies
immediately that Ornstein–Uhlenbeck (OU) processes driven by an FLP constitute a rich
distributional class with long memory (cf. Marquardt (2006)). They have been extended to
general stochastic differential equations driven by an FLP by, e.g. Fink and Klüppelberg (2011).
All these processes are long memory models, and they all have continuous sample paths.

On the other hand, OU processes driven by a Lévy process provide, besides flexible
distributions, both continuous sample paths (when driven by BM) and sample paths with
jumps (when driven by a Lévy process with jumps). In recent years substantial research
focused on Lévy-driven models with mostly short memory, exemplified in Barndorff-Nielsen
and Shephard (2001) and in Klüppelberg et al. (2004). However, all these processes have
exponential autocovariances; hence, short memory.

Certain models, which give more flexibility for distributions and memory have been con-
sidered; for instance, continuous-time autoregressive moving average (CARMA) models (see
Brockwell and Lindner (2009) and the references therein) extend the class of Lévy-driven OU
processes. Although they allow for more flexible autocovariance functions than simple expo-
nentials, they are restricted to short range dependence modeling. Long range dependent models
like the fractionally integrated continuous-time autoregressive moving average (FICARMA)
(Brockwell and Marquardt (2005)) or the infinite factor supOU process by Barndorff-Nielsen
(2001) have been suggested. However, FICARMA processes have again continuous sample
paths, and the supOU process is a rather complex model.

As a result, we note a lack of stochastic models, which have flexible memory, flexible jump
behavior, and interpolate between algebraic and exponential decay of their autocovariance
functions. In the light of these facts, we first propose a GFLP S as defined in (1.2), which
contributes via its kernel more flexible models to the discussion. We calculate its second-order
structure explicitly. Moreover, we show that S can exhibit both short memory increments (with
exponentially or fast polynomially decreasing autocovariances) and long memory increments
(with slow polynomially decreasing autocovariances). We investigate the sample path behavior,
where we show that S has a càdlàg version and can have continuous paths or jumps.
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1110 C. KLÜPPELBERG AND M. MATSUI

In the next step we investigate models driven by a GFLP S. Here we focus on OU processes
driven by S and calculate their second-order structure and finite-dimensional distributions via
the characteristic function (ch.f.).

Furthermore, we show that OU processes driven by a time-scaled GFLP converge (in a
functional sense) to an FBM-driven OU process, extending previous work (see Klüppelberg
and Kühn (2004) and Klüppelberg and Mikosch (1995)) in a nontrivial way.

As a prominent application we consider stochastic volatility models, where the volatility
is given by an OU process driven by a time-scaled GFLP, which can cope with the required
properties of volatilities (long memory, sample paths, and distributional tail behavior). Since
time-scaled versions converge to an FBM-driven OU process, by proper scaling the model
adjusts smoothness of the sample paths and closeness to Gaussian distributions, allowing for
long memory. Finally, we prove a bivariate functional convergence result for both the data
equation and the latent volatility processes.

The paper is organized as follows. In Section 2 we define the GFLP S. In Section 3 we
extend the classic Riemann–Liouville fractional integrals by allowing for more general kernel
functions. For a fixed kernel function we determine the class H of integrands such that the
integral with respect to S exists. We present some analytic results for this integral. If the kernel
function is positive (or negative) on R+ := [0,∞) the isometry between the two inner product
spaces L2(�) and H is presented, giving the second-order structure of S. As a prominent
example we consider the OU process driven by a GFLP and prove functional convergence of
scaled versions to a fractional (Gaussian) OU process. In Section 5 we apply our results to
stochastic volatility models, proving joint weak convergence of the data process (driven by BM
or FBM) and the volatility process in the Skorokhod space D(R2+).

2. Generalized FLPs

Throughout this paper we work with a two-sided Lévy process L = {L(t)}t∈R constructed
by taking two independent copies L1 = {L1(t)}t≥0 and L2 = {L2(t)}t≥0 of a Lévy process
and setting L(t) := L1(t)1[0,∞)(t)−L2((−t)−) 1(−∞,0)(t), where 1 is the indicator function.
Moreover, we assume that L is centered without a Gaussian component and that the Lévy
measure ν satisfies

∫
|x|>1 x

2ν(dx) < ∞, i.e. E[(L(t))2] = tE[(L(1))2] = t
∫

R
x2ν(dx) < ∞

for all t ∈ R. The distribution of L is uniquely defined by the ch.f. E[exp{iθL(t)}] =
exp{tψ(θ)} for t ≥ 0, where

ψ(θ) =
∫

R

(eiθx − 1 − iθx)ν(dx), θ ∈ R. (2.1)

For more details on Lévy processes we refer the reader to the excellent monograph of Sato
(1999).

The following result is known and we recall it for later reference. It can be found in
Proposition 2.1 and Theorem 3.5 of Marquardt (2006) and, in a more general version, in Rajput
and Rosinski (1989).

Proposition 2.1. Let L be a Lévy process. Assume that E[L(1)] = 0 and E[(L(1))2] < ∞.
For t ∈ R let ft ∈ L2(R). Then the integral S(t) := ∫

R
ft (u) dL(u) exists in the L2(�) sense.

Furthermore, for s, t ∈ R we obtain E[S(t)] = 0, and the isometry

E[(S(t))2] = E[(L(1))2]‖ft (·)‖2
L2(R)

(2.2)
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holds, and

�̃(s, t) = cov(S(s), S(t)) = E[(L(1))2]
∫

R

fs(u)ft (u) du. (2.3)

Moreover, the ch.f. of S(t1), . . . , S(tm) for t1 < · · · < tm is given by

E

[
exp

{ m∑
j=1

iθjS(tj )

}]
= exp

{∫
R

ψ

( m∑
j=1

θjftj (s)

)
ds

}
for θj ∈ R, j = 1, . . . , m,

where ψ is given in (2.1).

We now define a generalized fractional Lévy process.

Definition 2.1. Let L be a Lévy process with E[L(1)] = 0 and E[(L(1))2] < ∞. Let g : R →
R with g(t) = 0 for t < 0 and such that

∫
R
(g(t − s)− g(−s))2 ds < ∞ for all t ∈ R. The

stochastic process S = {S(t)}t∈R defined by

S(t) =
∫

R

{g(t − u)− g(−u)} dL(u), t ∈ R (2.4)

is called the generalized fractional Lévy process (GFLP).

The process S has stationary increments and is symmetric with S(0) = 0, i.e. S(−t) d=
−S(t), t ≥ 0, where ‘

d=’ denotes equality in distribution. By taking g(u) = u
H−1/2
+ we obtain

an FLP.
The integral (2.4) obviously exists in the L2(�) sense. In what follows we formulate

assumptions on g needed for the existence of a stochastic integral with respect to S considered
in Section 3 or for the existence of a functional limit of a scaled family of such processes in
Section 4.

Assumption 2.1. The function g : R → R satisfies g(t) = 0 for t < 0 and is continuously twice
differentiable on (0,∞), the limit limu↓0 |g′(u)| exists and is finite, and g′′(u) = O(u−3/2−ε)
as u → ∞ for sufficiently small ε > 0.

We assume that Assumption 2.1 holds throughout this paper. We start with some sample
path properties of a GFLP.

Lemma 2.1. Let L be a Lévy process with E[L(1)] = 0 and E[(L(1))2] < ∞. Under
Assumption 2.1 on g, the GFLP S has a càdlàg version. Moreover, S has jumps if and only if
g(0) 
= 0.

Proof. We let t > 0 without loss of generality (w.l.o.g.) since the proof is analogous for
t ≤ 0. Write

S(t) =
∫ t

0
g(t − u) dL(u)+

∫ 0

−∞
{g(t − u)− g(−u)} dL(u) =: S1(t)+ S2(t).

Our assumption on the Lévy process implies the laws of the iterated logarithms (LILs) (see
Sato (1999, Propositions 47.11 and 48.9)), giving almost surely (a.s.)

lim sup
t↓0

|L(t)|
(2t log log(1/t))1/2

= 0, lim sup
t→∞

|L(t)|
(2t log log t)1/2

= (E[(L(1))2])1/2.
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We use the fact that if f is continuously differentiable,∫ b

a

f (s) dL(s) = f (b)L(b)− f (a)L(a)−
∫ b

a

L(s) df (s)

holds (see Lemma 2.1 of Eberlein and Raible (1999): for fixed ω the sets of jumps of L are
an at most countable Lebesgue null set). This, together with the LIL at the origin and the
assumptions on g, yields

S1(t) =
∫ t

0
g(t − u) dL(u)

= g(0)L(t)− lim
s↓0

g(t − s)L(s)+
∫ t

0
L(u)g′(t − u) du

= g(0)L(t)+
∫ t

0
L(u)g′(t − u) du,

whereas this, together with the LIL at ∞, yields

S2(t) = lim
s↓−∞{g(t − s)− g(−s)}L(s)+ lim

s↓−∞

∫ 0

s

{g′(t − u)− g′(−u)}L(u) du

=
∫ 0

−∞
{g′(t − u)− g′(−u)}L(u) du.

As for the expression of S2, we apply the dominated convergence theorem to

S2(t)− S2(s) =
∫ 0

−∞
{g′(t − u)− g′(s − u)}L(u) du

to observe limt→s |S2(t) − S2(s)| = 0. Hence, S2 is a.s. continuous. Similarly, the integral
term of S1 is continuous. Since L is càdlàg without drift and Gaussian components S1 and,
hence, S have jumps if and only if g(0) 
= 0.

Generalized fractional Lévy processes can exhibit both short and long memory increments.
By Proposition 2.1, when w.l.o.g. E[(L(1))2] = 1, the covariance function of the increments
has the form for t, s, h > 0,

γ (t, h) = E[{S(t + s + h)− S(t + s)}{S(s + h)− S(s)}]

=
∫ h

−∞
{g(t + h− u)− g(t − u)}{g(h− u)− g(−u)} du. (2.5)

Definition 2.2. Assume that a GFLP S has covariance function γ (·, h) for fixed lag h > 0. If∫ ∞
0 |γ (t, h)| dt < ∞ then S is said to have short memory increments. If

∫ ∞
0 |γ (t, h)| dt = ∞

then S is said to have long memory increments.

Example 2.1. Assume that γ (t, h) is continuous and that γ (t, h) ∼ Ct−β as t → ∞ with
C, β > 0 for all h > 0. If β ≤ 1 then S has long memory increments, whereas if β > 1 then
S has short memory increments.

Whether S has long or short memory increments depends on the asymptotic behavior of g.

Lemma 2.2. Let 0 < α < 1
2 and c > 0. Assume that g(x) = cxα for x ≥ M > 0. Then S has

long memory increments.
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Proof. Set w.l.o.g. c = 1. Write γ (t, h) = γ1(t, h)+ γ2(t, h) with

γ1(t, h) :=
∫ h

−M
{g(t + h− u)− g(t − u)}{g(h− u)− g(−u)} du,

γ2(t, h) :=
∫ −M/t

−∞
{g(t + h− tv)− g(t − tv)}{g(h− tv)− g(−tv)}t dv.

By the mean value theorem for x ≥ M and y > 0, we have

g(y + x)− g(x) = (y + x)α − xα = α(x + θy)α−1y,

where the parameter 0 < θ < 1 depends on both x and y. We apply this mean value theorem
to both γ1 and γ2 and observe that, for θ = θ(t, h, u) ∈ (0, 1),

γ1(t, h) = αtα−1h

∫ h

−M

(
1 − u

t
+ θh

t

)α−1

{g(h− u)− g(−u)} du

∼ αtα−1h

∫ h

−M
{g(h− u)− g(−u)} du, t → ∞

and, similarly,

γ2(t, h) ∼ α2h2t2α−1
∫ 0

−∞
(1 − v)α−1(−v)α−1 dv = α2h2t2α−1B(α, 1 − 2α), t → ∞,

where we have used the dominated convergence theorem. Hence, γ (t, h) ∼ Ct2α−1 as t → ∞
with 0 < α < 1

2 .

Example 2.2. (i) Let g(x) = e−λx1{x≥0}. Then S is a Lévy OU process whose properties
are well known. The process has short memory increments, since (2.5) gives γ (t, h) =
e−λt∫ h

−∞(e
−λ(h−u) − e−λ(−u))2 du for t, h > 0. Moreover, the sample paths of S exhibit

jumps, since g(0) 
= 0.

(ii) Let g(x) = xα with 0 < α < 1
2 for x ≥ M and some M > 0. Then the sample paths

of S can have jumps or not, depending on the behavior of g in 0, while S has long memory
increments by Lemma 2.2.

(iii) Consider g(x) = 1/(α + λx)β1{x≥0} with parameters α, λ ≥ 0 and β > − 1
2 , β 
= 0 as

in Gander and Stephens (2007, p. 635), where they use this function g for stochastic volatility
models driven by Lévy processes. Then the sample paths of S have jumps and S can exhibit
short or long memory increments, depending on β.

Remark 2.1. (i) Like an FLP, the GFLP S has stationary increments and S(0) = 0 holds.
Moreover, it inherits the symmetry from the driving Lévy process, i.e. S(−t) d= −S(t) for
t ≥ 0. A novelty of GFLPs is that they combine processes that can have jumps without
having independent increments, and without losing the symmetry or the stationary increments.
Moreover, while fractional Lévy processes always exhibit long memory behavior, the class of
GFLPs can model both short and long memory.

(ii) Continuity of
∫ t

0 L(u)g
′(t − u) du in S1 and S2 as proved in Lemma 2.1 also follows from

the Kolmogorov–Čhentsov theorem.
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3. Stochastic integrals with respect to a GFLP

Recall that the Riemann–Liouville fractional integrals Iα± are defined for α ∈ (0, 1) by

(Iα−h)(u) = 1

�(α)

∫ ∞

u

h(t)(t − u)α−1 dt, (Iα+h)(u) = 1

�(α)

∫ u

−∞
h(t)(u− t)α−1 dt

for functions h : R → R, provided that the integrals exist for almost all u ∈ R. For details, see,
e.g. Samko et al. (1993).

As a motivation for what follows, note that for t > 0,

g(t − u)− g(−u) =
∫

R

1(0,t](v)g′(v − u) dv.

We use now g′ for an extension of the classical Riemann–Liouville kernel function and define
for appropriate functions h,

(I
g
−h)(u) :=

∫ ∞

u

h(v)g′(v − u) dv =
∫

R

h(v)g′(v − u) dv. (3.1)

In what follows we assume that S is a GFLP driven by a Lévy process L as in Definition 2.1.
Starting from the fact that

S(t) =
∫

R

(I
g
−1(0,t])(x)L(dx), t ∈ R, (3.2)

we shall define a stochastic integral for a function h in a similar way as in Marquardt (2006,
Section 5). Since g′ is continuous on (0,∞) by Assumption 2.1, the integral (3.2) is well
defined as

(I
g
−1(0,t])(x) = −

∫ 0

t

g′(v − x) dv = g(t − x)− g(−x).

For a fixed function g as above, define

H̃ :=
{
h : R → R+ :

∫
R

(I
g
−h)2(u) du < ∞

}
,

where Ig−h is as in (3.1). The proof of the following result is analogous to that of Marquardt
(2006, Proposition 5.1).

Proposition 3.1. Suppose that g satisfies Assumption 2.1 and that for its derivative g′,∫ 1

0
|g′(s)| ds +

∫ ∞

1
(g′(s))2 ds < ∞

also holds. If h : R → R+ satisfies h ∈ L1(R) ∩ L2(R) then h ∈ H̃ .

Proof. Starting from the fact that Ig−h ∈ L2(R) if and only if∣∣∣∣∫
R

ϕ(u)(I
g
−h)(u) du

∣∣∣∣ ≤ C‖ϕ‖L2(R)
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for all ϕ ∈ L2(R) for some C > 0, it suffices to show that for all ϕ ∈ L2(R),∫
R

∫ ∞

0
|ϕ(u)g′(s)h(s + u)| ds du ≤ C‖ϕ‖L2(R).

This holds if

I1 =
∫

R

∫ 1

0
|ϕ(u)g′(s)h(s + u)| ds du ≤ C‖ϕ‖L2(R),

I2 =
∫

R

∫ ∞

1
|ϕ(u)g′(s)h(s + u)| ds du ≤ C‖ϕ‖L2(R).

Applying Fubini’s theorem and the Hölder inequality, we obtain

I1 =
∫ 1

0
|g′(s)|

∫
R

|ϕ(u)h(s + u)| du ds ≤ ‖ϕ‖L2(R)‖h‖L2(R)

∫ 1

0
|g′(s)| ds < ∞.

Furthermore, setting t = s + u and using again Fubini’s theorem and the Hölder inequality,

I2 =
∫

R

|h(t)|
∫ ∞

1
|ϕ(t − s)g′(s)| ds dt

≤
∫

R

‖ϕ‖L2(R)

(∫ ∞

1
(g′(s))2 ds

)1/2

|h(t)| dt

≤ ‖ϕ‖L2(R)‖h‖L1(R)

(∫ ∞

1
(g′(s))2 ds

)1/2

< ∞.

Based on Proposition 3.1 we can equip the space of functions H0 := {h : R → R+ : h ∈
L1(R) ∩ L2(R)} with the norm

‖h‖H :=
(

E[(L(1))2]
∫

R

(I
g
−h)2(u) du

)1/2

,

and define the space H as the completion of H0 with respect to this norm.
We shall need an additional condition on g, given in the following assumption.

Assumption 3.1. In addition to Assumption 2.1, assume that g is monotone on (0,∞), i.e.
g′ > 0 or g′ < 0 on (0,∞). We call g′ a kernel function.

Assumption 3.1 implies that the sign of g′h is fixed on the whole of R and, thus, ‖ · ‖H defines
in fact a norm. For more details on such spaces for the classical Riemann–Liouville kernel, see
Pipiras and Taqqu (2000).

From the proof of Proposition 3.1, it follows immediately that for h ∈ L1(R) ∩ L2(R),

‖h‖H ≤ C(‖h‖L1(R) + ‖h‖L2(R)).

Next we define a stochastic integral with integrator S, which gives the correspondence
between the space H and that of stochastic integrals in L2(�).
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Theorem 3.1. Let S be the GFLP as defined in Definition 2.1 and suppose that g′ satisfies
Assumption 3.1. Let h ∈ H . Then the left-hand side integral is defined in the L2(�) sense and
it holds that ∫

R

h(u) dS(u) =
∫

R

(I
g
−h)(u) dL(u). (3.3)

Moreover, the following isometry holds:∥∥∥∥ ∫
R

h(u) dS(u)

∥∥∥∥2

L2(�)

= ‖h‖2
H .

Proof. We assume w.l.o.g. that E[(L(1))2] = 1. To construct the integral
∫

R
h(t) dS(t) for

h ∈ H we proceed as usual. For the indicator function ϕ(·) = 1(0,t](·) for t > 0, we calculate∫
R

ϕ(u) dS(u) =
∫

R

1(0,t](u) dS(u) = S(t)

and for the right-hand side of (3.3), we obtain∫
R

(I
g
−ϕ)(u) dL(u) =

∫
R

∫
R

1(0,t](s)g′(s − u) ds dL(u)

=
∫

R

(g(t − u)− g(−u)) dL(u)

= S(t).

Let ϕ : R → R+ be a step function, i.e. ϕ(t) = ∑n−1
i=1 ai1(ti ,ti+1](t), where ai ∈ R+ for

i = 1, . . . , n− 1 and −∞ < t1 < · · · < tn < ∞. Note that ϕ ∈ H . Define∫
R

ϕ(t) dS(t) =
n−1∑
i=1

ai(S(ti+1)− S(ti)).

Then the right-hand side of (3.3) can be expressed as∫
R

(I
g
−ϕ)(u) dL(u) =

∫∫ n−1∑
j=1

aj1(tj ,tj+1](s)g′(s − u) ds dL(u)

=
∫ n−1∑

j=1

aj

∫ tj+1

tj

g′(s − u) ds dL(u)

=
n−1∑
j=1

aj (S(tj+1)− S(tj )).

Moreover, for all step functions ϕ, from (2.2), it follows that∥∥∥∥ ∫
R

ϕ(u) dS(u)

∥∥∥∥2

L2(�)

= E

[(∫
R

(I
g
−ϕ)(u) dL(u)

)2]
=

∫
R

(I
g
−ϕ)2(u) du

= ‖ϕ‖2
H . (3.4)

https://doi.org/10.1239/aap/1449859802 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859802


Generalized fractional Lévy processes 1117

Since the nonnegative step functions are dense in H , there exists a sequence (ϕk)k∈N of such
functions such that ‖ϕk − h‖H → 0 as k → ∞. It follows from the isometry property (3.4)
that the integrals converge in L2(�) and the isometry property is preserved when going to the
limit. Finally, (3.4) implies that the integral

∫
R
h(t) dS(t) is the same for all sequences of step

functions converging to h.

The second-order properties of integrals, which are driven by GFLPs can be calculated
directly. It is useful to observe that L2(�) and H are inner product spaces with the inner
products given for h1, h2 ∈ H by〈 ∫

R

h1(u) dS(u),
∫

R

h2(u) dS(u)

〉
L2(�)

= 〈h1, h2〉H .

The inner product in L2(�) is the covariance, whereas an interpretation of the inner product in
H can be found in the next proposition.

Proposition 3.2. Let S be the GFLP as in Definition 2.1 and suppose that g′ satisfies Assump-
tion 3.1. Let h1, h2 ∈ H . Then

cov

[∫
R

h1(v) dS(v),
∫

R

h2(u) dS(u)

]
=

∫
R

∫
R

h1(u)h2(v)�(u, v) du dv,

where

�(u, v) = ∂2 cov[S(u), S(v)]
∂u∂v

= E[(L(1))2]
∫

R

g′(u− w)g′(v − w) dw. (3.5)

In particular,

〈h1, h2〉H = E[(L(1))2]
∫

R

∫
R

h1(u)h2(v)

∫
R

g′(u− w)g′(v − w) dw du dv.

Proof. Set w.l.o.g. E[(L(1))2] = 1. It suffices to prove the identities for the indicator
functions h1 = 1(0,s] and h2 = 1(0,t] for 0 < s < t . For s < 0 or t < 0, we use the stationarity
of the increments and the symmetry of S to obtain

var[S(t)] = ‖S(t)‖2
L2(�)

=
∫
(g(t − u)− g(−u))2 du

=
∫

R

(∫ ∞

u

1(0,t](v)g′(v − u) dv

)2

du

= ‖1(0,t]‖2
H ,

cov[S(s), S(t)] = 〈S(s), S(t)〉L2(�)

=
∫

R

{g(s − w)− g(−w)}{g(t − w)− g(−w)} dw

=
∫

R

∫
R

1(0,s](u)1(0,t](v)
∫

R

g′(v − w)g′(u− w) dw du dv

= 〈1(0,s], 1(0,t]〉H ,
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where we have used Fubini’s theorem for the second to last identity, which is justified by the
definition of H .

Remark 3.1. Assumption 3.1 is necessary to guarantee the isometry between the space of
stochastic integrals with respect to S and the function space of integrands H , which depend
on g. Note, however, that the stochastic integral with integrator S can be defined on the larger
space H̃ .

Next we define the OU process driven by a GFLP.

Definition 3.1. Let S be the GFLP as in Definition 2.1 and suppose that g′ satisfies Assump-
tion 3.1. Let λ, γ > 0.

(i) For an initial finite random variable V (0), we define an OU process driven by a GFLP
as

V (t) := e−λt
(
V (0)+ γ

∫ t

0
eλu dS(u)

)
, t ∈ R. (3.6)

(ii) If the initial random variable is given by V (0) = γ
∫ 0
−∞ eλu dS(u) a.s., the OU process

driven by a GFLP is stationary and we denote its stationary version by

V (t) = γ

∫ t

−∞
e−λ(t−u) dS(u), t ∈ R. (3.7)

(iii) Recall that when S is replaced by the FBM BH for H ∈ ( 1
2 , 1) in (3.6) and (3.7), we

obtain the fractional (Gaussian) Ornstein–Uhlenbeck (FOU) process (cf. Lemma 2.1 of
Cheridito et al. (2003) or Pipiras and Taqqu (2000)). We denote the stationary FOU
process by Y = {Y (t)}t∈R. It will appear as a limit process in Section 4.

We show the existence of V and formulate some properties.

Proposition 3.3. Let S be the GFLP as in Definition 2.1 and suppose that g′ satisfies Assump-
tion 3.1. Let λ > 0 and set w.l.o.g. γ = 1. For all t ∈ R the stochastic integral

V (t) :=
∫ t

−∞
e−λ(t−u) dS(u) =

∫ t

−∞
(I
g
−e−λ(t−·))(u) dL(u)

exists in the L2(�) sense. Furthermore, for all s, t ∈ R, we have E[V (t)] = 0 and

cov[V (s), V (t)] =
∫ t

−∞

∫ s

−∞
e−λ(t−u)e−λ(s−v)�(u, v) du dv,

where � is given in (3.5). Moreover, the ch.f. of V (t1), . . . , V (tm) for t1 < · · · < tm is given by

E

[
exp

{ m∑
j=1

iθjV (tj )

}]
= exp

{∫
R

ψ

( m∑
j=1

θj

∫ tj

−∞
e−λ(tj−v)g′(v − s) dv

)
ds

}
,

where θj ∈ R, j = 1, . . . , m, and ψ is given in (2.1).

Proof. By Theorem 3.1 and Proposition 3.2 the existence of the integral and the auto-
covariance function is a consequence of the fact that e−λ(t−·)1{t≥·} ∈ H . The ch.f. follows
from Proposition 2.1 by observing that the ft (s) there is replaced by

ht (s) =
∫ t

−∞
e−λ(t−v)g′(v − s) dv, s ∈ R.

https://doi.org/10.1239/aap/1449859802 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1449859802


Generalized fractional Lévy processes 1119

4. Limit theory for OU processes driven by time-scaled GFLPs

Throughout this section we work with a GFLP S as in Definition 2.1 and assume additionally
that E[(L(1))2] = 1. Moreover, we suppose that S has the kernel function g′ satisfying
Assumption 3.1 so that Theorem 3.1 and Proposition 3.2 apply. For x > 0 we denote σ 2(x) :=
var[S(x)] and define the time-scaled GFLP Sx = {Sx(t)}t∈R by

Sx(t) := S(xt)

σ (x)
, t ∈ R. (4.1)

Recall the definition of � from (3.5) and of �̃ from (2.3). Note that the equality in (3.2) carries
over to the time-scaled GFLP as follows. For x > 0, we have

S(xt) =
∫

1(0,tx](v) dS(v) =
∫

R

(I
g
−1(0,tx])(u) dL(u), t ≥ 0.

Consequently, we can formulate the following Lemma.

Lemma 4.1. For x > 0 let Sx be the time-scaled GFLP as defined in (4.1) and assume that g′
satisfies Assumption 3.1. Then for s, t ∈ R, we have

�̃x(s, t) := cov[Sx(s), Sx(t)] = cov[S(xs), S(xt)]
var[S(x)] = �̃(xs, xt)

σ 2(x)
= 〈1(0,xs], 1(0,xt]〉H

‖1(0,x]‖2
H

,

�̃x(t, t) := var[Sx(t)] = ‖1(0,xt]‖2
H

‖1(0,x]‖2
H

,

�x(s, t) = ∂2

∂s∂t
cov[Sx(s), Sx(t)]

= 1

σ 2(x)

∂2

∂s∂t
cov[S(xs), S(xt)]

= x2�(xs, xt)

σ 2(x)
. (4.2)

Proof. We prove (4.2) for t > 0, the other equations are proved analogously. For s, t > 0,
we have (for s < 0 or t < 0 we use the symmetry of Sx)∥∥∥∥ ∫

R

1(0,t](u) dSx(u)

∥∥∥∥2

L2(�)

= ‖Sx(t)‖2
L2(�)

=
‖S(xt)‖2

L2(�)

‖S(x)‖2
L2(�)

= ‖1(0,tx]‖2
H

‖1(0,x]‖2
H

.

Lemma 4.1 provides a general principle by using the same construction of the integral as in
Theorem 3.1.

Theorem 4.1. For x > 0 let Sx be the time-scaled GFLP as defined in (4.1) and suppose that g′
satisfies Assumption 3.1.

(i) Then for h ∈ H , ∫
R

h(u) dSx(u) =
∫

R

hx(u) dL(u), (4.3)

in the L2(�) sense, where

hx(u) = x

σ(x)

∫
R

h(v)g′((xv − u)+) dv. (4.4)
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(ii) Assume that hs, ht ∈ H for s, t ∈ R. Then

cov

(∫
hs(u) dSx(u),

∫
ht (u) dSx(u)

)
=

∫∫
ht (u)hs(v)�x(u, v) du dv,

where

�x(u, v) = x2�(xs, xt)

σ 2(x)
= x2

σ 2(x)

∫
g′((ux − w)+)g′((vx − w)+) dw.

(iii) Defining hxt as in (4.4) with h replaced by ht , the ch.f. of∫
ht1(u) dSx(u), . . . ,

∫
htm(u) dSx(u) for t1 < · · · < tm

is given by

E

[
exp

{
i
m∑
j=1

θj

∫
htj (u) dSx(u)

}]
= exp

{∫
ψ

( m∑
j=1

θjh
x
tj
(u)

)
du

}
,

where θj ∈ R, j = 1, . . . , m, and ψ is as in (2.1).

Proof. To prove (4.3) it suffices to take an (interval)-indicator function as in the proof of
Theorem 3.1, which we omit here. Theorem 4.1(ii) follows from Proposition 2.1. Finally,
Theorem 4.1(iii) follows from the fact that(∫

ht1(u) dSx(u), . . . ,
∫
htm(u) dSx(u)

)
d=

(∫
hxt1(u) dL(u), . . . ,

∫
hxtm(u) dL(u)

)
,

where hxt (u) = (x/σ (x))
∫
ht (v)g

′(xv − u) dv.

An important step in the proof of convergence of an OU process driven by a time-scaled
GFLP is the convergence of the covariance function and its second derivative. This requires
that g′ is regularly varying, i.e. for all u > 0,

lim
x→∞

g′(xu)
g′(x)

= uρ−1 (4.5)

holds for ρ ∈ (0, 1
2 ), and we write g′ ∈ RVρ−1, where RV denotes regular variation. Such

properties have also been used in Klüppelberg and Mikosch (1995) and Klüppelberg and Kühn
(2004) to prove convergence of scaled shot-noise processes to self-similar Gaussian processes,
in particular, to an FBM. Condition (4.5) on g implies that, in particular, cov[S(s), S(t)] is
bivariate regularly varying with index 1 + 2ρ and, hence, that σ 2 ∈ RV1+2ρ . For more details
on RV; see Bingham et al. (1987). The following result exploits these properties.

Theorem 4.2. For x > 0 let Sx be the time-scaled GFLP as defined in (4.1) and suppose that
g′ satisfies Assumption 3.1 and that g′ ∈ RVρ−1 for ρ ∈ (0, 1

2 ). Define H := ρ + 1
2 . Then for
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every s, t ∈ R,

lim
x→∞�x(s, t) = lim

x→∞
x2

∫ s∧t
−∞ g′(x(s − w)+)g′(x(t − w)+) dw

σ 2(x)

= ∂2

∂t∂s
cov(Bρ+1/2(s), Bρ+1/2(t))

= H(2H − 1)|t − s|2H−2, (4.6)

lim
x→∞ �̃x(s, t) = cov(Bρ+1/2(s), Bρ+1/2(t)) = 1

2 (|t |2H + |s|2H − |t − s|2H ). (4.7)

Proof. We use the second moment expressions from Theorem 3.2. To prove (4.6) write

�x(s, t) =
(
xg′(x)
g(x)

)2
∫ s∧t
−∞ g′(x(s − w)+)g′(x(t − w)+)/(g′(x))2 dw∫ 1
−∞{g(x(1 − v)+)− g(x(−v)+)}2/g2(x) dv

. (4.8)

Then by Karamata’s theorem (cf. Bingham et al. (1987, Theorem 1.5.11)),

lim
x→∞

xg′(x)
g(x)

= ρ

and g ∈ RVρ . We first show convergence of the numerator in (4.8) by deriving bounds in the
spirit of Potter (cf. Bingham et al. (1987, Theorem 1.5.6)). For 0 < ε < ( 1

2 − ρ)∧ ρ, we have
x1−εg′(x) ∈ RVρ−ε and ρ − ε ∈ (0, 1

2 ). Hence, for every δ > 0 there exists some x0 such that
for all x ≥ x0 and |s − w| ≤ M for some M > 0,∣∣∣∣g′(x(s − w))

g′(x)

∣∣∣∣ = (x(s − w)+)1−εg′(x(s − w)+)
(s − w)1−ε+ x1−εg′(x)

≤ δ + (s − w)
ρ−ε
+

(s − w)1−ε+
≤ cM(s − w)ε−1+ ,

where cM > 0 is some constant depending on M . On the other hand, for |s − w| > M ,∣∣∣∣g′(x(s − w)+)
g′(x)

∣∣∣∣ ≤ (1 + ε)(s − w)
ρ−1+ε
+

for sufficiently large x (cf. Resnick (1987, Propositions 0.5 and 0.8)).
If we choose M appropriately, it follows that∫ s∧t

−∞
g′(x(s − w)+)g′(x(t − w)+)

(g′(x))2
dw ≤ (1 + ε)2

∫ s−M

−∞
(s − w)

ρ−1+ε
+ (t − w)

ρ−1+ε
+ dw

+ c2
M

∫ s∧t

s−M
(s − w)−1+ε+ (t − w)−1+ε+ dw.

Now we apply Lebesgue’s dominated convergence theorem to the numerator of (4.8) and obtain
convergence of this numerator to that of (4.6). As for the denominator of (4.6), its convergence
follows (as also the convergence of �̃x in (4.7)) by a dominated convergence argument as in
the proof of Klüppelberg and Kühn (2004, Theorem 3.2).

Since Sx is a time-changed version of S, E[Sx(t)] = 0 and var[Sx(t)] = σ 2(xt)/σ 2(x) hold
for all t ∈ R. Hence, we can define the following time-scaled version of V .
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Definition 4.1. For x > 0 let Sx be a time-scaled GFLP as defined in (4.1) and suppose that g′
satisfies Assumption 3.1.

(i) For λ, γ > 0 we define the OU process Vx = {Vx(t)}t∈R driven by the time-scaled GFLP
Sx by

Vx(t) := e−λt
(
Vx(0)+ γ

∫ t

0
eλu dSx(u)

)
, t ≥ 0.

(ii) If the initial random variable is given by Vx(0) = γ
∫ 0
−∞ eλu dSx(u) a.s. then Vx is

stationary and we denote the stationary process by

V x(t) := γ

∫ t

−∞
e−λ(t−u) dSx(u), t ∈ R. (4.9)

The following is a consequence of Theorem 4.1 and Proposition 2.1. We have set again
γ = 1 for simplicity.

Proposition 4.1. For x > 0 let Sx be the time-scaled GFLP as defined in (4.1) and suppose
that g′ satisfies Assumption 3.1.

(i) For t ∈ R, we have

V x(t) =
∫ t

−∞
e−λ(t−u) dSx(u) = x

σ(x)

∫
R

∫ t

−∞
e−λ(t−v)g′(xv − u) dv dL(u).

(ii) For s, t ∈ R, we have E[V x(t)] = 0 and

cov[V x(s), V x(t)] =
∫

R

∫
R

e−λ(t−u)1(−∞,t](u)e−λ(s−v)1(−∞,s](v)�x(u, v) du dv,

(4.10)
where

�x(u, v) = x2

σ 2(x)

∫
R

g′(xu− w)g′(xv − w) dw.

(iii) The ch.f. of V x(t1), V x(t2), . . . , V x(tm) for t1 < t2 < · · · < tm is given by

E

[
exp

{
i
m∑
j=1

θjV x(tj )

}]
= exp

{∫
R

ψ

( m∑
j=1

θj
x

σ (x)

∫ tj

−∞
e−λ(tj−v)g′(xv − u) dv

)
du

}
,

where θj ∈ R for j = 1, . . . , m and ψ is given in (2.1).

By extending the earlier work of Lane (1984), who proved a central limit theorem for the
Poisson shot-noise process, it was shown in Klüppelberg and Kühn (2004, Theorem 3.2) that,
if the driving Lévy process is compound Poisson, then the GFLP Sx converges weakly to BH

in the Skorokhod spaceD(R+) equipped with the metric of uniform convergence on compacts.
Since the limit process has continuous sample paths, by Billingsley (1999, Theorem 6.6) it is
equivalent to prove weak convergence with respect to the Skorohodd0∞-metric onD(R+), which
induces the J1 topology. For a definition of d0∞, see, e.g. Billingsley (1999, Equation (16.4)).

We extend this result two-fold. First, we generalize the driving compound Poisson process
to a Lévy process and, secondly, we consider the convergence of stochastic volatility models
driven by a GFLP in Section 5.
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Theorem 4.3. For x > 0 let V x be the stationary OU process (4.9) driven by a time-scaled
GFLPSx as in (4.1) and suppose that g′ satisfies Assumption 3.1 and g′ ∈ RVρ−1 forρ ∈ (0, 1

2 ).
Define H := ρ + 1

2 . Let Y be the stationary FOU process from Definition 3.1(iii) with
H ∈ ( 1

2 , 1). Then

V x
d−→ Y as x → ∞,

where convergence holds in the Skorokhod spaceD(R+) equipped with the metric which induces
the Skorokhod J1 topology.

Proof. According to Billingsley (1999, Theorems 16.7 and 13.1) we have to show weak con-
vergence of the finite-dimensional distributions and tightness of (V (t)|[0,T ])t∈R for
every T > 0.

We start by proving convergence of the finite-dimensional distributions. Let 0 = t1 < t2 <

· · · < tm < T and θj ∈ R for j = 1, . . . , m. Recall that, from Proposition 4.1(iii) the ch.f. of
V x(t),

E

[
exp

{
i
m∑
j=1

θjV x(tj )

}]
= exp

{∫
R

∫
R

φ(y

m∑
j=1

θjh
x
tj
(u))ν(dy) du

}

= exp

{∫
R

∫
R

xφ

(
y

m∑
j=1

θjh
x
tj
(xu)

)
ν(dy) du

}
, (4.11)

where φ(x) = eix − 1 − ix, and we set

hxt (s) := x

σ(x)

∫ t

−∞
e−λ(t−v)g′(xv − s) dv.

For the proof we use a Taylor expansion (Lemma 3.2 of Petrov (1995)) to xφ(·) in (4.11) and
we shall show that

xφ

(
y

m∑
j=1

θjh
x
tj
(xw)

)
∼ −y

2

2
x

( m∑
j=1

θjh
x
tj
(xw)

)2

as x → ∞. (4.12)

Then since
∫

R
y2ν(dy) = E[(L(1))2] = 1, we shall show that∫

R

x

( m∑
j=1

θjh
x
tj
(xw)

)2

dw →
m∑
j,k

θj θk cov(Y (tj )Y (tk)) as x → ∞, (4.13)

which implies that the finite-dimensional distributions converge to the corresponding Gaussian
distributions.

In order to prove tightness, first, in view of (4.10) and Theorem 4.2 we prove that for s, t ≥ 0,

lim
x→∞

∫
xhxs (xw)h

x
t (xw) dw = lim

x→∞ cov(V x(s), V x(t)) = cov(Y (s), Y (t)). (4.14)

In view of (4.10), since �x(u, v) should converge to the unbounded function |u − v|2H−2 for
H = ρ + 1

2 , there is some difficulty in applying the dominated convergence theorem directly,
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i.e. to find a dominant function. Alternatively, we work with the following representation,
which is obtained from integration by parts:

hxt (xw) = g(x(t − w))

σ(x)
− λ

∫ t

−∞
e−λ(t−v) g(x(v − w))

σ(x)
dv

= ftx(xw)

σ(x)
− λ

∫ t

−∞
e−λ(t−v) fxv(xw)

σ(x)
dv,

where we have set ft (w) = g(t−w)−g(−w). Now we apply dominated convergence to each
term of the following representation:∫

xhxs (xw)h
x
t (xw) dw

= �̃x(s, t)− λ

∫ s

−∞
e−λ(s−u)

∫
R

xfxu(xw)fxt (xw)

σ 2(x)
dw du

− λ

∫ t

−∞
e−λ(t−u)

∫
R

xfxu(xw)fxs(xw)

σ 2(x)
dw du

+ λ2
∫ s

−∞
e−λ(s−u)

∫ t

−∞
e−λ(t−v)

∫
R

xfxu(xw)fxv(xw)

σ 2(x)
dw du dv. (4.15)

From Theorem 4.2, we obtain

lim
x→∞ �̃x(s, t) = cov(Bρ+1/2(s), Bρ+1/2(t)).

For the remaining terms, we consider only the third integral, since convergence of other integrals
can be proved similarly. By the Cauchy–Schwarz inequality the integrand in the third integral
is dominated by

e−λ(s−u)−λ(t−v)
√
σ 2(xu)

σ 2(x)

σ 2(xv)

σ 2(x)
.

We provide a uniform upper bound for σ 2(ux)/σ 2(x). Since σ 2 ∈ RV1+2ρ , for sufficiently
small δ > 0, the function γ (x) := σ 2(x)|x|−1−2ρ−δ for x > 0 is regularly varying with index
−δ and γ (ux)/γ (x) converges to |u|−δ uniformly in |u| ∈ [1,∞) as x → ∞ (cf. Bingham
et al. (1987, Theorem 1.5.2)). Hence, we have

σ 2(ux)

σ 2(x)
= |u|1+2ρ+δ γ (ux)

γ (x)
≤ |u|1+2ρ+δ(1+|u|−δ) ≤ 2|u|1+2ρ+δ, |u| ∈ [1,∞) (4.16)

for sufficiently large x. Furthermore, by Karamata’s theorem, σ 2(ux)/σ 2(x) → |u|1+2ρ as
x → ∞ uniformly in |u| ∈ (0, 1], and this, together with (4.16), implies that

σ 2(ux)

σ 2(x)
≤ (c + c′|u|1+2ρ)1{|u|≤1} + 2|u|1+2ρ+δ1{|u|>1}

for constants c, c′ > 0. Thus, the dominating function is uniformly integrable and the integral
converges, i.e.

lim
x→∞

∫ s

−∞

∫ t

−∞
λ2e−λ(s−u)−λ(t−v)

√
σ 2(xu)

σ 2(x)

σ 2(xv)

σ 2(x)
du dv < ∞.
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Now we apply a generalized dominated convergence theorem (e.g. Kallenberg (1997, Theo-
rem 1.21)) to (4.15) to obtain, for the third integral of (4.15) in the limit,

λ2
∫ s

−∞

∫ t

−∞
e−λ(s−u)−λ(t−v) 1

2
(|u|2ρ+1 + |v|2ρ+1 − |u− v|2ρ+1) du dv.

Hence, with (4.15), we conclude that

lim
x→∞ cov(V x(s), V x(t))

= 1

2
(|t |2ρ+1 + |s|2ρ+1 − |t − s|2ρ+1)

− λ

∫ s

−∞
e−λ(s−u) 1

2
(|t |2ρ+1 + |u|2ρ+1 − |t − u|2ρ+1) du

− λ

∫ t

−∞
e−λ(t−u) 1

2
(|s|2ρ+1 + |u|2ρ+1 − |s − u|2ρ+1) du

+ λ2
∫ s

−∞

∫ t

−∞
e−λ(s−u)−λ(t−v) 1

2
(|u|2ρ+1 + |v|2ρ+1 − |u− v|2ρ+1) du dv

= ρ(2ρ + 1)
∫ s

−∞
e−λ(s−u)

∫ t

−∞
e−λ(t−v)|u− v|2ρ−1 du dv

= cov(Y (s), Y (t)),

which proves (4.14).
We turn to the proofs of (4.12) and (4.13). From the representation

fxt (xw)

σ(x)
= 1√

x

{g(x(t − w))− g(x(−u))}/g(x)√
(
∫

R
(fx(xu))2 du/g2(x))

we observe that fxt (xw)/σ(x) = O(x−1/2) and, hence, hxt (xw) = O(x−1/2). Then (4.12)
follows from a Taylor expansion. For sufficiently large x, we have

x

∣∣∣∣φ(
y

m∑
j=1

θjh
x
tj
(xw)

)
+ y2

2

( m∑
j=1

θj (h
x
tj
(xw))

)2∣∣∣∣ = y3

6

(
x1/3

m∑
j=1

θjh
x
tj
(xw)

)3

= O

(
1√
x

)
,

and the right-hand side tends to 0 as x → ∞. In the light of (4.14) and the same generalized
dominated convergence theorem as above (e.g. Kallenberg (1997, Theorem 1.21)), it suffices for
the proof of (4.13) to show that the integral of a dominating function for xφ(y

∑m
j=1θjh

x
tj
(xw))

converges as x → ∞. We choose the dominating function as

x

∣∣∣∣φ(
y

m∑
j=1

θjh
x
tj
(xu)

)∣∣∣∣ ≤ y2

2
x

∣∣∣∣ m∑
j=1

θjh
x
tj
(xu)

∣∣∣∣2

= ax(u, y), x ∈ R.
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Then the integral can be estimated as∫
R

∫
R

ax(u, y)ν(dy) du ≤ x

2

∫
R

y2ν(dy)

∥∥∥∥ m∑
j=1

θjh
x
tj
(x·)

∥∥∥∥2

L2(R)

≤ x

2
2m−1

m∑
j=1

‖θjhxtj (x·)‖2
L2(R)

= 2m−2
m∑
j=1

θ2
j

∫
R

x(hxt (xu))
2 du,

where we use Minkowski’s inequality and the fact that
∫
y2ν(dy) = E[(L(1))2] = 1. Since

the right-hand side converges as x → ∞ by (4.14), we apply the generalized dominated
convergence theorem to (4.11) to obtain

lim
x→∞ E

[
exp

{
i
m∑
j=1

θjV x(tj )

}]
= E

[
exp

{
i
m∑
j=1

θjY (tj )

}]
,

which implies convergence of the finite-dimensional distributions.
Next we prove tightness. For 0 ≤ s < t < ∞ choose T > 0 such that s, t ∈ [0, T ]. By

Billingsley (1999, Equation (13.14)) it suffices to show that E[(V x(t)−V x(s))2] ≤ cT (t−s)1+ρ
for some constant cT > 0. By stationarity of the increments of V x , we have

V x(t)− V x(s)
d= V x(t − s)− V x(0) = (e−λ(t−s) − 1)V x(0)+

∫ t−s

0
e−λ(t−s−u) dSx(u).

Applying Young’s inequality, we obtain

E[(V x(t)− V x(s))
2]

≤ 2(e−λ(t−s) − 1)2E[(V x(0))2] + 2E

[(∫ t−s

0
e−λ(t−s−u) dSx(u)

)2]
.

Since |e−λ(t−s)−1| ≤ c′T (t− s)(1+ρ)/2 for t > s and some constant c′T > 0, it suffices to show
that

E

[(∫ t−s

0
e−λ(t−s−u) dSx(u)

)2]
≤ c′′T (t − s)1+ρ

for some constant c′′T > 0. Observe that by integration by parts as in (4.15),

E

[(∫ t−s

0
e−λ(t−s−u) dSx(u)

)2]
=

∫
R

(
x

σ(x)

∫ t−s

0
e−λ(t−s−w)g′((xu− w)+) du

)2

dw

≤ 2
σ 2((t − s)x)

σ 2(x)
+ 2λ2e−2λ(t−s)

∫ t−s

0

∫ t−s

0
eλ(u+v)

√
σ 2(xu)

σ 2(x)

σ 2(xv)

σ 2(x)
du dv

≤ 2
σ 2((t − s)x)

σ 2(x)
+ 2λ2c′′′T e−2λ(t−s)

(∫ t−s

0
eλu du

)2

= 2
σ 2((t − s)x)

σ 2(x)
+ 2c′′′T (e−λ(t−s) − 1)2
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for some constant c′′′T > 0. Since σ 2 ∈ RV1+2ρ , similarly as in the proof of Theorem 3.2 of
Klüppelberg and Kühn (2004, p. 349), the bounded function η(x) := σ 2(x)/x1+ρ is regularly
varying with index ρ, i.e. η(x(t− s))/η(x) converges to (t− s)ρ as x → ∞ uniformly in t > s

on compact subsets of R+. This implies that for eachM > 0 and x ≥ xM for some sufficiently
large xM ,

σ 2(x(t − s))

σ 2(x)
≤ (T ρ + 1)(t − s)1+ρ.

This (together with the Cauchy–Schwarz inequality) implies the tightness condition of Billings-
ley (1999, Equation (13.14)), which completes the proof.

Remark 4.1. Convergence of the finite-dimensional distributions has also been investigated in
Pipiras and Taqqu (2008, Theorem 1), who considered Poisson random measures instead of the
driving Lévy process in our model. The two approaches are equivalent by viewing the general
integrals in Pipiras and Taqqu (2008) as double integrals over a product space.

5. Limits of stochastic volatility models

We propose a flexible class of (bivariate) stochastic volatility (SV) models. The data are
driven by BM or FBM, and the volatility process is an OU process driven by a time-scaled GFLP.
This allows for different distributions by varying the driving Lévy process. It provides flexible
dependence structures ranging from exponential short memory to polynomial, including long
memory, and it also allows for jumps in the volatility by the behavior of g in 0. We would also
like to emphasize that although the notion volatility is mostly used in finance, our models apply
also to physical phenomena like turbulent intermittency or telecommunication measurements.

Moreover, we allow for time-scaled versions of the SV model, which gives, when we apply
Theorem 4.3, in the limit a function of a FOU process with H ∈ ( 1

2 , 1). Consequently, we can
adjust the model for the roughness of its sample paths, from those with jumps to continuous
ones.

ForH ∈ [ 1
2 , 1) letWH be FBM (BM corresponding toH = 1

2 ). For x > 0 let V x and Y be
as in Theorem 4.3. Let f : R → R+ be a continuous function. Then we define the SV model

zx(t) := μt + β

∫ t

0
vx(s) ds +

∫ t

0

√
vx(s−) dWH(s), vx(t) := f (V x(t)). (5.1)

The integral in the zx(t) with respect to WH is for H > 1
2 a path integral as defined in Young

(1936) and Mikosch and Norvais̆a (2000), and requires p-variation of the sample path vx for
appropriate p. For H = 1

2 we take the usual Itô integral.
We shall show that for x → ∞ the bivariate process {(zx(t), vx(t))}t≥0 converges in the

Skorokhod space D(R2+) to

z(t) := μt + β

∫ t

0
v(s) ds +

∫ t

0

√
v(s−) dWH(s), v(t) := f (Y (t)).

First recall that vx = f (V x), so that, by the continuous mapping theorem, weak convergence
of vx follows from that of V x .

Theorem 5.1. For x > 0 let (zx, vx) be as in (5.1). Assume that zx = {zx(t)}t≥0 is driven by
an FBM (or BM) with H ∈ [ 1

2 , 1). Furthermore, assume that vx = {vx(t)}t≥0 is positive, has
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a.s. càdlàg sample paths, and that it is independent of WH . Suppose that for every T > 0 and
t ∈ [0, T ] for all sufficiently large x,

E[(vx(t))2] ≤ M, t ∈ [0, T ] (5.2)

for some constant M > 0, which may depend on T . For H > 1
2 we additionally assume that√

vx is of finite p-variation for p < 1/(1 −H). If

vx
d−→ v as x → ∞

in the Skorkohod space D(R+) with the metric which induces the Skorokhod J1 topology and
if

√
v is again of finite p-variation with p < 1/(1 −H), then also

(zx, vx)
d−→ (z, v) as x → ∞

in the Skorokhod space D(R2+) with the metric which induces the Skorokhod J1 topology.

Proof. In order to prove weak convergence we show convergence of the finite-dimensional
distributions and tightness. We shall often condition zx on the σ -field

G := σ {vx(s), s ∈ [0, T ], 0 < x < ∞}
so that, given G, the process zx is a Gaussian process. Now we take 0 = t1 < t2 < · · · < tm ≤ T

and 0 = t ′1 < t ′2 < · · · < t ′n ≤ T for m, n ∈ N and prove that

(zx(t1), zx(t2), . . . , zx(tm), vx(t
′
1), vx(t

′
2), . . . , vx(t

′
n))

d−→ (z(t1), z(t2), . . . , z(tm), v(t
′
1), v(t

′
2), . . . , v(t

′
n))

by the Cramér–Wold device. For (γ11, γ12, . . . , γ1m, γ21, . . . , γ2n) ∈ R
m+n we shall show that

m∑
j=1

γ1j zx(tj )+
n∑
k=1

γ2kvx(t
′
k)

d−→
m∑
j=1

γ1j z(tj )+
n∑
k=1

γ2kv(t
′
k).

First observe that
m∑
j=1

γ1j zx(tj )+
n∑
k=1

γ2kvx(t
′
k) =

m∑
j=2

( m∑
h=j

γ1j

)
(zx(tj )− zx(tj−1))+

n∑
k=1

γ2kvx(t
′
k)

with zx(t1) = 0 and, hence, it suffices to show that

m∑
j=2

γ1j (zx(tj )− zx(tj−1))+
n∑
k=1

γ2kvx(t
′
k)

d−→
m∑
j=2

γ1j (z(tj )− z(tj−1))+
n∑
k=1

γ2kv(t
′
k).

We use the independence of vx andWH and the conditional Gaussianity of both zx and z, given
the σ -field G, to obtain the ch.f.

E

[
exp

(
iλ

{ m∑
j=2

γ1j (zx(tj )− zx(tj−1))+
n∑
k=1

γ2kvx(t
′
k)

})]

= E

[
E

[
exp

(
iλ

{ m∑
j=2

γ1j (zx(tj )− zx(tj−1))+
n∑
k=1

γ2kvx(t
′
k)

}) ∣∣∣∣ G

]]
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= E

[
exp

(
iλ

n∑
k=1

γ2kvx(t
′
k)

)
E

[
exp

(
iλ

m∑
j=2

γ1j (zx(tj )− zx(tj−1))

) ∣∣∣∣ G

]]

= E

[
exp

(
iλ

n∑
k=1

γ2kvx(t
′
k)+ iλ

m∑
j=2

γ1j

(
μ(tj − tj−1)+ β

∫ tj

tj−1

vx(u) du

)

× exp

(
−λ

2

2
H(2H − 1)

×
m∑
j,k

γ1j γ1k

∫ tj

tj−1

∫ tk

tk−1

√
vx(u)

√
vx(w)|u− w|2H−2 du dw

))]
=: E[h(vx)].

Since h(·) is continuous, the continuous mapping theorem yields that h(vx)
d−→ h(v). Fur-

thermore, the fact that |h| ≤ 1 together with Kallenberg (1997, Lemma 3.11) implies that
E[h(vx)] → E[h(v)] as x → ∞ (see also Jacod and Shiryaev (2003, Equation (3.8), Chap-
ter VI)). Again by conditional independence, reversing the argument which led to E[h(vx)]
yields

E[h(v)] = E

[
exp

(
iλ

{ m∑
j=2

γ1j (z(tj )− z(tj−1))+
n∑
k=1

γ2kv(t
′
k)

})]
.

This concludes the first part of the proof.
Secondly, we prove tightness. For the process zx we apply the tightness condition of

Billingsley (1999, Equation (13.14)). Since WH has zero mean, it suffices to prove tightness
of

I (1)x (t) :=
∫ t

0
vx(s) ds, I (2)x (t) :=

∫ t

0

√
vx(s) dWH(s), t ≥ 0.

For 0 ≤ s < t , we have

E[(I (1)x (t)− I (1)x (s))2] = E

[∫ t

s

∫ t

s

vx(u)vx(w) du dw

]
=

∫ t

s

∫ t

s

E[vx(u)vx(w)] du dw

≤
∫ t

s

∫ t

s

√
E[(vx(u))2]E[(vx(w))2] du dw

≤ M(t − s)2,

where we have used the Cauchy–Schwarz inequality and (5.2). This ensures the tightness con-
dition for the Lebesgue integral I (1)x . As for tightness of the (fractional) Brownian integral I (2)x ,
recall that, given the σ -field G, I (2)x is Gaussian. We distinguish two cases.

Case 1. For H > 1
2 , we calculate

E[(I (2)x (t)− I (2)x (s))2] ≤ E[E[(I (2)x (t)− I (2)x (s))2 | G]]
≤ cE

[∫ t

s

∫ t

s

√
vx(u)

√
vx(w)|u− w|2H−2 du dw

]
≤ cM(t − s)2H ,
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where c is a finite positive constant, and apply Billingsley (1999, Equation (13.14)) with β = 1
2 .

Case 2. For H = 1
2 , we apply the same condition with β = 1 to obtain

E[(I (2)x (t)− I (2)x (s))4] = E[E[(I (2)x (t)− I (2)x (s))4 | G]]
≤ cE[(I (1)x (t)− I (1)x (s))2],

where we have used properties of the quadratic variation of the BM, and c is again a finite
positive constant. Now since the limit process z is continuous, the bivariate tightness of
{(zx(t), vx(t))}t≥0 follows from Jacod and Shiryaev (2003, Corollary 3.33, Chapter VI).

Remark 5.1. (i) The same remark as made before Theorem 4.3 holds for the bivariate model.
Since the bivariate limit process has continuous sample paths, weak convergence also holds in
the Skorokhod space D(R2+) equipped with the metric of uniform convergence on compacts;
see Jacod and Shiryaev (2003, Equation (1.17)(b), Chapter VI).

(ii) Assume that vx = V x is the stationary OU process driven by a time-scaled GFLP as
defined in (4.3). If V x satisfies (5.2) and its sample paths satisfy a p-variation condition, then
Theorem 5.1 applies.
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