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The lower radical construction

for non-associative rings:

Examples and counterexamples

BJ. Gardner

Some sufficient conditions are presented for the lower radical

construction in a variety of algebras to terminate at the step

corresponding to the first infinite ordinal. An example is also

presented, in a variety satisfying some non-trivial identities,

of a lower radical construction terminating in four steps.

Introduction

Two of the most important questions in radical theory -are

(1) Are semi-simple classes hereditary?

and

(2) How many steps are needed in the (Kurosh) lower radical

construction?

Affirmative answers to (l) have been obtained for associative rings [7],

alternative rings [7], and groups [6], while in these settings it has been

shown that the lower radical construction stops at the wth step, where w

is the first infinite ordinal [.131, [5], [77]. On the other hand, for

arbitrary rings, semi-simple classes are rarely hereditary (see [3] for an

indication of just how rarely), while the lower radical construction need

never stop [9].

Having hereditary semi-simple classes and never requiring more than to
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260 B.J. Gardner

steps in the lower radical construction are "nice" properties for a

universal class. The meagre evidence set out above might lead one to

conjecture that these two properties go together. Some contrary evidence

will be adduced in §2.

In recent years there have been a number of investigations of

hereditary semi-simple classes with various varieties of rings or algebras

used as universal classes; see, for example, [£], [72], [3], [2]. In the

last of these, two conditions on a variety of algebras over a field

(conditions satisfied by the class of associative rings) were studied,

which jointly imply that semi-simple classes are hereditary. In §1 of this

paper we look at the termination of the lower radical construction from a

similar point of view.

In §2 we present an example of a lower radical construction which

terminates at the fourth step. The universal class is the class of (non-

associative) rings R for which there is a finite series

J -a J < R

with associative factors, and the class on which the construction is

carried out is the class of all fields (necessarily associative).

Throughout this paper we shall deal with algebras (not necessarily

associative) over a commutative, associative ring Q. with identity,

sometimes specializing to the case where J2 is the ring Z of integers.

The symbol ** indicates an ideal. A seroalgebra is one satisfying the

identity xy = 0 . A universal class of ^-algebras (a setting for radical

theory) is a hereditary, homomorphically closed class; in this paper, all

universal classes will be varieties.

We finally recall the Kurosh Lower Radical Construction (see [6] and

C'3]). Le-t M be a non-empty homomorphically closed class of fi-algebras

(in some universal class W ). Let M. = M ;

Mg = {-4 | every non-zero homomorphic image of A has a non-zero ideal in M

for some a < $} ,

where g is an ordinal greater than 1 . Then L(M) , the lower radical

class generated by M , is U M. .
6 "
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1. Some universal classes with u-step lower radical constructions

In this section we shall consider some examples of lower radical

constructions which terminate in a) steps. Our universal classes will be

varieties W of fi-algebras satisfying various combinations of properties

(Vl)-(VU) listed below.

For any algebra A , we define

— 9 9 • " * 5 " » * " • 9

and Ay ' = f\ Ay ' if 0 is a limit ordinal. A is solvable if
a<3

- 4 = 0 for some finite n .

A , as usual, is the linear span of all products of length n of

elements of A . If J <a J < A , we denote by X* the ideal of A

generated by X .

The conditions with which we shall be concerned are the following:

(VI) if I <i J o A Z W , then (I*/-0 = 0 for some ordinal

a ;

(V2) if X < «7 < <4 € W , then every non-zero homomorphic image

of I*/I has a non-zero nilpotent ideal;

(V3) if I <J <iA € W , then {I*/I)^ = 0 for some finite

(VU) if X < A € W , then r <i A for some integer s > 1 .

Varieties satisfying (V3) (respectively (VU)) are called

Andrunakievich varieties (respectively s-varieties). In [2] it was shown

that the n and s in (V3), (VU) can be chosen independently of the

algebra A . Zwier [74] initiated the study of 8-varieties; they, include

the varieties of associative algebras (a 2-variety) alternative algebras

(a 2-variety) and Jordan algebras (a 3-variety). In [2] character-

izations of semi-simple classes were obtained for W satisfying (V3) and

(Vh) when fi is a field. Less complete results were obtained for more

general fi . This pattern repeats itself here: life is much simpler with

algebras over a field because there is "essentially one" zeroalgebra.

https://doi.org/10.1017/S0004972700010947 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010947


262 B.J. Gard ner

The following result appears in [70]; we include a proof for

completeness.

LEMMA 1 . 1 . Let M be a homomorphically closed class. If I <i A ,

I f M, , and A/I € M, , then A € M' 3 where t = max{fc+l, 1} .

Proof. Let A/K t 0 . If J <£ # , then we have

0 # J / I n X S (I+K)/K < A/K

with I/I n K £ Mk , while if I <=_ K , then X/K s (A/I)/(K/I) € Mz . Thus

.4/if certainly has a non-zero ideal in some M with r < t , so that

A € Mt . / /

The next two propositions provide most of the information needed for

the principal results of this section.

PROPOSITION 1.2. Let W be a variety of Q-algebras satisfying (V2)

and (Vh). Let M be a non-void homomorphically closed subclass of W

containing all zeroalgebras in W . If I o J < A € W and 1 ( 0 , then

I* € M n .s+1

Proof. Consider a non-zero homomorphic image I*/K of I* . If

J £ K , then

J/J n K £ (I+K)/K < I*/K ,

and J/J n X € M = M . If Jc t f , then J^/X , as a homomorphic image of

J*/J , has a non-zero nilpotent ideal X (by (V2)). By (VU), we can

define a sequence X/Q)> %/,\, x/o)' o f i d e a l s o f I*/K by

X(0) = X' X(l) = *> X{2) = ^ 1 ) ' ••• *

Since X is nilpotent, there is an m such that X, < = 0 ̂ X. ,. . Let

X, -v = L/K . Then 0 t L/K <iI*/K and (L/K)° = 0 .(m-1)

, I s
(L/K) c (L/K) = 0 and we have a series

— \Li/A) ^ [L/K) <] . . . <] \L/K) <] \.L/K)
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with zeroalgebra factors. By Lemma 1.2,

{S-X), (L/K){S~2)

so (L/X)(S"2) € M2 . Similarly

(L/K){s~3) € M-, . . . , L/K = (L/K){S~S) € U .

We have now shown that every non-zero homomorphic image of J* has a non-
zero ideal in M, for some k < s + 1 ; that is that J* € M . //

When S] is a field we get a stronger statement.

COROLLARY 1.3. Let W be a variety of algebras over a field
satisfying (V2) and (VU). Let M £>e a non-void homomorphically closed
subclass of W containing the one-dimensional zeroalgebra. If
I < J <\A e W and I f H , t h e n J " € M

S

Proof. Let B be a zeroalgebra. Then every non-zero homomorphic
image of B has an ideal which is a one-dimensional zeroalgebra. Thus
B € M , so Mp ' satisfies the hypotheses of Proposition 1.3. If now

J E D and K J o A , then J € Mo , so I* (. (Mo) . n = M _ . / /

PROPOSITION 1.4. Let ill be a variety of ^algebras satisfying (Vl)
and (vlt)j M a homomorphically closed subclass of W containing no zero-
algebras (not equal to 0 ) . If I < J < .4 € W and I € M 3 then
I <A .

2
Proof. Since I/I is a zeroalgebra in M , I must be idempotent.

The proof now runs like that of Proposition 3.5 in [2]. / /

Combining Corollary 1.3 with the field case of Proposition l.U, we get

PROPOSITION 1.5. Let fi be a field, W a variety of ^-algebras
satisfying (Vl), (V2), and (vU). If I o J < A i 111 and K M , then

To see this we need only observe that a homomorphically closed class
of zeroalgebras in this case either contains a one-dimensional zeroalgebra
or contains no zeroalgebras. / /
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Let A be a non-zero solvable algebra in a variety W satisfying

(V3) and (Vh). Then As <=_ A2 , tha t i s , in the notation used above,

A. * c A"1' . By induction, A,, c A"n' for each n . But A^n' = 0

eventually, so, for some n , we have

0 * A ( n - l ) < > A i fy«-l))S =A{n) = ° •

Thus A has a non-zero nilpotent ideal. I t follows that W satisfies

(V2) (and, of course, (Vl)). Combining these observations with the

preceding resul ts , we get

PROPOSITION 1.6. Let W be a variety of Q-algebras satisfying (V3)

and (vU). Let M be a homomorphically closed subclass of W containing

all zeroalgebras or none. If I o J < A (. W and I € M , then

COROLLARY 1.7. Let W be a variety of algebras over a field,

satisfying (V3) and (vU). If M is a homomorphically closed subclass of

ill , J < J<3 A and J E M , then I* € M ^ . . / /

For a non-void homomorphically closed subclass M of a variety W ,

le t

= {A £ W | every non-zero homomorphic image of A has a non-zero

accessible subalgebra in M} .

Then Y(M) is a radical class [7] and hence i(M) c Y(M) .

We can now prove our termination theorem.

THEOREM 1.8. Let W be a variety of Q-algebras, M a non^void

homomorphically closed subclass of W . Then L(M) = M if one of the

following sets of conditions holds:

(i) W satisfies (V2) and (v^) and M contains all zeroalgebras;

(ii) W satisfies (Vl) and (V )̂ and M contains no zeroalgebras;

(Hi) W satisfies (V3) and (vl*) and M contains all zeroalgebras

or none;

(iv) (it satisfies (V2) and (Vk), U contains a zeroalgebra, and

(i is a field;
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(v) bl satisfies (Vl), (V2), and (Vk), and Si is a field;

(vi) W satisfies (V3) and {vh), and Si is a field.

In (ii) and in (iii), (iv), and (v) , where M consists of idempotent

algebras, we have £(M) = Mp .

Proof. Reference to the earlier results of this section establishes

that in (i)-(vi), if I <i J o A t W and I E (I , then I* € Mg+2 . If

i? € £(M) , then if € 7(M) ; so for every non-zero R/L we have a f ini te

series

0 # M < A/ < . . . < M < M = #/L

with M € M . Consider M <i M <t M . We have M* t M o . Arguing
n n n—± YL—C. n o+£

by induction, we show that i?/L has a non-zero ideal in M, for some,

finite k . Thus R t M .
to

This last assertion of the theorem follows from Proposition l.U. //

As noted above, the varieties of associative, alternative, and Jordan

algebras satisfy (Vh). By Andrunakievich's Lemma ((J*/J) = o) , the

associative algebras satisfy (Vl), (V2), (V3). Results in [4] show that

the alternative algebras satisfy (Vl) and (V2) . If % € Si , then the

Jordan algebras satisfy (V2). To see this we use the following result.

THEOREM 1.9 (SI in'ko [72], Theorem l ) . // A is a Jordan algebra

over a ring Si containing h , if I < J < A , and if J/I has no nil-

potent ideals, then I < A .

PROPOSITION 1.10. The variety of Jordan algebras over a ring Si

containing h satisfies (V2).

Proof. Let I <x J <3 A . Any homomorphic image of I*/I is

isomorphic to I*/K for some K <c I* with J c K . If I*/K has no

nilpotent ideals, then by Theorem 1.9, K < A . But then (since IcK )

I* = K . II

Varieties satisfying (V3) and (vU) are discussed in [2].

The main drawback, of course, in the approach we have used in this

section, is that "complete" results can be stated only for algebras over a
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field (see [2]). If some way can be found to take account of the additive

structure of algebras, the method may produce new and simpler proofs of

known results (for example, for alternative rings) as well as new

information.

2. A 4-step termination

I t is not known whether, in the universal class of associative rings,

there exists a class M with I(M) = M ^ M for 3 < k < u ; in fact

no example appears to have been given in any universal class of a class

with this property. We present such an example here. Let A denote the

variety of associative rings (2-algebras). Recall that for varieties

l / ,W, 1/oW is the variety of algebras which are extensions of

(/-algebras by W-algebras.

THEOREM 2 . 1 . Let F be the class of (associative) fields. Then in

( A ° A ) o A j W e have

Proof. Let K be a finite prime field and let A be the X-algebra

with basis {e, / , g} and multiplication table

e

/

a

e

e

0

0

/

0

/

e

g

f

0

9

Let 0 ± I < A . If oe + bf + eg € I , then

bf = (bf+ce)f = {(ae+bf+cg)f)f € J .

Hence ae + eg € I , so

eg = g(ae+cg) € I ,

and thus ae (. I . If c ± 0 , then (since K is a finite prime field)

g 6 I . But then e = gf € I and / = eg € J , so I = A . Thus, if

I t A , we have I c_<e, f> , the subspace spanned by e and / .

If ae + bf € i" , then as above, ae and bf (. I . If a * 0 , then

e € J , s o f = eg (. I . Similarly f, e 6 J if b t 0 . Since J # {0}
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we h a v e e, f Z I and so I = < e , / > . Now < e , f>^K@K and

4 / < e , f l ^ J f , s o A U o A .

Le t A ' b e a n i s o m o r p h i c copy o f A , w i t h b a s i s { e 1 , / ' , g'} and

m u l t i p l i c a t i o n t a b l e

e'

f

g'

e'

e'

0

0

/ '

0

f
e'

g'

f
0

g'

We p u t A and A ' t o g e t h e r i n an a l g e b r a B w i t h b a s i s

\e, f, g, e ' , f ' , g', hi and m u l t i p l i c a t i o n t a b l e

e

f

g

f

g'

h

e

e

0

0

0

0

0

g

f

0

f

e

0

0

0

g

g

f

0

g

0

0

0

0

e'

0

0

0

e '

0

0

e

f
0

0

0

0

/ '

e'

f

g'

0

0

0

/ '

0

g'

g

h

e'

f

g'

g'

g'

0

h

Let I be a non-zero ideal of B and le t

a = ae + bf + eg + a'e' + b'f' + a'g' + dh

be in I . Multiplying on the right by g' , we see that I contains

aeg' + bfg' + egg' + a'e'g' + b'f'g' + e'g'g' + dhg' = a'f + a'g' + dg .

Then multiplying on the left by g' , we get

(1) a'g'f + ey<?' + dffV = a'e' + C y € I .

Hence a'e' = (a'e'+c'g')e' (. I , so by (l),

(2) c y e i.

Multiplying a on the left by g' , we get

b'e' + c V = ag'e + V / + eg'g + a'gr'e' + 2>'?'f + c'g'g' + dg'/z € I .
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Then (2) implies tha t b 'e ' £ I , so b 'f = b 'e 'g' € J .

We have thus far shown that a 'e', b 'f , a 'g' € I . A similar

argument shows tha t ae, bf, eg t I , whence also dh d I .

If d # 0 , then h € J , and then (as can be seen from the tab le ,

e = he ' and so on), e, f, g, e', / ' , g' € I . Thus if I t B , then
1 e (e, f, 9, e>, f , ff'} = A ®A' . Since I t 0 , the argument used

above shows that J contains at leas t one of e, f, g, e', f , g' .

If e € I , then f = eg i I , g = he € I , e' = eh Z I ,

f = e'g' £ I , g' = e'h Z I , so I = A @ A' . If / € J , then

e = 0 / € J , s o J = 4 © / 4 ' . If g £ I , then e = j / f I , so again

J = A © A' . Similarly I = A ® A' if e ' , / ' , o r g' £ I .

The ideals of B are thus 0, A ® A' , and B . As noted before, the

ideals of A are 0 , J = (e, f) , and A , so the ideals of ^4' are

0 , J' = < e ' , / ' > , and A' . Since B/A @ A' ^ K , we have

B € (A o A) o A .

Now J, J' = £ © K € F
2 \F • Since A/c7 = £ € F we have ,4 € F

by Lemma 1.1. Similarly A' € F . In fact , A and /I' € F^Fo ' s i n c e

they have no simple idea l s .

Consider A ® A ' . We have J, j ' < A ®Af . Let A © A'/L # 0 . If

j | t , then

0 * J/(J n £) 3* (J+L)/L< A ©4'/L ,

and c7/(</ n L) € F2 . Similarly /I ® A'/L has a non-zero ideal in F2 if

J ' ^ L . I f £ contains both J and j ' , then 4 © A'/L i s a

homomorphic image of U ® A' )/(j © j') ^ K © £ € f^ . Thus A © A' € F3 .

Since B/A © A' = K € F , Lemma 1.1 says that S € F, . Now

A ® A' \ F (since A, A1 f F J , and 5 £ F (since i t s non-zero ideals

are B and A ® A' , and neither i s simple) . Thus B has no non-zero

ideals in F , whence B $ F and thus S € F, \F .

We complete the proof by showing that L(F) = F, . Let R be in

L(F) . Then R has an ideal L such that L f A o A and R/L € A , and

thus L has an ideal M such that W € A and L/M € A . Now F i s
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hereditary, so L, M € L{ F) , and also L/M and R/L € L( F) . Now every

non-zero homomorphic image of M has a non-zero ideal in F , and since M

is associative, this means that M € F . In the same way I/W € F2 , so

by Lemma 1.1, L € F Since also R/L € F , a further application of

Lemma 1.1 shows that R (. F, . //

We note that there is some similarity between our construction and

that used by Ryabukhin [9] to show that the lower radical construction in

the class of all rings need not terminate at all. Our ring B differs,

however, from the fourth ring in Ryabukhin's transfinite sequence of rings.

The argument leading up to Theorem 1.8 closely parallels those used in

the proof that L(M) = M for any class M of associative rings

(Sulinski, Anderson and Divinsky [73]), alternative rings (Krempa [5]), and

also groups (Scukin [77]). It essentially involves showing

(i) that if T is an accessible subring of R , then the ideal

T of R generated by T is not "radically" different

from T , and

(ii) that then y(M) c L(M) (and thus 7(M) = L(M) ) .

The construction of £(F) (in (A o A) o A J, which we have just

discussed, does not conform to this pattern, even though it terminates

after a finite number of steps.

THEOREM 2.2. In (A o A) o A , L(F) # y(F) , and L{¥) does not

have a hereditary semi-simple class.

Proof. It is shown in [3] (Theorem 2.10 (iii)) that a hereditary

radical class R of the form Y(C) (called in [3] a hereditary

homomorphic orthogonality radical class), in A ° A , satisfies the

condition

(3) i?(R«/°a

where R is the zeroring on the additive group of R . Condition (3) is

satisfied also by (A o A) o A (the proof is quite similar). Since L(F)

is hereditary and does not satisfy (3), it can not coincide with 7(F) .

The second assertion of the theorem can be obtained from Theorem 2.10
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( i) of C3] in the same way. / /

Thus - referring back to our questions in the Introduction - a lower

radical construction over a "quite small" class can terminate in a finite

number of steps and yet produce a radical class with a non-hereditary semi-

simple class. How quickly a lower radical construction must terminate when

the associated semi-simple class is hereditary remains unknown.
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