A KRONECKER-TYPE THEOREM FOR COMPLEX POLYNOMIALS IN SEVERAL VARIABLES

BY
C. J. SMYTH

Abstract

We give a classification result for "extreme-monic" polynomials in several variables having measure 1 . The result implies a recent several-variable generalization, by D. W. Boyd, of Kronecker's classical theorem (that all zeros of a monic integral polynomial, with non-zero constant term and measure 1 , are roots of unity).

Introduction. For a monic polynomial $P(z)$ with integer coefficients and $P(0) \neq 0$, the classical Kronecker theorem [4] states that if all zeros of $P(z)$ lie in $|z| \leq 1$, they are all roots of unity.

In this paper we generalize (Theorem 1) to several variables the following result: if $P(z) \in \mathbb{C}[z]$ is monic with $|P(0)|=1$ and measure (defined below) 1 , then all zeros of P lic on $|z|=1$. This result is an immediate consequence of equation (1) below. In more than one variable, however, the result is somewhat deeper, since, for instance, it enables Boyd's [1, Theorem 1] recent severalvariable generalization of Kronecker's theorem to be derived from it as a corollary (Corollary 1). This theorem had strengthened an earlier result of the same type by Montgomery and Schinzel [6, Theorem 2].

The method of this paper is based on a correspondence between a polynomial $F \in \mathbb{C}[\mathbf{z}]=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ and a certain convex set $\mathscr{C}(F)$ in \mathbb{R}^{n}. We show that under suitable conditions the faces of $\mathscr{C}(F)$ correspond to factors of F. This fact is used as a basis for an induction argument.

I would like to thank Prof. David Boyd for useful discussions on this subject, including the suggested form for the definition of an extreme-monic polynomial. Some ideas in this paper were suggested by a paper of Lawton [5].

This work was supported by an NSERC grant while the author was visiting The University of British Columbia, Vancouver, B.C.

Definitions and results. For $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$ and $F(\mathbf{z})=\sum_{\mathbf{j} \in J} a(\mathbf{j}) z_{1}^{j_{1}} \cdots z_{n}^{i_{n} \in}$ $\mathbb{C}[\mathbf{z}]$, we define a body $\mathscr{C}(F)$ in \mathbb{R}^{n} to be the convex hull of the $\mathbf{j} \in J$ with $a(\mathbf{j}) \neq 0$ (Clarke [2] called $\mathscr{C}(F)$ the exponent polytope of F). For $F \in \mathbb{C}[\mathbf{z}]$, the measure $M(F)$ is

$$
\exp \left[\frac{1}{(2 \pi)^{n}} \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \log \left|F\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n}\right]
$$

[^0]By Jensen's Theorem,

$$
\begin{equation*}
M\left(a_{0} \prod_{i=1}^{m}\left(z-\alpha_{1}\right)\right)=\left|a_{0}\right| \prod_{i=1}^{m} \max \left(\left|\alpha_{i}\right|, 1\right) \tag{1}
\end{equation*}
$$

for polynomials in one variable z.
A one-variable polynomial $P(z)$ is said to be unit-monic if it is monic with $|P(0)|=1$. More generally, $F \in \mathbb{C}[\mathbf{z}]$ is said to be extreme-monic if $|a(\mathbf{j})|=1$ for all extreme points \mathbf{j} of $\mathscr{C}(F)$. In a similar manner to Boyd [1], we define a polynomial $F \in \mathbb{C}[\mathbf{z}]$ to be extended unit-monic (resp. extended cyclotomic) if it is of the form $F(\mathbf{z})=z_{1}^{b_{1}} \cdots z_{n}^{b_{n}} P\left(z_{1}^{v_{1}} \cdots z_{n}^{v_{n}}\right)$, where P is a unit-monic (resp. cyclotomic) polynomial in one variable, the v_{i} are integers and the b_{i} are chosen minimally such that $F(z)$ is a polynomial in z_{1}, \ldots, z_{n}.

Our main result is
Theorem 1. Let $F \in \mathbb{C}[\mathbf{z}]$. Then F is extreme-monic with $M(F)=1$ iff F is a product of $\rho z_{1}^{d_{1}} \cdots z_{n^{n}}^{d_{n}}$ and extended unit-monic polynomials. Here d_{1}, \ldots, d_{n} are integers, and $|\rho|=1$.

Corollary 1. (Boyd [1]). Let $F \in \mathbb{Z}[\mathbf{z}]$. Then $M(F)=1$ iff F is a product of $\pm z_{1}^{d_{1}} \cdots z_{n^{n}}^{d_{n}}$ and extended cyclotomic polynomials.

As a by-product of the proof of Theorem 1 we obtain
Theorem 2. For any k-dimensional face \mathscr{C}^{\prime} of $\mathscr{C}(F)(0 \leq k<n)$, we have $M(F) \geq M\left(F\left(\mathscr{C}_{0}^{\prime}\right)\right)$. Here $F\left(\mathscr{C}^{\prime}\right)=\sum_{\mathbf{j} \in J \cap \mathscr{C}^{\prime}} a(\mathbf{j}) z_{1}^{j_{1}} \cdots z_{n}^{j_{n}}$.

In particular ($k=0$)
Corollary 2. $M(F) \geq|a(\mathbf{j})|$ for every extreme point \mathbf{j} of $\mathscr{C}(F)$.
Auxiliary results. For the proof, we need the corollary to the following
Lemma 1. Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be closed convex polyhedra in \mathbb{R}^{n}, and $\mathscr{C}_{1}+\mathscr{C}_{2}=$ $\left\{\mathbf{j}^{(1)}+\mathbf{j}^{(2)} \mid \mathbf{j}^{(i)} \in \mathscr{C}_{i}(i=1,2)\right\}$. Then
(i) Every extreme point of $\mathscr{C}_{1}+\mathscr{C}_{2}$ can be expressed as a sum $\mathbf{j}^{(1)}+\mathbf{j}^{(2)}$, $\mathbf{j}^{(i)} \in \mathscr{C}_{i}(i=1,2)$, in only one way. Further such $\mathbf{j}^{(i)}$ are extreme points of $\mathscr{C}_{i}(i=$ $1,2)$.
(ii) For every extreme point $\mathbf{j}^{(1)}$ of \mathscr{C}_{1} there is an extreme point $\mathbf{j}^{(2)}$ of \mathscr{C}_{2} such that $\mathbf{j}^{(1)}+\mathbf{j}^{(2)}$ is an extreme point of $\mathscr{C}_{1}+\mathscr{C}_{2}$.

The lemma is essentially Theorem 15 of [3].
Corollary 3. Let $F_{0}=F_{1} F_{2}$, where $F_{0}, F_{1}, F_{2} \in \mathbb{C}[\mathbf{z}]$, and $F_{i}(\mathbf{z})=$ $\sum_{\mathbf{j} \in J_{i}} a_{i}(\mathbf{j}) z_{1}^{j_{1}} \cdots z_{n}^{j_{n}}(i=0,1,2)$. Then
(i) $\mathscr{C}\left(F_{1} F_{2}\right)=\mathscr{C}\left(F_{1}\right)+\mathscr{C}\left(F_{2}\right)$
(ii) if any two of the F_{i} are extreme monic, so is the third.

Proof. Clearly $\mathscr{C}\left(F_{1} F_{2}\right) \subseteq \mathscr{C}\left(F_{1}\right)+\mathscr{C}\left(F_{2}\right)$. Since the $a_{i}(\mathbf{j})$ are non-zero for $\mathbf{j} \in J_{i}$, Lemma 1 (i) shows that any extreme point of $\mathscr{C}\left(F_{1}\right)+\mathscr{C}\left(F_{2}\right)$ is uniquely expressible in the form $\mathbf{j}^{(1)}+\mathbf{j}^{(2)}$, for some extreme points $\mathbf{j}^{(i)}$ of $\mathscr{C}\left(F_{i}\right)(i=1,2)$. Hence

$$
\begin{equation*}
a_{0}\left(\mathbf{j}^{(1)}+\mathbf{j}^{(2)}\right)=a_{1}\left(\mathbf{j}^{(1)}\right) a_{2}\left(\mathbf{j}^{(2)}\right) \tag{2}
\end{equation*}
$$

so that $a_{0}\left(\mathbf{j}^{(1)}+\mathbf{j}^{(2)}\right) \neq 0$, and $\mathbf{j}^{(1)}+\mathbf{j}^{(2)} \in \mathscr{C}\left(F_{1} F_{2}\right)$. Thus all extreme points of $\mathscr{C}\left(F_{1}\right)+\mathscr{C}\left(F_{2}\right)$ belong to $\mathscr{C}\left(F_{1} F_{2}\right)$, which proves (i).
From (2) we see that F_{0} is extreme monic if F_{1} and F_{2} are. Now suppose that F_{0} and F_{1} are extreme monic. Then Lemma 1 (i), shows that for each extreme point $\mathbf{j}^{(1)}$ of $\mathscr{C}\left(F_{1}\right)$ there is an extreme point $\mathbf{j}^{(2)}$ of $\mathscr{C}\left(F_{2}\right)$ such that $\mathbf{j}^{(1)}+\mathbf{j}^{(2)}$ is an extreme point of $\mathscr{C}\left(F_{0}\right)$, so that (2) again holds. Hence $\left|a_{2}\left(\mathbf{j}^{(2)}\right)\right|=1$ and F_{1} is also extreme-monic.

Proof of the Theorems. Take $F(\mathbf{z})=\sum_{\mathbf{j} \in J} a(\mathbf{j}) z_{1}^{i_{1}} \cdots z_{n}^{j_{n}} \in \mathbb{C}[\mathbf{z}]$, consider a $k-$ dimensional face \mathscr{C}^{\prime} of $\mathscr{C}(F)$, for some $k: 0 \leq k<n$, and choose a hyperplane \mathscr{H} containing \mathscr{C}^{\prime}. Since $J \subseteq \mathbb{Z}^{n} \subset \mathbb{R}^{n}$, \mathscr{H} can be chosen so that it has a normal vector $\mathbf{v}_{1}=\left(\mathrm{v}_{11}, \mathrm{v}_{21}, \ldots, \mathrm{v}_{\mathrm{n} 1}\right)$, where the $v_{\mathrm{i} 1}(i=1, \ldots, n)$ are coprime integers. We can then find, by a classical result of Hermite, a square matrix $V=\left(v_{i l}\right)$ with integral entries, determinant 1 and first column $\mathbf{v}_{1}^{\mathbf{T}}$. Hence we can change variables by defining new variables $w_{l}(l=1, \ldots, n)$ by $z_{i}=$ $\prod_{l=1}^{n} w_{l}^{\mathrm{v}_{\mathrm{u}}}(i=1, \ldots, n)$, and then putting $G(\mathbf{w})=F(\mathbf{z})$, where $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$. Then since $\prod_{i=1}^{n} z_{i}^{i_{i}}=\prod_{l=1}^{n} w_{l}\left(\sum_{i=1}^{n} j_{i} v_{i l}\right), \quad G(\mathbf{w})=\sum_{\mathbf{k} \in K} a\left(\mathbf{k} V^{-1}\right) w_{1}^{k} \cdots w_{n}^{k_{n}}$, where $K=\{\mathbf{j} V \mid \mathbf{j} \in J\}$.

With these new variables \mathbf{w}, we define $\mathscr{C}(G)$ to be the convex hull of the $\mathbf{k} \in K$ with $a\left(\mathbf{k} V^{-1}\right) \neq 0$. Now, for some integer $m, \mathscr{H}=\left\{\mathbf{j} \mid \sum_{i=1}^{n} v_{i 1} j_{i}=m\right\}$. So the face $\mathscr{C}^{\prime}(G)=\left\{\mathbf{j} V \mid \mathbf{j} \in \mathscr{C}^{\prime}\right\}$ of $\mathscr{C}(G)$ is in the hyperplane $\mathscr{H} V=$ $\left\{\mathbf{k}=j V \mid \sum v_{i 1} j_{i}=m\right\}=\left\{\mathbf{k} \mid k_{1}=m\right\}$.

We now write $G(\mathbf{w})$ as a sum of terms $G_{l}\left(w_{2}, \ldots, w_{n}\right) w_{1}^{l}$, where the $G_{l}\left(w_{2}, \ldots, w_{n}\right)$ are polynomials in $w_{2}^{ \pm 1}, \ldots, w_{n}^{ \pm 1}$, and l runs over a finite set of integers either (i) all $\leq m$, or (ii) all $\geq m$. By replacing w_{1} by w_{1}^{-1}, if necessary, we may assume that (i) occurs, with L the least value of l. Then

$$
\begin{aligned}
& G(\mathbf{w})=w_{1}^{L}\left\{G_{m} w_{1}^{m-L}+G_{m-1} w_{1}^{m-L-1}+\cdots+G_{L}\right\} . \\
&=w_{1}^{L} G_{m}\left\{w_{1}^{m-L}+\left(G_{m-1} / G_{m}\right) w_{1}^{m-L-1}+\cdots+\left(G_{L} / G_{m}\right)\right\} \\
& \quad \text { for } \quad G_{m} \neq 0=w_{1}^{L} G_{m} H \text { say },
\end{aligned}
$$

where H is a rational function of w_{1}, \ldots, w_{n}.
Now $\quad \log M(F)=1 /(2 \pi) n \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} \log \left|F\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)\right| d \theta_{1} \cdots d \theta_{n}$. On changing variables with the transformation $\left(\theta_{1}, \ldots, \theta_{n}\right)=\left(\phi_{1}, \ldots, \phi_{n}\right) V$, with Jacobian $\operatorname{det} V=1$, we have

$$
\begin{equation*}
\log M(F)=\log M(G)=\log M\left(G_{m}\right)+\log M(H) \tag{3}
\end{equation*}
$$

Now $\log M(H)=1 /(2 \pi) n \int_{0}^{2 \pi} \cdots \int_{0}^{2 \pi} d \theta_{2} \cdots d \theta_{n} \int_{0}^{2 \pi} \log |H| d \theta_{1} \geq 0$, by Jensen's Theorem. So $\log M(F) \geq \log M\left(G_{m}\right)$. On applying the above transformation to $F\left(\mathscr{C}^{\prime}\right)$ (as defined in the statement of Theorem 2), we see that $M\left(F\left(\mathscr{C}^{\prime}\right)\right)=$ $M\left(G_{m}\right)$, and $\log M(F) \geq \log M\left(F\left(\mathscr{C}^{\prime}\right)\right)$. This proves Theorem 2.

To complete the proof of Theorem 1, first note that it is trivial in one direction-i.e. if f is a product of $\rho z_{1}^{d_{1}} \cdots z_{n}^{d_{n}}$ and extended unit-monic polynomials, then $M(F)=1$, by Jensen's Theorem, and F is extreme-monic, by Corollary 3. We therefore assume that F is extreme-monic with $M(F)=1$, and have to prove that F is a product of $\rho z_{1}^{d_{1}} \cdots z_{n^{n}}^{d_{n}}$ and extended unit-monic polynomials.

We use double induction on the number of variables n of F and the number r of irreducible factors of F in $\mathbb{C}[\mathbf{z}]$ (excluding trivial factors $\rho z_{1}^{d_{1}} \cdots z_{n^{n}}^{d_{n}}$. The result is clearly true if $n=1$, or if $r=0$, in which case $F=a(\mathbf{j}) z_{1}^{i_{1}} \cdots z_{n}^{j_{n}}$ for some single point \mathbf{j}. We now assume the truth of the result for all $n^{\prime}<n$ and $r^{\prime}<r$, where $n \geq 2, r \geq 1$. Let F be a polynomial in n variables with r irreducible factors. The main step in the proof is to show that for the polynomial G, as defined earlier, the rational function H is in fact a polynomial in $w_{1}, w_{2}^{ \pm 1}, \ldots, w_{n}^{ \pm 1}$. To show this, first note that as F is extreme monic, G is extreme monic, and hence G_{m} is extreme-monic, as $\mathscr{C}\left(G_{m}\right)$ is a face of $\mathscr{C}(G)$. Now $1=M(G) \geq M\left(G_{m}\right) \geq 1$, so that $M\left(G_{m}\right)=1$. As G_{m} is a function of w_{2}, \ldots, w_{n}, the induction hypothesis therefore shows that G_{m} is a product of $\rho w_{2}^{d_{2}} \cdots w_{n^{n}}^{d_{n}}$ and extended unit-monic polynomials. However, we can also ensure that G_{m} is not just of the form $\rho w_{2}^{d_{2}} \cdots w_{n}^{d_{n}}$, but does in fact contain extended unit-monic factors. To do this it is simply necessary to choose the face \mathscr{C}^{\prime} of $\mathscr{C}(F)$ so that it contains at least two points of J, but is not the whole of $\mathscr{C}(F)$. This is always possible if the points of \mathscr{C}^{\prime} do not lie on a single line. However, we can assume this, for if the points of \mathscr{C}^{\prime} were collinear, we could, by a change of variables, express F as a product of a monomial and a polynomial in one variable. This would mean that we could take $n=1$, while we are assuming $n \geq 2$.

We have from (3) that

$$
\begin{equation*}
0=\log M\left(G_{m}\right)=\log M(H) . \tag{4}
\end{equation*}
$$

We can now show that
Lemma 2. Under our previous assumptions, H is a polynomial.
Proof. Assume H is not a polynomial. Then G_{m} does not divide some G_{k}. Since G_{m} is extended unit monic we can choose a factor of G_{m} of the form $w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}-\alpha$, with $|\alpha|=1$, which also does not divide G_{k}. Further, since $w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}-\alpha=\prod_{j=1}^{k}\left(w_{2}^{a_{2} / h} \cdots w_{n}^{a_{n} / h}-e^{2 \pi i / h} \alpha^{1 / h}\right)$ where $h=\left(a_{2}, \ldots, a_{n}\right)$, we can assume that $h=1$. We then change variables, keeping w_{1} fixed, so that $w_{2^{2}}^{a_{2}} \cdots w_{n^{n}}^{a_{n}}$ becomes a new variable. Assuming that this has already been done, we are now able to assume that G_{m} has a factor $w_{2}-\alpha$ not dividing G_{k}.

Now, writing G_{k} in the form $\left(w_{2}-\alpha\right) A+B$, where $B \not \equiv 0$ is a polynomial in $w_{3}^{ \pm 1}, \ldots, w_{n}^{ \pm 1}$, it is clear that we can choose an ($n-2$)-dimensional point $\left(w_{3}^{*}, \ldots, w_{n}^{*}\right)$ with $\left|w_{i}^{*}\right|=1(i=3, \ldots, n)$ and $B\left(w_{3}^{*}, \ldots, w_{n}^{*}\right) \neq 0$. Then there will be a neighbourhood \mathcal{N} of $\left(\alpha, w_{3}^{*}, \ldots, w_{n}^{*}\right)$ on the ($n-1$)-dimensional unit torus such that

$$
\begin{equation*}
\left|G_{k} / G_{m}\right|>\binom{m-2}{k-2}+1 \tag{5}
\end{equation*}
$$

on \mathcal{N}. Now (5) is impossible if all zeros of H, as a polynomial in w_{1}, lie in $\left|w_{1}\right| \leq 1$. Hence there is an $\varepsilon>0$ such that $\int_{0}^{2 \pi} \log |H| d \theta_{1}>\varepsilon$ for any $\left(w_{2}, \ldots, w_{n}\right)$ fixed in \mathcal{N}. Since $\int_{0}^{2 \pi} \log |H| d \theta_{1} \geq 0$ for any fixed $\left(w_{2}, \ldots, w_{n}\right)$ not necessarily in \mathcal{N}, this implies that $\log M(H)>\varepsilon /(2 \pi) n \times((n-1)$-dimensional measure of $\mathcal{N})>0$. This contradicts (4), so proves the lemma.
We have thus achieved a polynomial factorization $G=G_{m} H$ of G, where G_{m} is a function of w_{2}, \ldots, w_{n}, with at least one extended unit-monic factor. Hence H has fewer than r irreducible factors, which by the induction hypothesis implies that H is a product of $\rho w_{1}^{d_{1}} \cdots w_{n^{n}}^{d_{n}}$ and extended unit-monic polynomials. Thus the same is true for G, and hence, on changing variables, F is a product of $\rho z_{1}^{d_{1}} \cdots z_{n^{n}}^{d_{n}}$ and extended unit-monic polynomials.

Proof of Corollary 1. Let $F \in \mathbb{Z}[\mathbf{z}]$ and $M(F)=1$. Then for any extreme point \mathbf{j} of $\mathscr{C}(F),|a(\mathbf{j})| \leq 1$ by Corollary 2 . Hence $a(\mathbf{j})= \pm 1$, so that F is extrememonic. Thus from Theorem 1, F can be written in the form $F(\mathbf{z})=$ $\pm z_{1}^{d_{1}} \cdots z_{n}^{d_{n}} \prod_{s=1}^{S}\left(z_{1^{s}}^{\lambda^{\prime}} z_{2^{2}}^{\lambda_{2}} \cdots z_{n}^{\lambda_{s n}}-\theta_{s}\right)$, where $\left|\theta_{s}\right|=1 \quad(s=1, \ldots, S)$. To show that in fact its roots are roots of unity, we proceed as follows, making use of polynomials of the type $F\left(z^{r_{1}}, \ldots, z^{r_{n}}\right)$, used in [6]. We take a supporting hyperplane $\sum_{i=1}^{n} r_{i} j_{i}=m>0$, with the r_{i} integers, meeting $\mathscr{C}(F)$ in precisely one point, an extreme point. We can also assume that none of the vectors $\left(\lambda_{s 1}, \ldots, \lambda_{s n}\right)$ are parallel to the hyperplane, so that $\sum_{i=1}^{n} \lambda_{s i} r_{i} \neq 0(s=1, \ldots, S)$. Then either $F\left(z^{r_{1}}, \ldots, z^{r_{n}}\right)$ or $F\left(z^{-r_{1}}, \ldots, z^{-r_{n}}\right)$ is of the form $\pm z^{k} P(z)$ for some k and some monic polynomial $P \in \mathbb{Z}[z]$, where $P(z)$ is of the form $\prod_{s=1}^{S}\left(z^{k_{s}}-\theta_{s}^{\varepsilon_{s}}\right)$, with all $k_{s}>0$, and $\varepsilon_{s}= \pm 1$. Hence the θ_{s} are all roots of unity, by Kronecker's classical Theorem.

We see that in the above proof of Corollary 1, the fact that F has integer coefficients is used in two places: (i) to show that $a(\mathbf{j}) \neq 0$ and $\mid a(\mathbf{j}) \leq 1$ implies $a(\mathbf{j})= \pm 1$ for extreme points \mathbf{j}, and (ii) so that Kronecker's original onevariable result can be applied.

References

[^1]4. L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. reine angew. Math. 53 (1857), 173-175.
5. W. Lawton, Asymptotic properties of roots of polynomials - preliminary report, Proceedings 7th National Mathematics Conference, Dept. Math. Azarabadegan Univ., Tabriz, 1976.
6. H. L. Montgomery and A. Schinzel, Some arithmetic properties of polynomials in several variables, in Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (editors) (Academic Pres 1977).

Department of Mathematics
James Cook University of North Queensland
Townsville, Qld Australia

[^0]: Received by the editors December 5, 1979 and, in revised form, April 23, 1980

[^1]: 1. D. W. Boyd, Kronecker's theorem and Lehmer's problem for polynomials in several variables, (to appear).
 2. B. L. Clarke, Asymptotes and intercepts of real-power polynomial surfaces from the geometry of the exponent polytope, SIAM J. Appl. Math. 35 (1978), 755-786.
 3. P. J. Kelly and M. L. Weiss, Geometry and Convexity (John Wiley and Sons, New York, 1979).
