THE POSITION OF $\mathcal{K}(X, Y)$ IN $\mathcal{L}(X, Y)$

DANIELE PUGLISI
Department of Mathematics and Computer Sciences, University of Catania, Catania 95125, Italy e-mail: dpuglisi@dmi.unict.it

(Received 2 November 2012; accepted 24 January 2013; first published online 13 August 2013)

Abstract

In this paper we investigate the nature of family of pairs of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. It is proved that the family of pairs (X, Y) of separable Banach spaces such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$ is not Borel, endowed with the Effros-Borel structure.

2000 Mathematics Subject Classification. Primary 46B20.

1. Introduction. Let X and Y be two infinite dimensional real Banach spaces. The following has been a longstanding question (see [18] and [3]):

Question 1.1. Are the following properties equivalent?
(a) There exists a projection from the the space $\mathcal{L}(X, Y)$ of continuous linear operators onto the space $\mathcal{K}(X, Y)$ of compact linear operators.
(b) $\mathcal{L}(X, Y)=\mathcal{K}(X, Y)$.

Many results have been found about this question. In [19], Tong and Wilken showed that if X has an unconditional basis, then the equivalence in the above question is true. Some years later, Kalton [13] extended this result showing the following.

Theorem 1.2. Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space, the following are equivalent.
(i) $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$;
(ii) $\mathcal{L}(X, Y)=\mathcal{K}(X, Y)$;
(iii) $\mathcal{K}(X, Y)$ contains no copy of c_{0};
(iv) $\mathcal{L}(X, Y)$ contains no copy of ℓ_{∞}.

In [10] and [11], Emmanuele proved that, without assumption of unconditional finite dimensional expansion of the identity, we still have some implication of the above theorem; i.e. if c_{0} embeds in $\mathcal{K}(X, Y)$, then $\mathcal{K}(X, Y)$ is uncomplemented in $\mathcal{L}(X, Y)$. Moreover, he also showed that the classical Bourgain-Delbaen space $X_{a, b}$ (see [6]) is such that $\mathcal{K}\left(X_{a, b}\right)$ contains no copy of c_{0} despite $\mathcal{L}\left(X_{a, b}\right) \neq \mathcal{K}\left(X_{a, b}\right)$.

Recently, Argyros and Haydon [2], in a truly spectacular way, have solved the above-mentioned Question 1.1. Indeed, using a mixed Tsirelson trick, they constructed a space \mathfrak{X}_{K} in the wake of Bourgain-Delbaen space (see $[\mathbf{5}, \mathbf{6}]$) such that
$\mathcal{K}\left(\mathfrak{X}_{K}\right)$ contains no copy of $c_{0} ;$
$\mathcal{L}\left(\mathfrak{X}_{K}\right)=\mathcal{K}\left(\mathfrak{X}_{K}\right) \oplus \mathbb{R} I$,
$\mathcal{L}\left(\mathfrak{X}_{K}\right)=\mathcal{K}\left(\mathfrak{X}_{K}\right) \oplus \mathbb{R} I$,
where I denotes the identity map. In particular, $\mathcal{K}\left(\mathfrak{X}_{K}\right)$ is nontrivially complemented in $\mathcal{L}\left(\mathfrak{X}_{K}\right)$.

See also another interesting paper [12], where the authors extend the ArgyrosHaydon construction in terms of totally incomparable spaces.

In what follows, we want to study the descriptive set nature of such spaces: the family of separable Banach spaces, endowed with the Effros-Borel structure such that $\mathcal{K}(X)$ is nontrivially complemented in $\mathcal{L}(X)$. In particular, we are interested to study the following.

Question 1.3. Let \mathcal{A} be the family of all couple of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. Is \mathcal{A} Borel?

As a standard notation, we shall consider $\mathcal{L}(X, Y)$ the space of all bounded linear operators between the Banach spaces X and Y, endowed by the classical norm

$$
\|T\|=\sup _{\|x\| \leq 1}\|T x\|_{Y}
$$

We shall denote by $\mathcal{K}(X, Y)$ the closed subspace of $\mathcal{L}(X, Y)$ of all compact operators. In case $X=Y$, briefly $\mathcal{L}(X)$ and $\mathcal{K}(X)$ will stand for $\mathcal{L}(X, X)$ and $\mathcal{K}(X, X)$ respectively. We refer the reader to any book on classical functional analysis for any notation (i.e. see $[\mathbf{1 , 8}, 16])$.

Let us recall the following.
Definition 1.4 [14]. Let $1 \leq p<\infty$. A separable Banach space X is said to have the property $\left(m_{p}\right)$ if

$$
\limsup _{n \rightarrow \infty}\left\|x+x_{n}\right\|^{p}=\|x\|^{p}+\limsup _{n \rightarrow \infty}\left\|x_{n}\right\|^{p}
$$

whenever $x_{n} \rightarrow 0$ weakly.
Such a property has been intensively studied in [14], where it was proved that a Banach space X has the property $\left(m_{p}\right)$ if and only if X is almost isometric to a subspace of some ℓ_{p}-sum of finite-dimensional spaces.
2. Preliminaries and notation. Let X be a separable Banach space. We endow the set $\mathcal{F}(X)$ of all closed subsets of X with the Effros-Borel structure, i.e. the structure generated by the family

$$
\{\{F \in \mathcal{F}(X): F \cap O \neq \emptyset\}: O \text { is an open subset of } X\}
$$

We denote by $\mathcal{S B}(X)$ the subset of $\mathcal{F}(X)$ consisting of all linear closed subspaces of X endowed with the relative Effros-Borel σ-algebra. If X is $C\left(2^{\omega}\right)\left(\right.$ where $2^{\omega}=\{0,1\}^{\omega}$ is a compact Polish space endowed with the product topology), we denote briefly $\mathcal{S B}(X)$ by $\mathcal{S B}$. It is well known that if X is a Polish space then $\mathcal{F}(X)$ with the Effros-Borel structure is a standard Borel space. We refer the reader to a recent book by Dodos [9].

We denote by $\omega=\{0,1, \ldots\}$ the first infinite ordinal, and let $\omega^{<\omega}$ be the tree of all finite sequences in ω. Let \mathcal{T} be the set of all trees on ω. If $s=(s(0), \ldots, s(n-1))$ is a sequence of ω, we denote its length n by $|s|$. In particular, the empty sequence \emptyset has length 0 .

For $s=(s(0), \ldots, s(n-1))$ and $t=(t(0), \ldots, t(k-1))$, the concatenation $s \frown t$ is defined by

$$
s \frown t=(s(0), \ldots, s(n-1), t(0), \ldots, t(k-1)) .
$$

For a tree θ, a branch through θ is an $\varepsilon \in \omega^{\omega}$ such that for all $n \in \omega$,

$$
\varepsilon \mid n=(\varepsilon(0), \ldots, \varepsilon(n-1)) \in \theta
$$

We denote by

$$
[\theta]=\left\{\varepsilon \in \omega^{\omega}: \varepsilon \text { is a branch through } \theta\right\}
$$

the body of θ.
We call θ well founded if $[\theta]=\emptyset$, i.e. θ has no branches. Otherwise, we will call θ ill founded. We will denote by $\mathcal{W} \mathcal{F}$ (resp. $\mathcal{I F}$) the set of well-founded trees (resp. ill-founded trees) on ω.

For a tree $\theta \in \mathcal{T}$, roughly speaking the high of θ (denoted by $h t(\theta)$) is the supremum of the lengths of its elements (see [13] for the definition).

We refer the reader to Kechri's book [15] for all notion and notation of Descriptive Set theory.

Let us recall the constructive space of [17, Theorem 1] with normalized unconditional basis, which is universal for all spaces with unconditional basis (some time called Pelczynski's space \mathcal{U}).

Theorem 2.1. There exists a space \mathcal{U} with a normalized unconditional basis $\left(u_{n}\right)_{n}$ such that for every semi-normalized unconditional basic sequence $\left(x_{n}\right)_{n}$ in a Banach space X there exists $L=\left\{l_{0}<l_{1}<\cdots\right\} \in[\omega]$ such that $\left(x_{n}\right)_{n}$ is equivalent to $\left(u_{l_{n}}\right)_{n}$ and the natural projection P_{L} onto $\overline{\operatorname{span}}\left\{u_{n}: n \in L\right\}$ has norm one. Moreover, if U^{\prime} is another space with the above properties, then U^{\prime} is isomorphic to \mathcal{U}.
3. Proof of the main result. For $s \in \omega^{<\omega}$, we denote by $\chi_{s}: \omega^{<\omega} \longrightarrow\{0,1\}$ the characteristic function of $\{s\}$. For a tree $\theta \in \mathcal{T}$, let $U_{p}(\theta)(1<p<\infty)$ be the completion of the $\operatorname{span}\left\{\chi_{s}: s \in \theta\right\}$ under the norm

$$
\|y\|_{p}=\sup \left[\sum_{j=0}^{k}\left\|\sum_{s \in I_{j}} y(s) u_{|s|}\right\|_{U}\right]^{p},
$$

where the supremum is taken over $k \in \omega$ and over all admissible choice of intervals $\left\{I_{j}: 0 \leq j \leq k\right\}$ (an admissible choice of intervals is a finite set $\left\{I_{j}: 0 \leq j \leq k\right\}$ of intervals of θ such that every branch of θ meets at most one of these intervals).

Both of the below-mentioned Lemmas are essentially included in [4].
Lemma 3.1. For any θ tree on ω, the sequence $\left\{\chi_{s_{i}}: s_{i} \in \theta\right\}$ determines an unconditional basis for $U_{p}(\theta)$.

Proof. Let $\left(\lambda_{i}\right)_{i \in \omega}$ be a sequence in \mathbb{R}, I be an interval of θ and n and $m \in \omega$. Let us denote by $c_{\underline{u}}$ the basis constant for the universal basis $\underline{u}=\left(u_{n}\right)_{n}$ of \mathcal{U}.

Let $\mathcal{K}: \omega \longrightarrow \omega^{<\omega}$ be an enumeration of $\omega^{<\omega}$ such that if $s \nRightarrow t$ then $\bar{s}<\bar{t}$, where $\bar{s}=\mathcal{K}^{-1}(s)$.

For $s \in T$, $\left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s)$ is equal to $\lambda_{\bar{s}}$ if $\bar{s} \leq n$, and 0 if not. Therefore,

$$
\begin{aligned}
\left\|\sum_{s \in I}\left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}} & =\left\|\sum_{\| \frac{s}{s} \leq n} \lambda_{\bar{s}} u_{|s|}\right\|_{\mathcal{U}} \leq c_{\underline{u}}\left\|\sum_{\substack{s \in I \\
\bar{s} \leq n+m}} \lambda_{\bar{s}} u_{|s|}\right\|_{\mathcal{U}} \\
& =c_{\underline{u}}\left\|\sum_{s \in I}\left(\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}
\end{aligned}
$$

since for $s, t \in I$, then $t \supseteqq s$ if and only if $\bar{t} \geq \bar{s}$.
Let $\left\{I_{j}: 0 \leq j \leq k\right\}$ be an admissible choice of intervals. We have

$$
\sum_{j=0}^{k}\left\|\sum_{s \in I_{j}}\left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}^{p} \leq c_{\underline{u}}^{p} \sum_{j=0}^{k}\left\|\sum_{s \in I}\left(\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}^{p}
$$

Thus, $\left\|\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right\|_{p} \leq c_{\underline{u}}\left\|\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right\|_{p}$ and $\left\{\chi_{s_{i}}: i \in \omega\right\}$ is a basic sequence.
Using the unconditionality of $\left(u_{n}\right)_{n}$, the same argument as above shows that $\left\{\chi_{s_{i}}\right.$: $\left.s_{i} \in \theta\right\}$ is actually an unconditional basis for $U_{p}(\theta)$.

Lemma 3.2. Let $\left(A_{i}\right)_{i \in \omega}$ be a sequence of subsets of θ such that every branch meets at most one of these subsets. Then the spaces

$$
U_{p}\left(\bigcup_{i \in \omega} A_{i}\right) \text { and }\left(\bigoplus_{i \in \omega} U_{p}\left(A_{i}\right)\right)_{\ell_{p}} \text { are isometric. }
$$

Proof. Pick $y \in \operatorname{span}\left\{\chi_{s}: s \in \bigcup_{i \in \omega} A_{i}\right\}$. We let $y_{i}=\sum_{s \in A_{i}} y(s) \chi_{s}$. Since the set $\left\{y_{i}: i \in \omega\right.$ and $\left.y_{i} \neq 0\right\}$ is finite, there is $m \in \omega$ such that $y=\sum_{i=0}^{m} y_{i}$. To finish the proof, it is enough to show the following:

Claim $\|y\|_{p}^{p}=\sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p}$.
Indeed, let $\left\{I_{j}: 0 \leq j \leq k\right\}$ be an admissible choice of intervals. We set, for $0 \leq$ $j \leq k$ and $0 \leq i \leq m, I_{j}(y)=\sum_{s \in I_{j}} y(s) u_{|S|}$ and $M_{i}=\left\{j \in \omega: 0 \leq j \leq k, I_{j} \cap A_{i} \neq \emptyset\right\}$. The largest interval with ends in $I_{j} \cap A_{i}$ is denoted by J_{j}^{i}. For any $i \in \omega,\left\{J_{j}^{i}: j \in M_{i}\right\}$ is an admissible choice of intervals, thus

$$
\sum_{j=0}^{k}\left\|I_{j}(y)\right\|^{p}=\sum_{i=0}^{m} \sum_{j \in M_{i}}\left\|J_{j}^{i}\left(y_{i}\right)\right\|^{p} \leq \sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p}
$$

It follows by taking the supremum over admissible choices of intervals that

$$
\|y\|_{p}^{p} \leq \sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p}
$$

Now for any $0 \leq i \leq m$, let $\left\{I_{j}^{i}: 0 \leq j \leq_{i}\right\}$ be an admissible choice of intervals. We denote by \widetilde{I}_{j}^{i} the largest interval with ends in $I_{j}^{i} \cap A_{i}$. Then $\left\{\widetilde{I}_{j}^{i}: 0 \leq i \leq m, 0 \leq j \leq k_{i}\right\}$ is an admissible choice of intervals because every branch of T meets at most one of the
A_{i} 's. For any i,

$$
\begin{gathered}
\sum_{j=0}^{k_{i}}\left\|I_{j}^{i}\left(y_{i}\right)\right\|^{p}=\sum_{j=0}^{k_{i}}\left\|\widetilde{I}_{j}^{i}\left(y_{i}\right)\right\|^{p}=\sum_{j=0}^{k_{i}}\left\|I_{j}^{i}(y)\right\|^{p}, \\
\sum_{i=0}^{m} \sum_{j=0}^{k_{i}}\left\|I_{j}^{i}\left(y_{i}\right)\right\|^{p}=\sum_{i=0}^{m} \sum_{j=0}^{k_{i}}\left\|\widetilde{I}_{j}^{i}(y)\right\|^{p} \leq\|y\|_{p}^{p},
\end{gathered}
$$

thus,

$$
\sum_{i=0}^{m}\left\|y_{i}\right\|_{p}^{p} \leq\|y\|_{p}^{p}
$$

Theorem 3.3. Let $\theta \in \mathcal{T}$, and let $1<q<p<\infty$.
(i) If θ is ill founded, then $\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right)$ is uncomplemented in $\mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right)$.
(ii) If θ is well founded, then $\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right)$ is complemented in $\mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right)$.

Proof. (i) We actually show that if θ is ill founded, then $U_{p}(\theta)$ is isomorphic to \mathcal{U}. Since both spaces $U_{p}(\theta)$ and $U_{q}(\theta)$ are isomorphic, we get that $\mathcal{K}\left(U_{p}(\theta)\right.$, $\left.U_{q}(\theta)\right) \neq \mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right)$. Since \mathcal{U} has an unconditional basis, the thesis follows [19, Theorem 6].

Suppose θ is ill founded, and let $b \in[\theta]$ a branch of θ. Let

$$
U_{p}(b)=U_{p}(\{s \in \theta: s \subseteq b\})
$$

We show that actually $U_{p}(b)$ is isomorphic to \mathcal{U}.
Indeed, it is enough to show that the elements $\left\{\chi_{b \mid j}: j \in \omega\right\}$ are equivalent to the basis of \mathcal{U}.

Note that if $\lambda \in \ell_{\infty}$ then

$$
\begin{aligned}
\left\|\sum_{j=0}^{n} \lambda_{j} \chi_{b \mid j}\right\|_{p} & =\sup \left\{\left\|\sum_{s \in I}\left(\sum_{j=0}^{n} \lambda_{j} \chi_{b \mid j}\right)(s) u_{|s|}\right\|: I \text { interval, } I \subseteq\{s: s \varsubsetneqq b\}\right\} \\
& =\sup \left\{\left\|\sum_{j=l}^{m} \lambda_{j} u_{j}\right\|: 0 \leq l \leq m \leq n\right\} .
\end{aligned}
$$

Thus,

$$
\left\|\sum_{j=0}^{n} \lambda_{j} u_{j}\right\|_{\mathcal{U}} \leq\left\|\sum_{j=0}^{n} \lambda_{j} \chi_{b \mid j}\right\|_{p} \leq 2 c_{\underline{u}}\left\|\sum_{j=0}^{n} \lambda_{j} u_{j}\right\|_{\mathcal{U}},
$$

where $c_{\underline{u}}$ is the unconditional basis constant of the basis of \mathcal{U}.
Thus, $U_{p}(b)$ is isomorphic to \mathcal{U}.

Let $y=\sum_{i \in \omega} y\left(s_{i}\right) \chi_{s_{i}}$ be an element of $U_{p}(\theta)$. We have

$$
\begin{aligned}
\left\|\sum_{\substack{i \in \omega \\
s_{i} \in b}} y\left(s_{i}\right) \chi_{s_{i}}\right\|_{p} & =\sup \left\{\left\|\sum_{s \in I} y(s) u_{|s|}\right\|: I \text { interval, } I \subseteq\{s: s \varsubsetneqq b\}\right\} \\
& \leq\|y\|_{p} .
\end{aligned}
$$

That means $U_{p}(b) \cong \mathcal{U}$ is complemented in $U_{p}(\theta)$. By properties of \mathcal{U}, we get that $U_{p}(\theta) \cong \mathcal{U}$.
(ii) Suppose that θ is well founded. Since $U_{p}(\theta)$ has an unconditional basis, by [19, Theorem 6], it is equivalent to show that

$$
\mathcal{K}\left(U_{p}(\theta), U_{q}(\theta)\right)=\mathcal{L}\left(U_{p}(\theta), U_{q}(\theta)\right)
$$

For $s \in T$ and $i \in \omega$, we define

$$
s \frown \theta=\{s \frown t: t \in \theta\}, \quad \theta_{i}=\{t \in T:(i) \frown t \in \theta\} .
$$

Since $U_{p}(\theta)=U_{p}(\emptyset \frown \theta)$, to prove the theorem, it is enough to show the following.
Claim. If θ is well founded, then for any $s \in T$,

$$
\mathcal{K}\left(U_{p}(s \frown \theta), U_{q}(s \frown \theta)\right)=\mathcal{L}\left(U_{p}(s \frown \theta), U_{q}(s \frown \theta)\right) .
$$

Since θ is well founded, and since the map $h t: \mathcal{W} \mathcal{F} \longrightarrow \omega_{1}$ is a Π_{1}^{1}-rank on $\mathcal{W F}$ (see [15]), we will show the Claim using transfinite induction on $h t(\theta)$.

We assume that for every tree $\tau \in \mathcal{T}$ such that $h t(\tau)<\alpha<\omega_{1}$,

$$
\mathcal{K}\left(U_{p}(s \frown \tau), U_{q}(s \frown \tau)\right)=\mathcal{L}\left(U_{p}(s \frown \tau), U_{q}(s \frown \tau)\right)
$$

for any $s \in T$.
Let us take θ such that $h t(\theta)=\alpha$, and for $s \in T$, let

$$
N_{s}=\{i \in \omega: s \frown(i) \in \theta\} .
$$

We let $A_{i}=s \frown(i) \frown \theta_{i}$ for $i \in N_{s}$ so that

$$
\cup_{i \in N_{s}} A_{i}=s \frown(\theta \backslash\{s\})
$$

and every branch of T meets at most one of the A_{i} 's. If $i \in N_{s}$, then $h t\left(A_{i}\right)<\alpha$, thus

$$
\mathcal{K}\left(U_{p}\left(A_{i}\right), U_{q}\left(A_{i}\right)\right)=\mathcal{L}\left(U_{p}\left(A_{i}\right), U_{q}\left(A_{i}\right)\right)
$$

By Lemma 3.2, we have

$$
U_{r}(s \frown(\theta \backslash\{s\}))=U_{r}\left(\bigcup_{i \in N_{s}} A_{i}\right)=\left(\bigoplus_{i \in N_{s}} U_{r}\left(A_{i}\right)\right)_{\ell_{r}}
$$

for $r=p, q$ respectively.
Since $\left\{\chi_{s_{j}}: j \in \omega, s_{j} \in s \frown \theta\right\}$ is a basis of $U_{r}(s \frown \theta)$ with the first element χ_{s} and the other element generate $U_{r}(s \frown(\theta \backslash\{s\}))$. Then, we have $U_{r}(s \frown \theta) \cong \mathbb{R} \times U_{r}(s \frown$ $(\theta \backslash\{s\})$). Thus, the theorem will be complete once we prove the next two Lemmas.

Lemma 3.4. Let $1<p<\infty$. For every $\theta \in \mathcal{W} \mathcal{F}, U_{p}(\theta)$ is reflexive and it has the property $\left(m_{p}\right)$.

Proof. Since θ is well founded, one can use transfinite induction on $h t(\theta)$. As before, we can write

$$
U_{p}(\theta)=\left(\bigoplus_{n \in \omega} U_{p}\left(A_{n}\right)\right)_{\ell_{p}}
$$

with $h t\left(A_{n}\right)<h t(\theta)$. By induction, since $U_{p}\left(A_{n}\right)$ has $\left(m_{p}\right)$, whenever we fix x and a weakly null sequence $\left(w_{n}\right)_{n}$ in $U_{p}(\theta)$ we get

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x+w_{n}\right\|_{U_{p}(\theta)}^{p} & =\limsup _{n \rightarrow \infty} \sum_{i \in \omega}\left\|x^{i}+w_{n}^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p} \\
& =\sum_{i \in \omega} \limsup _{n \rightarrow \infty}\left\|x^{i}+w_{n}^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p} \\
& =\sum_{i \in \omega}\left\|x^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p}+\limsup _{n \rightarrow \infty} \sum_{i \in \omega}\left\|w_{n}^{i}\right\|_{U_{p}\left(A_{i}\right)}^{p} \\
& =\|x\|_{U_{p}(\theta)}^{p}+\limsup _{n \rightarrow \infty}\left\|w_{n}\right\|_{U_{p}(\theta)}^{p} .
\end{aligned}
$$

The reflexivity of $U_{p}(\theta)$ follows by a standard argument.
The following Lemma slightly extends a classical Pitt's compactness theorem.
Lemma 3.5. Let $1 \leq q<p<\infty$ and let $\left(X_{n}\right)_{n}$ and $\left(Y_{n}\right)_{n}$ two sequences of Banach spaces, with X_{n} to be reflexive for all $n \in \mathbb{N}$, such that

- X_{n} has the property $\left(m_{p}\right)$, for each $n \in \mathbb{N}$,
- Y_{n} has the property $\left(m_{q}\right)$, for each $n \in \mathbb{N}$.

Then

$$
\mathcal{K}\left(\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}},\left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}\right)=\mathcal{L}\left(\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}},\left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}\right)
$$

Proof. The proof is similar to that of [7]. We give a sketch for sake of completeness. Let

$$
T:\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}} \longrightarrow\left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}
$$

be a norm one operator. Since $\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}}$ is reflexive, any bounded sequence has a weak convergent subsequence. Thus, it is enough to show that T is weak-norm continuous.

Let $\left(h_{n}\right) \subseteq\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}}$ be a weakly null sequence.
By hypothesis, since $\left(\bigoplus_{n} Z_{n}\right)_{\ell_{r}}$ has the property $\left(m_{r}\right)$, where $Z_{n}=X_{n}$ (resp. $Z_{n}=$ Y_{n}) if $r=p$ (resp. $r=q$), for every $x \in\left(\bigoplus_{n} Z_{n}\right)_{\ell_{r}}$ and every weakly null sequence $\left(w_{n}\right)_{n}$ in $\left(\bigoplus_{n} Z_{n}\right)_{\ell_{r}}$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|x+w_{n}\right\|^{r}=\|x\|^{r}+\limsup _{n \rightarrow \infty}\left\|w_{n}\right\|^{r} . \tag{3.1}
\end{equation*}
$$

For every $\varepsilon>0$, let x_{ε} be of norm one such that

$$
1-\varepsilon \leq\left\|T\left(x_{\varepsilon}\right)\right\| \leq 1
$$

For all $n \in \omega$ and $t>0$

$$
\begin{equation*}
\left\|T\left(x_{\varepsilon}\right)+T\left(t h_{n}\right)\right\| \leq\left\|x_{\varepsilon}+t h_{n}\right\| . \tag{3.2}
\end{equation*}
$$

Now applying (3.1) to the left-hand side of (3.2) inequality for $r=q$ and to the righthand side for $r=p$ we get

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{t^{q}}\left[\left(1+t^{p} M^{p}\right)^{\frac{q}{p}}-(1-\varepsilon)^{q}\right],
$$

where $M>0$ is an upper bound for $\left(\left\|h_{n}\right\|\right)_{n}$.
Taking $t=\varepsilon^{\frac{1}{p}}$, we get

$$
\limsup _{n \rightarrow \infty}\left\|T\left(h_{n}\right)\right\|^{q} \leq \frac{1}{\varepsilon^{\frac{q}{p}}}\left[1+\frac{q}{p} M^{p} \varepsilon-(1-q \varepsilon)+o(\varepsilon)\right] .
$$

Letting $\varepsilon \rightarrow 0$ we get that $\left(T\left(h_{n}\right)\right)_{n}$ norm converges to zero.
TheOrem 3.6. For $1<q<p<\infty$, the map $\varphi_{p, q}: \mathcal{T} \longrightarrow \mathcal{S B} \times \mathcal{S B}$ defined by

$$
\varphi_{p, q}(\theta)=U_{p}(\theta) \times U_{q}(\theta)
$$

tis Borel.
Proof. It is enough to show that the map

$$
\theta \longmapsto U_{p}(\theta)
$$

is Borel.
Let O be open subsets of $C\left(2^{\omega}\right)$. It is enough to show that $\Omega=\left\{\theta \in \mathcal{T}: U_{p}(\theta) \cap\right.$ $O \neq \emptyset\}$ is Borel.

Since $\left\{\chi_{s_{i}}: i \in \omega, s_{i} \in \theta\right\}$ defines a basis of $U_{p}(\theta)$, we have

$$
U_{p}(\theta) \cap O \neq \emptyset \Leftrightarrow \exists \lambda \in \mathbb{Q}^{<\omega} \text { such that } \sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \in O \text { and if } \lambda_{i} \neq 0 \text { then } s_{i} \in \theta
$$

Let $\Lambda=\left\{\lambda \in \mathbb{Q}^{<\omega}: \sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \in O\right\}$. Then

$$
\Omega=\bigcup_{\lambda \in \Lambda} \bigcap_{i \in s u p p}\left\{\theta \in \mathcal{T}: s_{i} \in \theta\right\}
$$

thus Ω is Borel since $\left\{\theta \in \mathcal{T}: s_{i} \in \theta\right\}$ is an open and closed subset.
Theorem 3.7. The family \mathcal{A} of all couple of separable Banach spaces (X, Y) such that

$$
\mathcal{K}(X, Y) \text { is complemented in } \mathcal{L}(X, Y)
$$

is not Borel in $\mathcal{S B} \times \mathcal{S B}$.

Proof. Suppose \mathcal{A} is even analytic. For $1<q<p<\infty$, let $\varphi_{p, q}$ be the map defined in Theorem 3.6. Then $\varphi_{p, q}^{-1}(\mathcal{A})$ is analytic containing $\mathcal{W} \mathcal{F}$. Since $\mathcal{W} \mathcal{F}$ is not analytical, there is some θ_{0} in $\varphi_{p, q}^{-1}(\mathcal{A})$ which is ill founded. Therefore, by Theorem 3.3, $\varphi_{p, q}\left(\theta_{0}\right)$ does not lie in \mathcal{A}. A contradiction.

We would like to finish this paper with the following.
Question 3.8. Let \mathcal{B} be the family of all separable Banach space X such that $\mathcal{K}(X) \neq \mathcal{L}(X)$, and $\mathcal{K}(X)$ is complemented in $\mathcal{L}(X)$. Is it \mathcal{B} Borel? Is it coanalytical?

Acknowledgement. The author wishes to thank G. Emmanuele for useful discussions.

REFERENCES

1. F. Albiac and N. J. Kalton, Topics in Banach space theory, Graduate Texts in Mathematics, vol 233 (Springer, New York, NY, 2006).
2. S. A. Argyros and R. G. Haydon, A hereditarily indecomposable \mathcal{L}_{∞}-space that solves the scalar-plus-compact problem, Acta Math. 206 (1) (2011), 1-54.
3. D. Arterburn and R. J. Whitley, Projections in the space of bounded linear operators, Pacific J. Math. 15 (1965), 739-746.
4. B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, Fund. Math. 172 (2) (2002), 117-152.
5. J. Bourgain, New classes of \mathcal{L}_{p}-spaces, Lecture Notes in Mathematics, vol. 889 (SpringerVerlag, Berlin, Germany, 1981).
6. J. Bourgain and F. Delbaen, A class of special \mathcal{L}_{∞} spaces, Acta Math. 145 (3-4) (1980), 155-176.
7. S. Delpech, A short proof of Pitt's compactness theorem, Proc. Amer. Math. Soc. 137 (4) (2009), 1371-1372.
8. J. Diestel, Geometry of Banach spaces: selected topics, Lecture Notes in Mathematics, vol. 485 (Springer-Verlag, Berlin, Germany, 1975).
9. P. Dodos, Banach spaces and descriptive set theory: selected topics, Lecture Notes in Mathematics, vol. 1993, (Springer-Verlag, Berlin, Germany, 2010).
10. G. Emmanuele, A remark on the containment of c_{0} in spaces of compact operators, Math. Proc. Camb. Philos. Soc. 111 (2) (1992), 331-335.
11. G. Emmanuele, Answer to a question by M. Feder about $\mathcal{K}(X, Y)$, Rev. Mat. Univ. Complut. Madrid 6 (2) (1993), 263-266.
12. D. Freeman, E. Odell and Th. Schlumprecht, The universality of ℓ_{1} as a dual space, Math. Ann. 351 (1) (2011), 149-186.
13. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
14. N. J. Kalton and D. Werner, Property (M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178.
15. A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156 (Springer-Verlag, New York, 1995).
16. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, vol. 338 (Springer-Verlag, Berlin, Germany, 1973).
17. A. Pelczynski, Universal bases, Studia Math. 32 (1969), 247-268.
18. E. Thorp, Projections onto the subspace of compact operators, Pacific J. Math. 10 (1960), 693-696.
19. A. E. Tong and D. R. Wilken, The uncomplemented subspace K(E,F), Studia Math. 37 (1971), 227-236.
