THE POSITION OF $\mathcal{K}(X, Y)$ IN $\mathcal{L}(X, Y)$

DANIELE PUGLISI

Department of Mathematics and Computer Sciences, University of Catania, Catania 95125, Italy e-mail: dpuglisi@dmi.unict.it

(Received 2 November 2012; accepted 24 January 2013; first published online 13 August 2013)

Abstract. In this paper we investigate the nature of family of pairs of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. It is proved that the family of pairs (X, Y) of separable Banach spaces such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$ is not Borel, endowed with the Effros-Borel structure.

2000 Mathematics Subject Classification. Primary 46B20.

1. Introduction. Let *X* and *Y* be two infinite dimensional real Banach spaces. The following has been a longstanding question (see [18] and [3]):

QUESTION 1.1. Are the following properties equivalent?

- (a) There exists a projection from the the space $\mathcal{L}(X, Y)$ of continuous linear operators onto the space $\mathcal{K}(X, Y)$ of compact linear operators.
- (b) $\mathcal{L}(X, Y) = \mathcal{K}(X, Y).$

Many results have been found about this question. In [19], Tong and Wilken showed that if X has an unconditional basis, then the equivalence in the above question is true. Some years later, Kalton [13] extended this result showing the following.

THEOREM 1.2. Let X be a Banach space with an unconditional finite dimensional expansion of the identity. If Y is any infinite-dimensional Banach space, the following are equivalent.

- (i) $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$;
- (ii) $\mathcal{L}(X, Y) = \mathcal{K}(X, Y);$
- (iii) $\mathcal{K}(X, Y)$ contains no copy of c_0 ;
- (iv) $\mathcal{L}(X, Y)$ contains no copy of ℓ_{∞} .

In [10] and [11], Emmanuele proved that, without assumption of unconditional finite dimensional expansion of the identity, we still have some implication of the above theorem; i.e. if c_0 embeds in $\mathcal{K}(X, Y)$, then $\mathcal{K}(X, Y)$ is uncomplemented in $\mathcal{L}(X, Y)$. Moreover, he also showed that the classical Bourgain–Delbaen space $X_{a,b}$ (see [6]) is such that $\mathcal{K}(X_{a,b})$ contains no copy of c_0 despite $\mathcal{L}(X_{a,b}) \neq \mathcal{K}(X_{a,b})$.

Recently, Argyros and Haydon [2], in a truly spectacular way, have solved the above-mentioned Question 1.1. Indeed, using a mixed Tsirelson trick, they constructed a space \mathfrak{X}_K in the wake of Bourgain–Delbaen space (see [5, 6]) such that

 $\mathcal{K}(\mathfrak{X}_K)$ contains no copy of c_0 ;

 $\mathcal{L}(\mathfrak{X}_K) = \mathcal{K}(\mathfrak{X}_K) \oplus \mathbb{R}I,$

where *I* denotes the identity map. In particular, $\mathcal{K}(\mathfrak{X}_K)$ is nontrivially complemented in $\mathcal{L}(\mathfrak{X}_K)$.

DANIELE PUGLISI

See also another interesting paper [12], where the authors extend the Argyros– Haydon construction in terms of totally incomparable spaces.

In what follows, we want to study the descriptive set nature of such spaces: the family of separable Banach spaces, endowed with the Effros–Borel structure such that $\mathcal{K}(X)$ is nontrivially complemented in $\mathcal{L}(X)$. In particular, we are interested to study the following.

QUESTION 1.3. Let \mathcal{A} be the family of all couple of separable Banach spaces (X, Y) such that $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$. Is \mathcal{A} Borel?

As a standard notation, we shall consider $\mathcal{L}(X, Y)$ the space of all bounded linear operators between the Banach spaces X and Y, endowed by the classical norm

$$||T|| = \sup_{||x|| \le 1} ||Tx||_{Y}.$$

We shall denote by $\mathcal{K}(X, Y)$ the closed subspace of $\mathcal{L}(X, Y)$ of all compact operators. In case X = Y, briefly $\mathcal{L}(X)$ and $\mathcal{K}(X)$ will stand for $\mathcal{L}(X, X)$ and $\mathcal{K}(X, X)$ respectively. We refer the reader to any book on classical functional analysis for any notation (i.e. see [1, 8, 16]).

Let us recall the following.

DEFINITION 1.4 [14]. Let $1 \le p < \infty$. A separable Banach space X is said to have the *property* (m_p) if

$$\limsup_{n \to \infty} \|x + x_n\|^p = \|x\|^p + \limsup_{n \to \infty} \|x_n\|^p$$

whenever $x_n \rightarrow 0$ weakly.

Such a property has been intensively studied in [14], where it was proved that a Banach space X has the property (m_p) if and only if X is almost isometric to a subspace of some ℓ_p -sum of finite-dimensional spaces.

2. Preliminaries and notation. Let X be a separable Banach space. We endow the set $\mathcal{F}(X)$ of all closed subsets of X with the *Effros–Borel* structure, i.e. the structure generated by the family

 $\{\{F \in \mathcal{F}(X) : F \cap O \neq \emptyset\} : O \text{ is an open subset of } X\}.$

We denote by SB(X) the subset of $\mathcal{F}(X)$ consisting of all linear closed subspaces of Xendowed with the relative Effros–Borel σ -algebra. If X is $C(2^{\omega})$ (where $2^{\omega} = \{0, 1\}^{\omega}$ is a compact Polish space endowed with the product topology), we denote briefly SB(X)by SB. It is well known that if X is a Polish space then $\mathcal{F}(X)$ with the Effros–Borel structure is a standard Borel space. We refer the reader to a recent book by Dodos [9].

We denote by $\omega = \{0, 1, ...\}$ the first infinite ordinal, and let $\omega^{<\omega}$ be the tree of all finite sequences in ω . Let \mathcal{T} be the set of all trees on ω . If s = (s(0), ..., s(n-1)) is a sequence of ω , we denote its length *n* by |s|. In particular, the empty sequence \emptyset has length 0.

For $s = (s(0), \ldots, s(n-1))$ and $t = (t(0), \ldots, t(k-1))$, the concatenation $s \frown t$ is defined by

$$s \frown t = (s(0), \dots, s(n-1), t(0), \dots, t(k-1)).$$

For a tree θ , a *branch* through θ is an $\varepsilon \in \omega^{\omega}$ such that for all $n \in \omega$,

$$\varepsilon | n = (\varepsilon(0), \ldots, \varepsilon(n-1)) \in \theta.$$

We denote by

$$[\theta] = \{ \varepsilon \in \omega^{\omega} : \varepsilon \text{ is a branch through } \theta \}$$

the *body* of θ .

We call θ well founded if $[\theta] = \emptyset$, i.e. θ has no branches. Otherwise, we will call θ *ill founded*. We will denote by WF (resp. IF) the set of well-founded trees (resp. ill-founded trees) on ω .

For a tree $\theta \in \mathcal{T}$, roughly speaking the high of θ (denoted by $ht(\theta)$) is the supremum of the lengths of its elements (see [13] for the definition).

We refer the reader to Kechri's book [15] for all notion and notation of Descriptive Set theory.

Let us recall the constructive space of [17, Theorem 1] with normalized unconditional basis, which is universal for all spaces with unconditional basis (some time called Pelczynski's space U).

THEOREM 2.1. There exists a space \mathcal{U} with a normalized unconditional basis $(u_n)_n$ such that for every semi-normalized unconditional basic sequence $(x_n)_n$ in a Banach space X there exists $L = \{l_0 < l_1 < \cdots\} \in [\omega]$ such that $(x_n)_n$ is equivalent to $(u_{l_n})_n$ and the natural projection P_L onto $\overline{span}\{u_n : n \in L\}$ has norm one. Moreover, if U' is another space with the above properties, then U' is isomorphic to \mathcal{U} .

3. Proof of the main result. For $s \in \omega^{<\omega}$, we denote by $\chi_s : \omega^{<\omega} \longrightarrow \{0, 1\}$ the characteristic function of $\{s\}$. For a tree $\theta \in \mathcal{T}$, let $U_p(\theta) (1 be the completion of the$ *span* ${<math>\chi_s : s \in \theta$ } under the norm

$$\|y\|_p = \sup\left[\sum_{j=0}^k \left\|\sum_{s\in I_j} y(s) u_{|s|}\right\|_{\mathcal{U}}^p\right]^{\frac{1}{p}},$$

where the supremum is taken over $k \in \omega$ and over all admissible choice of intervals $\{I_j : 0 \le j \le k\}$ (an *admissible choice of intervals* is a finite set $\{I_j : 0 \le j \le k\}$ of intervals of θ such that every branch of θ meets at most one of these intervals).

Both of the below-mentioned Lemmas are essentially included in [4].

LEMMA 3.1. For any θ tree on ω , the sequence $\{\chi_{s_i} : s_i \in \theta\}$ determines an unconditional basis for $U_p(\theta)$.

Proof. Let $(\lambda_i)_{i \in \omega}$ be a sequence in \mathbb{R} , I be an interval of θ and n and $m \in \omega$. Let us denote by $c_{\underline{u}}$ the basis constant for the universal basis $\underline{u} = (u_n)_n$ of \mathcal{U} .

Let $\mathcal{K} : \omega \longrightarrow \omega^{<\omega}$ be an enumeration of $\omega^{<\omega}$ such that if $s \subsetneq t$ then $\overline{s} < \overline{t}$, where $\overline{s} = \mathcal{K}^{-1}(s)$.

For $s \in T$, $(\sum_{i=0}^{n} \lambda_i \chi_{s_i})(s)$ is equal to $\lambda_{\overline{s}}$ if $\overline{s} \leq n$, and 0 if not. Therefore,

$$\left\|\sum_{s\in I} \left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}} = \left\|\sum_{\substack{s\in I\\\overline{s} \leq n}} \lambda_{\overline{s}} u_{|s|}\right\|_{\mathcal{U}} \le c_{\underline{u}} \left\|\sum_{\substack{s\in I\\\overline{s} \leq n+m}} \lambda_{\overline{s}} u_{|s|}\right\|_{\mathcal{U}}$$
$$= c_{\underline{u}} \left\|\sum_{s\in I} \left(\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}}\right)(s) u_{|s|}\right\|_{\mathcal{U}}$$

since for $s, t \in I$, then $t \supseteq s$ if and only if $\overline{t} \ge \overline{s}$.

Let $\{I_i : 0 \le j \le k\}$ be an admissible choice of intervals. We have

$$\sum_{j=0}^{k} \left\| \sum_{s \in I_{j}} \left(\sum_{i=0}^{n} \lambda_{i} \chi_{s_{i}} \right)(s) u_{|s|} \right\|_{\mathcal{U}}^{p} \leq c_{\underline{u}}^{p} \sum_{j=0}^{k} \left\| \sum_{s \in I} \left(\sum_{i=0}^{n+m} \lambda_{i} \chi_{s_{i}} \right)(s) u_{|s|} \right\|_{\mathcal{U}}^{p}.$$

Thus, $\|\sum_{i=0}^{n} \lambda_i \chi_{s_i}\|_p \le c_{\underline{u}} \|\sum_{i=0}^{n+m} \lambda_i \chi_{s_i}\|_p$ and $\{\chi_{s_i} : i \in \omega\}$ is a basic sequence. Using the unconditionality of $(u_n)_n$, the same argument as above shows that $\{\chi_{s_i}:$ $s_i \in \theta$ is actually an unconditional basis for $U_p(\theta)$.

LEMMA 3.2. Let $(A_i)_{i \in \omega}$ be a sequence of subsets of θ such that every branch meets at most one of these subsets. Then the spaces

$$U_p\left(\bigcup_{i\in\omega}A_i\right)$$
 and $\left(\bigoplus_{i\in\omega}U_p(A_i)\right)_{\ell_p}$ are isometric.

Proof. Pick $y \in span \{\chi_s : s \in \bigcup_{i \in \omega} A_i\}$. We let $y_i = \sum_{s \in A_i} y(s)\chi_s$. Since the set $\{y_i : i \in \omega \text{ and } y_i \neq 0\}$ is finite, there is $m \in \omega$ such that $y = \sum_{i=0}^m y_i$. To finish the proof, it is enough to show the following:

Claim $||y||_p^p = \sum_{i=0}^m ||y_i||_p^p$.

Indeed, let $\{I_j : 0 \le j \le k\}$ be an admissible choice of intervals. We set, for $0 \le j \le k$ $j \leq k$ and $0 \leq i \leq m$, $I_j(y) = \sum_{s \in I_i} y(s)u_{|S|}$ and $M_i = \{j \in \omega : 0 \leq j \leq k, I_j \cap A_i \neq \emptyset\}$. The largest interval with ends in $I_j \cap A_i$ is denoted by J_j^i . For any $i \in \omega$, $\{J_i^i : j \in M_i\}$ is an admissible choice of intervals, thus

$$\sum_{j=0}^{k} \|I_j(y)\|^p = \sum_{i=0}^{m} \sum_{j \in M_i} \|J_j^i(y_i)\|^p \le \sum_{i=0}^{m} \|y_i\|_p^p.$$

It follows by taking the supremum over admissible choices of intervals that

$$\|y\|_{p}^{p} \leq \sum_{i=0}^{m} \|y_{i}\|_{p}^{p}$$

Now for any $0 \le i \le m$, let $\{I_j^i : 0 \le j \le i\}$ be an admissible choice of intervals. We denote by \widetilde{I}_{i}^{i} the largest interval with ends in $I_{i}^{i} \cap A_{i}$. Then $\{\widetilde{I}_{i}^{i} : 0 \leq i \leq m, 0 \leq j \leq k_{i}\}$ is an admissible choice of intervals because every branch of T meets at most one of the A_i 's. For any i,

$$\sum_{j=0}^{k_i} \left\| I_j^i(y_i) \right\|^p = \sum_{j=0}^{k_i} \left\| \widetilde{I}_j^i(y_i) \right\|^p = \sum_{j=0}^{k_i} \left\| I_j^i(y) \right\|^p,$$
$$\sum_{i=0}^m \sum_{j=0}^{k_i} \left\| I_j^i(y_i) \right\|^p = \sum_{i=0}^m \sum_{j=0}^{k_i} \left\| \widetilde{I}_j^i(y) \right\|^p \le \|y\|_p^p,$$

thus,

$$\sum_{i=0}^{m} \|y_i\|_p^p \le \|y\|_p^p$$

THEOREM 3.3. Let $\theta \in T$, and let $1 < q < p < \infty$.

(i) If θ is ill founded, then K(U_p(θ), U_q(θ)) is uncomplemented in L(U_p(θ), U_q(θ)).
(ii) If θ is well founded, then K(U_p(θ), U_q(θ)) is complemented in L(U_p(θ), U_q(θ)).

Proof. (i) We actually show that if θ is ill founded, then $U_p(\theta)$ is isomorphic to \mathcal{U} . Since both spaces $U_p(\theta)$ and $U_q(\theta)$ are isomorphic, we get that $\mathcal{K}(U_p(\theta), U_q(\theta)) \neq \mathcal{L}(U_p(\theta), U_q(\theta))$. Since \mathcal{U} has an unconditional basis, the thesis follows [19, Theorem 6].

Suppose θ is ill founded, and let $b \in [\theta]$ a branch of θ . Let

$$U_p(b) = U_p(\{s \in \theta : s \subseteq b\}).$$

We show that actually $U_p(b)$ is isomorphic to \mathcal{U} .

Indeed, it is enough to show that the elements $\{\chi_{b|j} : j \in \omega\}$ are equivalent to the basis of \mathcal{U} .

Note that if $\lambda \in \ell_{\infty}$ then

$$\left\|\sum_{j=0}^{n} \lambda_{j} \chi_{b|j}\right\|_{p} = \sup\left\{\left\|\sum_{s \in I} \left(\sum_{j=0}^{n} \lambda_{j} \chi_{b|j}\right)(s) u_{|s|}\right\| : I \text{ interval, } I \subseteq \{s : s \subsetneqq b\}\right\}$$
$$= \sup\left\{\left\|\sum_{j=l}^{m} \lambda_{j} u_{j}\right\| : 0 \le l \le m \le n\right\}.$$

Thus,

$$\left\|\sum_{j=0}^n \lambda_j u_j\right\|_{\mathcal{U}} \leq \left\|\sum_{j=0}^n \lambda_j \chi_{b|j}\right\|_p \leq 2c_{\underline{u}} \left\|\sum_{j=0}^n \lambda_j u_j\right\|_{\mathcal{U}},$$

where $c_{\underline{u}}$ is the unconditional basis constant of the basis of \mathcal{U} . Thus, $U_p(b)$ is isomorphic to \mathcal{U} . Let $y = \sum_{i \in \omega} y(s_i) \chi_{s_i}$ be an element of $U_p(\theta)$. We have $\left\| \sum_{\substack{i \in \omega \\ s_i \in b}} y(s_i) \chi_{s_i} \right\|_p = \sup \left\{ \left\| \sum_{s \in I} y(s) \ u_{|s|} \right\| : I \text{ interval}, \ I \subseteq \{s : s \subsetneqq b\} \right\}$ $\leq \|y\|_p.$

That means $U_p(b) \cong \mathcal{U}$ is complemented in $U_p(\theta)$. By properties of \mathcal{U} , we get that $U_p(\theta) \cong \mathcal{U}$.

(*ii*) Suppose that θ is well founded. Since $U_p(\theta)$ has an unconditional basis, by [19, Theorem 6], it is equivalent to show that

$$\mathcal{K}(U_p(\theta), U_q(\theta)) = \mathcal{L}(U_p(\theta), U_q(\theta)).$$

For $s \in T$ and $i \in \omega$, we define

$$s \frown \theta = \{s \frown t : t \in \theta\}, \qquad \theta_i = \{t \in T : (i) \frown t \in \theta\}.$$

Since $U_p(\theta) = U_p(\emptyset \cap \theta)$, to prove the theorem, it is enough to show the following. *Claim.* If θ is well founded, then for any $s \in T$,

$$\mathcal{K}(U_p(s \cap \theta), U_q(s \cap \theta)) = \mathcal{L}(U_p(s \cap \theta), U_q(s \cap \theta)).$$

Since θ is well founded, and since the map $ht : W\mathcal{F} \longrightarrow \omega_1$ is a Π_1^1 -rank on $W\mathcal{F}$ (see [15]), we will show the Claim using transfinite induction on $ht(\theta)$.

We assume that for every tree $\tau \in T$ such that $ht(\tau) < \alpha < \omega_1$,

$$\mathcal{K}(U_p(s \frown \tau), U_q(s \frown \tau)) = \mathcal{L}(U_p(s \frown \tau), U_q(s \frown \tau))$$

for any $s \in T$.

Let us take θ such that $ht(\theta) = \alpha$, and for $s \in T$, let

$$N_s = \{i \in \omega : s \frown (i) \in \theta\}.$$

We let $A_i = s \frown (i) \frown \theta_i$ for $i \in N_s$ so that

$$\bigcup_{i\in N_s} A_i = s \frown (\theta \setminus \{s\})$$

and every branch of T meets at most one of the A_i 's. If $i \in N_s$, then $ht(A_i) < \alpha$, thus

$$\mathcal{K}(U_p(A_i), U_q(A_i)) = \mathcal{L}(U_p(A_i), U_q(A_i)).$$

By Lemma 3.2, we have

$$U_r(s \frown (\theta \setminus \{s\})) = U_r\left(\bigcup_{i \in N_s} A_i\right) = \left(\bigoplus_{i \in N_s} U_r(A_i)\right)_{\ell_r},$$

for r = p, q respectively.

Since $\{\chi_{s_j} : j \in \omega, s_j \in s \frown \theta\}$ is a basis of $U_r(s \frown \theta)$ with the first element χ_s and the other element generate $U_r(s \frown (\theta \setminus \{s\}))$. Then, we have $U_r(s \frown \theta) \cong \mathbb{R} \times U_r(s \frown (\theta \setminus \{s\}))$. Thus, the theorem will be complete once we prove the next two Lemmas. \Box

LEMMA 3.4. Let $1 . For every <math>\theta \in WF$, $U_p(\theta)$ is reflexive and it has the property (m_p) .

Proof. Since θ is well founded, one can use transfinite induction on $ht(\theta)$. As before, we can write

$$U_p(\theta) = \left(\bigoplus_{n \in \omega} U_p(A_n)\right)_{\ell_p},$$

with $ht(A_n) < ht(\theta)$. By induction, since $U_p(A_n)$ has (m_p) , whenever we fix x and a weakly null sequence $(w_n)_n$ in $U_p(\theta)$ we get

$$\begin{split} \limsup_{n \to \infty} \|x + w_n\|_{U_p(\theta)}^p &= \limsup_{n \to \infty} \sum_{i \in \omega} \|x^i + w_n^i\|_{U_p(A_i)}^p \\ &= \sum_{i \in \omega} \limsup_{n \to \infty} \|x^i + w_n^i\|_{U_p(A_i)}^p \\ &= \sum_{i \in \omega} \|x^i\|_{U_p(A_i)}^p + \limsup_{n \to \infty} \sum_{i \in \omega} \|w_n^i\|_{U_p(A_i)}^p \\ &= \|x\|_{U_p(\theta)}^p + \limsup_{n \to \infty} \|w_n\|_{U_p(\theta)}^p \,. \end{split}$$

The reflexivity of $U_p(\theta)$ follows by a standard argument.

The following Lemma slightly extends a classical Pitt's compactness theorem.

LEMMA 3.5. Let $1 \le q and let <math>(X_n)_n$ and $(Y_n)_n$ two sequences of Banach spaces, with X_n to be reflexive for all $n \in \mathbb{N}$, such that

• X_n has the property (m_p) , for each $n \in \mathbb{N}$,

• Y_n has the property (m_q) , for each $n \in \mathbb{N}$.

Then

$$\mathcal{K}\left(\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}}, \left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}\right) = \mathcal{L}\left(\left(\bigoplus_{n} X_{n}\right)_{\ell_{p}}, \left(\bigoplus_{n} Y_{n}\right)_{\ell_{q}}\right).$$

Proof. The proof is similar to that of [7]. We give a sketch for sake of completeness. Let

$$T: \left(\bigoplus_n X_n\right)_{\ell_p} \longrightarrow \left(\bigoplus_n Y_n\right)_{\ell_q}$$

be a norm one operator. Since $(\bigoplus_n X_n)_{\ell_p}$ is reflexive, any bounded sequence has a weak convergent subsequence. Thus, it is enough to show that *T* is weak-norm continuous.

Let $(h_n) \subseteq (\bigoplus_n X_n)_{\ell_p}$ be a weakly null sequence.

By hypothesis, since $(\bigoplus_n Z_n)_{\ell_r}$ has the property (m_r) , where $Z_n = X_n$ (resp. $Z_n = Y_n$) if r = p (resp. r = q), for every $x \in (\bigoplus_n Z_n)_{\ell_r}$ and every weakly null sequence $(w_n)_n$ in $(\bigoplus_n Z_n)_{\ell_r}$,

$$\limsup_{n \to \infty} \|x + w_n\|^r = \|x\|^r + \limsup_{n \to \infty} \|w_n\|^r.$$
 (3.1)

For every $\varepsilon > 0$, let x_{ε} be of norm one such that

$$1 - \varepsilon \le \|T(x_{\varepsilon})\| \le 1.$$

For all $n \in \omega$ and t > 0

$$\|T(x_{\varepsilon}) + T(th_n)\| \le \|x_{\varepsilon} + th_n\|.$$
(3.2)

Now applying (3.1) to the left-hand side of (3.2) inequality for r = q and to the right-hand side for r = p we get

$$\limsup_{n \to \infty} \|T(h_n)\|^q \le \frac{1}{t^q} [(1 + t^p M^p)^{\frac{q}{p}} - (1 - \varepsilon)^q],$$

where M > 0 is an upper bound for $(||h_n||)_n$.

Taking $t = \varepsilon^{\frac{1}{p}}$, we get

$$\limsup_{n\to\infty} \|T(h_n)\|^q \le \frac{1}{\varepsilon^{\frac{q}{p}}} \left[1 + \frac{q}{p}M^p\varepsilon - (1 - q\varepsilon) + o(\varepsilon)\right].$$

Letting $\varepsilon \to 0$ we get that $(T(h_n))_n$ norm converges to zero.

THEOREM 3.6. For $1 < q < p < \infty$, the map $\varphi_{p,q} : \mathcal{T} \longrightarrow S\mathcal{B} \times S\mathcal{B}$ defined by

$$\varphi_{p,q}(\theta) = U_p(\theta) \times U_q(\theta)$$

tis Borel.

Proof. It is enough to show that the map

$$\theta \mapsto U_p(\theta)$$

is Borel.

Let *O* be open subsets of $C(2^{\omega})$. It is enough to show that $\Omega = \{\theta \in \mathcal{T} : U_p(\theta) \cap O \neq \emptyset\}$ is Borel.

Since $\{\chi_{s_i}: i \in \omega, s_i \in \theta\}$ defines a basis of $U_p(\theta)$, we have

$$U_p(\theta) \cap O \neq \emptyset \Leftrightarrow \exists \lambda \in \mathbb{Q}^{<\omega} \text{ such that } \sum_{i=0}^n \lambda_i \chi_{s_i} \in O \text{ and if } \lambda_i \neq 0 \text{ then } s_i \in \theta.$$

Let $\Lambda = \{\lambda \in \mathbb{Q}^{<\omega} : \sum_{i=0}^{n} \lambda_i \chi_{s_i} \in O\}$. Then

$$\Omega = \bigcup_{\lambda \in \Lambda} \bigcap_{i \in supp(\lambda)} \{ \theta \in \mathcal{T} : s_i \in \theta \},\$$

thus Ω is Borel since $\{\theta \in \mathcal{T} : s_i \in \theta\}$ is an open and closed subset.

THEOREM 3.7. The family A of all couple of separable Banach spaces (X, Y) such that

 $\mathcal{K}(X, Y)$ is complemented in $\mathcal{L}(X, Y)$

is not Borel in $SB \times SB$.

416

 \square

Proof. Suppose \mathcal{A} is even analytic. For $1 < q < p < \infty$, let $\varphi_{p,q}$ be the map defined in Theorem 3.6. Then $\varphi_{p,q}^{-1}(\mathcal{A})$ is analytic containing \mathcal{WF} . Since \mathcal{WF} is not analytical, there is some θ_0 in $\varphi_{p,q}^{-1}(\mathcal{A})$ which is ill founded. Therefore, by Theorem 3.3, $\varphi_{p,q}(\theta_0)$ does not lie in \mathcal{A} . A contradiction.

We would like to finish this paper with the following.

QUESTION 3.8. Let \mathcal{B} be the family of all separable Banach space X such that $\mathcal{K}(X) \neq \mathcal{L}(X)$, and $\mathcal{K}(X)$ is complemented in $\mathcal{L}(X)$. Is it \mathcal{B} Borel? Is it coanalytical?

ACKNOWLEDGEMENT. The author wishes to thank G. Emmanuele for useful discussions.

REFERENCES

1. F. Albiac and N. J. Kalton, *Topics in Banach space theory*, Graduate Texts in Mathematics, vol 233 (Springer, New York, NY, 2006).

2. S. A. Argyros and R. G. Haydon, A hereditarily indecomposable \mathcal{L}_{∞} -space that solves the scalar-plus-compact problem, *Acta Math.* **206** (1) (2011), 1–54.

3. D. Arterburn and R. J. Whitley, Projections in the space of bounded linear operators, *Pacific J. Math.* **15** (1965), 739–746.

4. B. Bossard, A coding of separable Banach spaces. Analytic and coanalytic families of Banach spaces, *Fund. Math.* **172** (2) (2002), 117–152.

5. J. Bourgain, *New classes of* \mathcal{L}_p *-spaces*, Lecture Notes in Mathematics, vol. 889 (Springer-Verlag, Berlin, Germany, 1981).

6. J. Bourgain and F. Delbaen, A class of special \mathcal{L}_{∞} spaces, *Acta Math.* **145** (3–4) (1980), 155–176.

7. S. Delpech, A short proof of Pitt's compactness theorem, *Proc. Amer. Math. Soc.* 137 (4) (2009), 1371–1372.

8. J. Diestel, *Geometry of Banach spaces: selected topics*, Lecture Notes in Mathematics, vol. 485 (Springer-Verlag, Berlin, Germany, 1975).

9. P. Dodos, *Banach spaces and descriptive set theory: selected topics*, Lecture Notes in Mathematics, vol. 1993, (Springer-Verlag, Berlin, Germany, 2010).

10. G. Emmanuele, A remark on the containment of c_0 in spaces of compact operators, *Math. Proc. Camb. Philos. Soc.* **111** (2) (1992), 331–335.

11. G. Emmanuele, Answer to a question by M. Feder about $\mathcal{K}(X, Y)$, *Rev. Mat. Univ. Complut. Madrid* 6 (2) (1993), 263–266.

12. D. Freeman, E. Odell and Th. Schlumprecht, The universality of ℓ_1 as a dual space, *Math. Ann.* 351 (1) (2011), 149–186.

13. N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267–278.

14. N. J. Kalton and D. Werner, Property (M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178.

15. A. S. Kechris, *Classical descriptive set theory*, Graduate Texts in Mathematics, vol. 156 (Springer-Verlag, New York, 1995).

16. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces*, Lecture Notes in Mathematics, vol. 338 (Springer-Verlag, Berlin, Germany, 1973).

17. A. Pelczynski, Universal bases, Studia Math. 32 (1969), 247-268.

18. E. Thorp, Projections onto the subspace of compact operators, *Pacific J. Math.* 10 (1960), 693–696.

19. A. E. Tong and D. R. Wilken, The uncomplemented subspace K(E,F), *Studia Math.* **37** (1971), 227–236.