ON TENSOR PRODUCT GRAPHS

E. SAMPATHKUMAR

(Received 4 January 1973; revised 2 January 1974)

Communicated by G. Szekeres

Abstract

The tensor product \(G \oplus H \) of graphs \(G \) and \(H \) is the graph with point set \(V(G) \times V(H) \) where \((u_1, v_1) \text{ adj } (u_2, v_2)\) if, and only if, \(u_1 \text{ adj } u_2 \) and \(v_1 \text{ adj } v_2 \). We obtain a characterization of graphs of the form \(G \oplus H \) where \(G \) or \(H \) is \(K_2 \).

1. Notation and preliminary results

As usual, let \(K_p \) denote the complete graph on \(p \) points, \(C_n \) a cycle of length \(n \). For a connected graph \(G \), \(nG \) is the graph with \(n \) components each being isomorphic to \(G \).

REMARK. The tensor product \(G \oplus H \) is also called conjunction (Harary (1969)), and Kronecker product (Weichsel 1963)).

Weichsel (1963) has proved Theorem 1 and Corollary 1.1.

THEOREM 1. (Weichsel). For connected graphs \(G \) and \(H \) the product \(G \oplus H \) is connected if and only if either \(G \) or \(H \) contains an odd cycle.

COROLLARY 1.1. (Weichsel). If \(G \) and \(H \) are connected graphs with no odd cycles then \(G \oplus H \) has exactly two components.

We now prove

COROLLARY 1.2. For a connected graph \(G \) with no odd cycles, \(G \oplus K_2 = 2G \).

PROOF. Let \(\{a_i\} \) be the point set of \(G \) and \(K_2 \) be the line \(b_1b_2 \). By Corollary 1.1, \(G \oplus K_2 \) has exactly two components, say \(G_1 \) and \(G_2 \). If for some point \(a_{i_0} \) in \(G \), \((a_{i_0}, b_1) \in G_1 \) then \((a_{i_0}, b_2) \in G_2 \). For, if there is a path \((a_{i_0}, b_1)(a_{i_1}, b_2)\) then \(k \) is even and \(G \) has the odd cycle \(a_{i_0}a_{i_1}a_{i_2} \cdots a_{i_k}a_{i_0} \), provided the points \(a_{i_r}, r = 0, 1, \ldots, k \) are all distinct. Suppose \(a_{i_r} = a_{i_s} \) for some \(r \) and \(s \), and \(r < s \). Let \(s \) be the smallest such integer. Clearly, if \(r \) is even (odd) then \(s \) is odd (even) and \(G \) has an odd cycle \(a_{i_0}a_{i_{r+1}} \cdots a_{i_{s-1}}a_{i_r} \). Now, the function \(f: G \to G_1 \) defined by

268
f(a_i) = (a_i, b_1) if (a_i, b_1) ∈ G_1
 = (a_i, b_2) if (a_i, b_1) ∉ G_1

is clearly an isomorphism. Similarly, G ≅ G_2.

Theorem 2. For a graph G, G = H ⊗ K_2 if and only if the following conditions I–IV are true.

I. G has an even number of points and lines.
II. G has no odd cycles.
III. If G is connected, the following should hold.
 (a) G has a cycle, say
 \[C_{2n} : x_1x_2 \cdots x_{2n}x_1 \] where n > 1 is odd.
 (b) Let G_1 be the graph obtained from G by removing all lines of C_{2n}. The components of G_1 should be of the following two types only.

 Type I. Components E such that for 1 ≤ r ≤ n the point x_r of C_{2n} belongs to E if and only if the point x_{n+r} belongs to a component E' (≠ E) isomorphic to E.

 Type II. Components F such that for 1 ≤ r ≤ n the point x_r of C_{2n} belongs to F if and only if x_{n+r} ∈ F. Further, F should satisfy I, II and III. That is, F should have an even number of points and lines, and should contain a cycle C_{2m} where m > 1 is odd, etc.

IV. Suppose G is disconnected. Then the components of G which are not of the form mentioned in III should be in isomorphic pairs.

Proof. Let G = H ⊗ K_2, V(H) = \{a_i\} and K_2 be the line b_1b_2. Clearly condition I is true. We observe that points of G are labeled alternately with the elements of the sets \(V_1 = \{a_i\} \times \{b_1\}\) and \(V_2 = \{a_i\} \times \{b_2\}\). This will not be possible if G has odd cycles, and thus II is true.

Let G be connected. Then by Theorem 1, H is connected and contains an odd cycle say, \(C_n = a_1a_2, \ldots, a_na_1\). This implies that G contains the cycle,

\[C_{2n} = (a_1, b_1)(a_2, b_2)(a_3, b_1) \cdots (a_n, b_1)(a_1, b_2) \cdots (a_n, b_2)(a_1, b_1). \]

Consider the graph G_1 obtained from G by removing all lines of C_{2n}. In a relabeling of the points of C_{2n} as \(x_1x_2 \cdots x_{2n}x_1\) we find that if \((a_r, b_1)\) is labeled as \(x_r\) then \((a_r, b_2)\) is labeled as \(x_{n+r}\) (we make use of this fact in our proof without any further reference). Let E be a component of G_1 and \(x_r = (a_r, b_1)\) be a point of C_{2n} such that \(x_r \in E\) and \(x_{n+r} = (a_r, b_2)\) belongs to a different component E' of G_1. We now show that (i) a point \((a_r, b_1)\) (not necessarily on C_{2n}) belongs to E if and only if \((a_r, b_2)\) belongs to E', and (ii) E ≅ E'.

Let \((a_r, b_1) \in E\). Then in E there is a path

\((a_i, b_1)(a_i, b_2)(a_i, b_1) \cdots (a_{i_k}, b_2)(a_r, b_1).\)
This implies that there is a path

\((a_i, b_2) (a_i, b_1) (a_i, b_2) \cdots (a_n, b_1) (a_r, b_2)\)

and hence \((a_i, b_2) \in E'\), since \((a_r, b_2) \in E'\). Likewise, \((a_j, b_1) \in E'\) implies \((a_j, b_2) \in E\).

Clearly, the function \(f: E \to E'\) defined by

\[f(a_i, b_1) = (a_i, b_2) \] if \((a_i, b_1) \in E\)
\[f(a_i, b_2) = (a_i, b_1) \] if \((a_i, b_2) \in E\)

is an isomorphism.

Suppose now \(F\) is a component of \(G_1\) and \(x_r = (a_r, b_1)\) is a point of \(C_{2n}\) such that both \(x_r\) and \(x_{n+r} = (a_r, b_2)\) belong to \(F\). We show that in general, a point \((a_i, b_1)\) (not necessarily on \(C_{2n}\)) belongs to \(F\) if and only if \((a_i, b_2) \in F\). Let \((a_i, b_1) \in F\). Then there is a path

\[(a_r, b_1)(a_i, b_2) \cdots (a_n, b_2)(a_1, b_1).\]

This implies that there is a path

\[(a_r, b_2)(a_i, b_1) \cdots (a_n, b_1)(a_i, b_2)\]

and since \((a_r, b_2) \in F\), \((a_i, b_2) \in F\). Likewise, \((a_j, b_2) \in F\) implies \((a_j, b_1) \in F\). It follows now that \(F = H_1 \oplus K_2\) where \(H_1\) is the subgraph of \(H\) induced by the points \(V(H_1) = \{a_i: (a_i, b_1) \in F\}\), and hence \(F\) should satisfy I, II and III. This proves that \(G_1\) can have only two types of components as mentioned in III. If \(G\) is disconnected, a component \(G_i\) of \(G\) which is not of the form mentioned in III corresponds to a component \(H_i\) of \(H\) which does not have an odd cycle and so \(H_1 \oplus K_2 = 2H_i = 2G_i\) by Corollary 1.2. Thus \(G\) should have such components in pairs and such components are even in number.

Conversely, let the conditions I–IV hold good for a graph \(G\) having \(2m\) points. Let \(A = \{a_1, a_2, \ldots, a_m\}\) and \(B = \{b_1, b_2\}\). We label the points of \(G\) with \(2m\) elements of \(A \times B\) such that

(i) no two elements of \(A \times \{b_1\}\) or \(A \times \{b_2\}\) are adjacent, and
(ii) the function \(f: G \to G\) defined by

\[f(a_i, b_1) = (a_i, b_2) \]
\[f(a_i, b_2) = (a_i, b_1) \]

is an isomorphism. The given conditions I–IV ensure that this is indeed possible. Suppose now \(G\) is connected. By hypothesis it contains a cycle \(C_{2n}\) where \(n\) is odd. We label the points of this cycle successively with the \(2n\) elements

\[(a_1, b_1)(a_2, b_2)(a_3, b_1) \cdots (a_n, b_1)(a_1, b_2) \cdots (a_n, b_2).\]

The above isomorphism takes the cycle into itself and the subgraph \(G_1\) described
in III into itself. In case G_1 is disconnected the isomorphism maps a component of type I into an isomorphic component of the same type, while a component of type II is mapped onto itself. The labeling of the points of G is illustrated in Figure 1, where for convenience we write i for a_i and i' for b_i. In this labeling we observe that (a_i, b_1) is adjacent to (a_j, b_2) if and only if (a_i, b_2) is adjacent to (a_j, b_1). Now, consider the graph H constructed on the points set A as follows. In H, a_i adj a_j if and only if (a_i, b_1) adj (a_j, b_2). It follows now that $G = H \oplus K_2$. The graph G in Figure 1 is the tensor product of H and K_2 in Figure 3. If G is disconnected and if a component G_i of G is of the form mentioned in III, then $G_i = H_i \oplus K_2$ for some graph H_i as above. If a component G_j of G is not of this form then by hypothesis they are in isomorphic pairs and $G_j \oplus K_2 = 2G_j$ by Corollary 1.2. This completes the proof of the Theorem.

\[\text{Fig. 1}\]
For any two graphs G_1 and G_2 we have

$$G_1 \oplus G_2 = G_1 \oplus \bigcup_i e_i = \bigcup_i G_1 \oplus e_i$$

where $\{e_i\}$ is the set of lines of G_2. Each product graph $G_1 \oplus e_i$ is isomorphic to $G_1 \times K_2$. Also, the graphs $G_1 \oplus e_i$ are line disjoint and the number of common
points (if any) between any two of these graphs is equal to that in G_1. These observations lead to

Theorem 3. A necessary condition for a graph G to be the tensor product of two graphs is that G is the line disjoint union of a number of graphs of the form $H \oplus K_2$ for some graph H, and the number of common points (if any) between any two of these graphs must be that in H.

For example, the graph G in Figure 4 is the line disjoint union of $K_{1,3} \otimes K_2$ and $K_{1,3} \oplus K_2$ as illustrated. The number of common points between these two graphs is that in $K_{1,3}$, namely 4 and $G = K_{1,3} \otimes P_3$, where P_3 is a path of length 2.

![Figure 4](image)

Thanks are due to the referee for his suggestions.

References
