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CRITERIA FOR COMMUTATIVITY IN LARGE GROUPS

A. MOHAMMADI HASSANABADI AND AKBAR RHEMTULLA

ABSTRACT. In this paper we prove the following:
1. Let m ½ 2, n ½ 1 be integers and let G be a group such that (XY)n ≥ (YX)n for

all subsets X, Y of size m in G. Then
a) G is abelian or a BFC-group of finite exponent bounded by a function of m

and n.
b) If m ½ n then G is abelian or jGj is bounded by a function of m and n.

2. The only non-abelian group G such that (XY)2 ≥ (YX)2 for all subsets X, Y of
size 2 in G is the quaternion group of order 8.

3. Let m, n be positive integers and G a group such that

X1 Ð Ð ÐXn �
[

õ2Snn1
Xõ(1) Ð Ð ÐXõ(n)

for all subsets Xi of size m in G. Then G is n-permutable or jGj is bounded by a function
of m and n.

1. Introduction. Let m, n be positive integers. Call a group G an (m, n)-group if
(XY)n ≥ (YX)n for all subsets X, Y of size m in G. Thus (1, 1)-groups are precisely the
abelian groups and G is a (1, n)-group if and only if Gn � Z(G). This easy result is proved
in Lemma 2.1. In particular, groups of exponent n are (1, n)-groups and for large values of
n, they include finitely generated infinite simple groups. We note that (m, 1)-groups were
considered in [4]. There it was proved that an (m, 1)-group is either abelian or of order
less that 2m. Of course, every abelian group is an (m, n)-group and we shall prove that
an (m, n)-group G, m Ù 1, is either abelian or a BFC-group of finite exponent bounded
by a function of m and n. Recall that a group G is a BFC-group if there exists a positive
integer b such that every element of G has at most b conjugates in G. We also prove that
an (m, n)-group G, with m Ù 1 and the extra condition of m ½ n is either abelian or of
finite order bounded by a function of m and n. We note that this result no longer holds in
general if m Ú n; for example let G ≥ Q8ðC, where Q8 is the quaternion group of order
8 and C is the direct product of an infinite number of cyclic groups of order 2. Then it is
easy to see that G is a (2, 4)-group which is neither abelian nor has bounded order. We
shall also show that the only non-abelian (2, 2)-group is the quaternion group Q8.

Our second topic deals with a natural extension of permutable groups which have
been studied by a number of people—see [1], [2], [3], [5] and [6]. Recall that a group
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G is called n-permutable if given any sequence x1, . . . , xn of elements of G, x1 Ð Ð Ð xn ≥
xõ(1) Ð Ð Ð xõ(n) for some permutationõ Â≥ 1 of the set f1, . . . , ng. The main result for infinite
groups in this class was obtained by Curzio, Longobardi, Maj and Robinson in [3] where
it was shown that such groups are finite-by-abelian-by-finite.

Let m, n be positive integers. Call a group G, (m, n)-permutable if

X1 Ð Ð Ð Xn �
[

õ2Snn1
Xõ(1) Ð Ð Ð Xõ(n)

for all subsets Xi of G where jXij ≥ m for all i ≥ 1, . . . , n. Thus (1, n)-permutable groups
are precisely the n-permutable groups.

We shall show that if G is (m, n)-permutable then it is n-permutable if jGj ½ n! (mn)n.
This result is another addition to many results of similar type and naturally leads to the
following general question.

Let U, V be sets of words in n variables x1, . . . , xn and let X be the class of groups G
such that for all g1, . . . , gn in G

fu(g1, . . . , gn) ; u 2 Ug � fv(g1, . . . , gn) ; v 2 Vg.

Next let m be a positive integer and X (m) the class of groups G such that for all sequences
X1, . . . , Xn of m-element subsets of G,

fu(g1, . . . , gn) ; u 2 U, gi 2 Xi,i ≥ 1, . . . , ng

� fv(g1, . . . , gn) ; v 2 V, gi 2 Xi, i ≥ 1, . . . , ng.

For which sets U, V of words can one say that groups of large orders in the class X (m) all
lie in X? It would appear that this would be the case if the words in U and V are semigroup
words—words that involve only non-negative powers of the variables x1, . . . , xn.

The (m, n)-permutable groups may be viewed in this context, where U consists of one
word u(x1, . . . , xn) ≥ x1 Ð Ð Ð xn and V consists of the words võ(x1, . . . , xn) ≥ xõ(1) Ð Ð Ð xõ(n),
where õ runs through the non-identity permutations of the set f1, . . . , ng.

The main results of this paper are as follows.

THEOREM 1. Let m ½ 2, n ½ 1 be integers and let G be an (m, n)-group. Then

(a) G is abelian or a BFC-group of finite exponent bounded by a function of m and
n.

(b) If m ½ n then G is abelian or jGj is bounded by a function of m and n.

THEOREM 2. The only non-abelian (2, 2)-group is the quaternion group of order 8.

THEOREM 3. Suppose that m, n are positive integers and let G be an (m, n)-permut-
able group. Then G is n-permutable or jGj is bounded by a function of m and n.

The proofs of Theorems 1, 2 and 3 are given in Sections 2, 3 and 4 respectively.
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2. (m, n)-groups.

LEMMA 2.1. G is a (1, n)-group if and only if Gn � Z(G), where Z(G) denotes the
centre of G.

PROOF. For any x, g in G let y ≥ x�1g. Then (yx)n ≥ (x�1gx)n ≥ x�1gnx. Since G is
a (1, n)-group, gn ≥ (xy)n ≥ (yx)n ≥ x�1gnx. Thus Gn � Z(G).

The converse is equally easy. For any x, y in G, (xy)n ≥ x�1(xy)nx ≥ (yx)n. So G is a
(1, n)-group.

From now on in this section we assume that m Ù 1, n ½ 1 and aim to prove that a
non-abelian (m, n)-group is a BFC-group of finite exponent bounded by a function of m
and n. Moreover under the extra condition of m ½ n that such a group is finite bounded
by a function of m and n. Most of the notations used are standard. For instance, we denote
the centre of G by Z(G); the centralizer of the set X in G by CG(X) and so on.

LEMMA 2.2. Let G be an (m, n)-group where m Ù 1. If x 2 G and jhxij Ù 4n(m�1)
then hxi � Z(G). In particular every element of GÛZ(G) has order at most 4n(m� 1).

PROOF. Let X ≥ f1, x, . . . , xm�1gy�1 and Y ≥ yf1, x, . . . , xm�1g. Then (XY)n ≥
fxk ; 0 � k � 2n(m� 1)g and (YX)n ≥ y(XY)ny�1. Both the sets (XY)n and (YX)n are of
size 1 + 2n(m� 1) and there is an injective function f on f0, 1, . . . , 2n(m� 1)g such that
y�1xky ≥ xf (k), 0 � k � 2n(m� 1).

Now y�1xy ≥ (y�1xk+1y)(y�1xky)�1 ≥ xf (k+1)�f (k) for all k and f (0) ≥ 0. Thus xf (k) ≥
xdk for some integer d ½ 1. Since

f1, 2, . . . , 2n(m� 1)g � fd, 2d, . . . , 2n(m� 1)dgmod jhxij,

d ≥ 1 or d Ù jhxij � 2n(m � 1). In the second case d Ù 2n(m � 1). Also d Ú jhxij.
This is not possible since such a d is not congruent to any of 1, 2, . . . , 2n(m � 1). Thus
y�1xy ≥ x.

If gZ(G) has order greater than 4n(m � 1) in GÛZ(G), then jhgij Ù 4n(m � 1) and
hence g 2 Z(G). This proves the last claim of the lemma.

LEMMA 2.3. Let G be a non-abelian (m, n)-group where m Ù 1. Then every element

of Z(G) has finite order bounded above by
�
2n(m� 1)

�n+1
. In particular the exponent of

G divides
h
2
�
2n(m� 1)

�n+2i
!.

PROOF. Let x, y be non-commuting elements of G and let z 2 Z(G). Put ã ≥
2n(m� 1) and write zi for zã

i
, i ≥ 0, 1, . . . , n.

Consider the sets X ≥ fxzj
i, j ≥ 0, 1, . . . , m � 1g and Y ≥ fyzi, x�1zj

i ; j ≥ 0, 1, . . . ,
m� 2g. Then xyzi 2 (XY)n ≥ (YX)n so that xy ≥ (yx)rzïi

i where 0 � ïi Ú 2n(m� 1) and
r Ù 0. But ïi ≥ 0 only if xy ≥ yx which we have ruled out. Thus 1 � ïi Ú 2n(m� 1) ≥
ã.

Now let i run from 0 to n so that for some r, xy ≥ (yx)rzïi
i ≥ (yx)rzïj

j where 0 � i Ú
j � n.
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Since zïj

j ≥ zã
jïj , zïi

i ≥ zã
iïi and ãjïj ½ ãj ½ ãi+1 Ù ãiïi, it follows that zk ≥ 1 for

some k, 0 Ú k Ú ãj+1 �
�
2n(m� 1)

�n+1
which completes the proof of the first part. The

second part follows easily from this and Lemma 2.2.

LEMMA 2.4. Suppose that G is an (m, n)-group where m Ù 1. Then G is a BFC-
group.

PROOF. Let x, y be a non-commuting pair in G. Choose c2, . . . , cm in G and consider
the m-sets

X ≥ fx�1, c2x�1, . . . , cmx�1g, Y ≥ fxy, xc�1
2 , . . . , xc�1

m g.

Then y 2 (XY)n ≥ (YX)n � xWx�1, where W is the set of words in y, cš1
2 , . . . , cš1

m of
length at most 2n. Thus yx 2 W and jWj � (2m)2n. Therefore each conjugacy class in G
has order at most (2m)2n, and G is a BFC-group.

Thus far the proof of part (a) of Theorem 1 is completed.
From now on we let ï ≥ (2m)2n,

ñ ≥ 2[2n(m� 1)]n+2 and

ó ≥
�
4n(m� 1)

�2
ï1Û2(3+5 logï)

where the logarithm is to the base 2.
Since by Lemma 2.4, jG : CG(x)j � ï, for all elements x in an (m, n)-group G,

with m Ù 1, the order of G0 is bounded. Certainly jG0j � ï1Û2(3+5 logï) as was shown
by P. M. Neumann and M. R. Vaughan-Lee in [7]. Let x, y be a pair of non-commuting
elements of G and let H ≥ hx, yi. Notice that jhxij and jhyij are both at most 4n(m � 1)

since they do not lie in Z(G). Also jH0j � jG0j. Thus jHÛH0j �
�
4n(m�1)

�2
and jHj � ó.

Suppose that m ½ n and jZ(G)j Ù ñó+2(m�1). Then there exists a subgroup D of Z(G)
that is a direct product of 2m � 2 non-trivial cyclic subgroups C2, . . . , C2m�1 such that
H \ D ≥ 1. Pick 1 Â≥ ci in Ci, i ≥ 2, . . . , 2m� 1 and let

X ≥ fx, xc2, xc4, . . . , xc2m�2g,

Y ≥ fy, x�1c3, x�1c5, . . . , x�1c2m�1g.

Then g ≥ xyc2c3 Ð Ð Ð c2n�1 2 (XY)n ≥ (YX)n. Taking the projection of g in the group D
we see that if g ≥ y1x1y2x2 Ð Ð Ð ynxn then

fy1, . . . , yng ≥ fy, x�1c3, . . . , x�1c2n�1g and

fx1, . . . , xng ≥ fx, xc2, . . . , xc2n�2g,

so that only one of the yi’s equals y and we obtain [x, y] ≥ 1 which is a contradiction.

We have thus shown the following result.
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LEMMA 2.5. If G is a non-abelian (m, n)-group where m Ù 1 and m ½ n, then
jZ(G)j � ñó+2m�2.

LEMMA 2.6. Let G be a non-abelian (m, n)-group. Then the order of any abelian
subgroup of G is at most ïñó+2m�2.

PROOF. Let A be any maximal abelian subgroup of G. Since G is non-abelian, A Â≥
G; and hA, xi is non-abelian if x 2 G nA. Now jA : CA(x)j � ï so that CA(x) � Z(hA, xi)
has order not exceeding ñó+2m�2 by Lemma 2.5. Thus jAj � ïñó+2m�2.

PROOF OF THEOREM 1. (a) Follows directly from Lemmas 2.3 and 2.4.

(b) Let G be a non-abelian (m, n)-group where m Ù 1 and m ½ n. We will show that
jGj � ïñó+2m�2 Ð ïïñ

ó+2m�2
.

Take any 1 Â≥ x1 2 G and let A1 ≥ hx1i and G1 ≥ CG(x1). Then jG1j ½ jGjÛï,
and jA1j � ñ by Lemmas 2.2 and 2.3. Pick 1 Â≥ x2 2 G1 n A1, let A2 ≥ hx1, x2i and
G2 ≥ CG1 (x2) so that jG2j ½ jGjÛï2 and A2 Ù A1. Continue this process. At i-th step,
pick 1 Â≥ xi 2 Gi�1 n Ai�1, let Ai ≥ hAi�1, xii and Gi ≥ CGi�1(xi). Then jGij ½ jGjÛïi

and Ai is an abelian group. Now jAij � ïñó+2m�2 by Lemma 2.6. Thus for some integer
i Ú ïñó+2m�2, Ai must equal Gi. Therefore jGjÛïi � jAij and jGj � ïñó+2m�2ïïñ

ó+2m�2
.

3. (2, 2)-groups. In this section we show that the only non-abelian (2, 2)-group is
the quaternion group Q8.

Of course Q8 itself is a (2, 2)-group. However for any non-trivial group T, Q8 ð T is
not a (2, 2)-group. This can be seen by observing that (XY)2 Â≥ (YX)2 if X ≥ fa, bg and
Y ≥ fa�1, a�1tg, where a, b are generators of Q8 and t is any element in T.

The following result about general (m, n)-groups is the key to our main result here.

LEMMA 3.1. Let G be an (m, n)-group, where m Ù 1. If K is a subgroup of G and
jKj ½ m then K is normal in G. In particular if m ≥ 2 then every subgroup of G is
normal.

PROOF. Let K � G be of order m or greater. If 1 Â≥ x 2 K and y 2 G then consider
the sets

X ≥ f1, x, k3, . . . , kmgy�1, Y ≥ yf1, x, k3, . . . , kmg

where k3, . . . , km are distinct elements from K n f1, xg. Then x 2 (XY)n ≥ (YX)n ≥
y(XY)ny�1 so that xy 2 (XY)n � K. Thus K Ø G.

PROOF OF THEOREM 2. Suppose that G is a non-abelian (2, 2)-group. Then by
Lemma 3.1 all subgroups of G are normal. So by the Dedekind-Baer Theorem G is iso-
morphic to Q8 ð T, where T is some abelian group. But as we have observed above, T
must be trivial. This completes the proof of Theorem 2.
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4. (m, n)-permutable groups. We find it easier to prove the following generalized
version of Theorem 3.

THEOREM 30. Let m1, . . . , mn be positive integers and let G be a group such that

X1 Ð Ð Ð Xn �
[

õ2Snn1

Xõ(1) Ð Ð Ð Xõ(n)

for all subsets Xi of size mi in G; i ≥ 1, . . . , n. Let s ≥ m1 + Ð Ð Ð + mn. Then G is n-
permutable or jGj � n! sn.

Theorem 3 follows from the above result by letting mi ≥ m for all i ≥ 1, . . . , n.
We shall say that G is an (m1, . . . , mn)-permutable group if it satisfies the hypothesis of
Theorem 30.

PROOF OF THEOREM 30. We use induction on the sum s ≥ m1 + Ð Ð Ð + mn. If s ≥ n
then mi ≥ 1 for all i and G is n-permutable. So assume the result holds for all s � r. Thus
if G is an (m1, . . . , mn)-permutable group and m1 + Ð Ð Ð + mn ≥ r then G is n-permutable
or jGj Ú n! rn. Now let G be an (m1, . . . , mi�1, mi + 1, mi+1, . . . , mn)-permutable group
that is not (m1, . . . , mi�1, mi, mi+1, . . . , mn)-permutable. So there exist subsets Xj where
jXjj ≥ mj, j ≥ 1, . . . , n and elements aj 2 Xj such that g ≥ a1 Ð Ð Ð an Û2 Xõ(1) Ð Ð Ð Xõ(n) for
all õ 2 Sn n 1.

Pick any z 2 G n Xi. Then g ≥ bõ(1) Ð Ð Ð bõ(k�1)zbõ(k+1) Ð Ð Ð bõ(n) for some õ Â≥ 1 and
õ�1(i) ≥ k. Then

z 2 X�1
õ(k�1) Ð Ð ÐX

�1
õ(1)gX�1

õ(n) Ð Ð ÐX
�1
õ(k+1)

which is a set of size bounded above by n! rn. Thus jGnXij � n! rn and jGj Ú n! (r + 1)n.
So if jGj ½ n! (r + 1)n then G is (m1, . . . , mn)-permutable and by induction, G is n-
permutable. This completes the proof of Theorem 30.
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