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Abstract. When does a non-singular flow on a 3-manifold have a 2-dimensional
foliation everywhere transverse to it? A complete answer is given for a large class
of flows, those with 1-dimensional hyperbolic chain recurrent set. We find a simple
necessary and sufficient condition on the linking of periodic orbits of the flow.

0. Introduction
Given a non-singular vector field on a 3-dimensional manifold, is there a 2-
dimensional foliation everywhere transverse to it? In general, no. For example, if
one considers the unit tangent vector field to a circle bundle over a surface, Wood
[W] has shown there is a transverse foliation if and only if the Euler number of the
bundle is less than minus the Euler characteristic of the surface (for surfaces of
genus 1 or more). Similar results have been obtained for Seifert bundles [E-H-N].
In another direction, Fried [Fri] and Schwartzman [Sch] have given conditions for
a flow to have a cross-section, hence a transverse foliation.

D. Asimov and the author ([A-G], [G]) have found a simple linking property
between periodic orbits that is necessary for any flow to have a transverse foliation.
Any null-homotopic periodic orbit must link, that is any disk it bounds must intersect,
a periodic orbit. For flows with a 1-dimensional hyperbolic chain recurrent set, a
slightly stronger condition is necessary. Any null-homotopic periodic orbit must
link an attracting or repelling periodic orbit.

However neither version of the linking property is, in general, sufficient for a
non-singular flow to have a transverse foliation. For example, the unit tangent vector
field to an S1-bundle of sufficiently large Euler number over a surface of genus 2
has no transverse foliation but satisfies either linking property vacuously. But for
some classes of flows this second version of the linking propery is sufficient. In [G],
the author showed this for non-singular Morse-Smale flows. Here we show that it
is also sufficient for Smale flows, or more generally, flows with a hyperbolic 1-
dimensional chain recurrent set. Unlike Morse-Smale flows, which occur only on
certain 3-manifolds [M], Smale flows are abundant. In fact, Zeeman [Z] has claimed
they are dense in the C°-topology of non-singular vector fields. A proof appears in
an unpublished paper of Oliveira [O].

In § 1 of this paper, we give some preliminary background. In § 2, we prove the
necessity of the hyperbolic version of the linking property. In § 3, the main body

https://doi.org/10.1017/S0143385700003400 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003400


194 S. Goodman

of the paper, we show sufficiency. Some of the foliations we construct are only
C'-smooth. However it was shown in [G] that this is the best possible for some
flows; that is, there are flows which have a transverse foliation but no C2-smooth one.

The extension of this work to Smale flows was suggested by Dennis Sullivan and
the author would like to express her appreciation.

1. Preliminaries and statement of main theorem
We consider here non-singular flows which have a 1-dimensional hyperbolic chain
recurrent set. All flows will be on closed oriented 3-manifolds. If we were also to
require that for every x, y in the chain recurrent set, the stable manifold of x and
the unstable manifold of y meet transversally, the flow would be a Smale flow (see
[Fral] for a general discussion of Smale flows). This additional assumption makes
the flow structurally stable, but we shall not require it in this paper.

Hyperbolicity of the chain recurrent set R of a flow (p implies ([Sin]) that R can
be decomposed into a finite disjoint union of compact invariant sets Ao, . . . , Am

called basic sets, each having an orbit dense in that basic set. This decomposition
gives rise to a filtration of the manifold M; that is, a collection of submanifolds
Mo^MjC- • • c Mn = M such that:

(a) <pt(Mi) c interior M,; and
(b) A, = n , VtiMi-M,-,).

The filtration is obtained by taking M, = g~\-°o, n] where g: M -» U is a Lyapunov
function for <p and the r,'s are regular values of g separating the basic sets. We may
assume that the basic sets are all at different critical levels. We may also assume
that each M, - M,_! is connected (although we may lose the direct association with
a Lyapunov function).

As in [G], a simple linking property between periodic orbits of the flow is both
necessary and sufficient for the flow to have a 2-dimensional foliation everywhere
transverse to it.

Linking property. Any periodic orbit o- which is null-homotopic in M has the property
that the interior of any disk D bounded by a- meets an attracting or repelling periodic
orbit.

Our main theorem is:

THEOREM 3.1. A non-singular flow q> with hyperbolic l-dimensional chain recurrent
set on a closed oriented 3-manifold M has a 2-dimensional foliation everywhere
transverse to it if and only if <p satisfies the linking property.

We will prove the necessity of the linking property in § 2 and the sufficiency in § 3.

2. Necessity of the linking property
The linking property used in [A-G], [G] was stated as follows: any null-homotopic
periodic orbit must have the property that the interior of any disk it bounds must
meet a periodic orbit. We proved that this linking property was necessary for any
non-singular flow to have a transverse foliation. For the purposes of this paper we
need the slightly stronger version stated in § 1 which we now prove is necessary for
flows with hyperbolic chain recurrent set.
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LEMMA 2.1. Any flow <p with I-dimensional hyperbolic chain recurrent set which is
transverse to a Reeb component (a foliation of D2xSi) must have an attracting or
repelling periodic orbit contained in the interior of the Reeb component and homotopic
to the generator of irx(D

2x S1).

Proof. Assume the flow is oriented in on the boundary of the Reeb component.
Novikov ([No]) has shown that there is a cross-sectional disk D of D2 x S1, transverse
to the flow and with a first-return map r: D -»int D. Basically one takes a disk in a
planar leaf of the Reeeb component whose boundary is very near the boundary of
the Reeb component and extends this disk to the boundary, staying transverse to
(p. The existence of the first-return map is clear since the flow is transverse to the
Reeb foliation.

Any fixed point of the map r corresponds to a periodic orbit of <p, so it is hyperbolic.
Hence the fixed points are isolated. An index argument on the disk (whose Euler
characteric is 1) shows that some fixed point is a sink or source. It then corresponds
to an attracting or repelling periodic orbit of <p, homotopic to the generator of
iri(D2xSl). •

PROPOSITION 2.2. Any flow <p with hyperbolic chain recurrent set which has a transverse
foliation must satisfy the linking property.

The argument is exactly as in [A-G], [G]. If the flow <p has a transverse foliation
F and if a is a null-homotopic periodic orbit bounding an immersed disk D, then
D may be perturbed slightly to D' in general position with respect to F. By Novikov
([No]), since o" is a null-homotopic closed curve transverse to F, D' must contain
a meridian circle of a Reeb component. By the above lemma, D' intersects an
attractor or repeller of the flow <p with non-zero algebraic intersection. Hence D
also meets this orbit, satisfying the linking property.

COROLLARY 2.3. If the flow <p satisfies the linking property then no periodic orbit in a
basic set A,- is null-homotopic in Mj —Af,_,.

Proof. If the periodic orbit is an attractor or repeller then Af* - M,_, is homeomorphic
to a solid torus D2x S1 with the orbit homotopic to the generator of v1(D

2x S1).
If the periodic orbit is in a basic set Ab not an attractor or repeller, and bounds

a disk in Aff — M,_1; then that disk clearly cannot meet an attractor or repeller, since
they compose other basic sets. This contradicts the linking property. •
It is in this last form that we shall use the linking property to show sufficiency.

3. Sufficiency of the linking property
We assume now that <p is a non-singular flow with hyperbolic 1-dimensional chain
recurrent set, satisfying the linking property hence the property of corollary 2.3.
The flow restricted to any basic set is topologically equivalent to a subshift of finite
type with an irreducible matrix ([B]). We shall construct a foliation transverse to •?
with a finite number of compact leaves.

The components of the filtration which contain only an attractor or a repeller are
foliated by Reeb components as in [G]. Each such filtration component is
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homeomorphic to a solid torus 5 ' x D2 with the flow oriented in (or out) on the
boundary and every orbit entering (or exiting) the component limits on the attractor
(or repeller) in forward (or backward) time. The foliation on such a component is
sketched in figure 1.

Attractor Repeller
FIGURE 1

Next, we will construct a foliation of M,-M,_i, where A, is basic set with
2-dimensional unstable manifold. We denote Mj-Mj-! by X and dM, by d+X
(where <p is oriented in towards X), dM;., by d~X (where <p is oriented out from X).
Foliation of a neighbourhood of A,. We draw on results of Franks [Fra2] and Birman
and Williams [B-W] for the topological structure of X, for A, not an attractor or
repeller. There is a neighbourhood K of A, contained in X which consists of a
finite union of blocks as shown in figure 2, where the tops (T,, T2) are identified
with bottoms (£], B2) of possibly different blocks. The front, back and bottom arch
are contained in d~X (where the flow is transverse out); the two sides and the top
arch are contained in d+X (where the flow is transverse in toward K). These are
bevelled edges joining the pieces of d+X to 8~X, to which the flow is tangent. We
assume cp has a downward component everywhere.

B,

FIGURE 2

Note that in Franks' paper, he requires that X contain codimension-one submani-
folds with boundary U £ V tranverse to <p such that:

(i) the first return map r:U-*int V is well defined, smooth and there is a
hyperbolic handle set H c int U with every orbit of A, intersecting H and every
handle hj c H; and
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(ii) if x e H but r(x)iH then <p,(x) n H = 0 for all t > 0 and the orbit of x meets
d~X in future time (similarly for r"1). In dimension 3 these conditions are automati-
cally satisfied; see, for example [Ne] or [B-W].

As Franks shows, U, <Pt(H) is doubly foliated by unstable and stable foliations
(which correspond to the usual unstable and stable manifolds for points in A,).
Collapsing along the stable foliations gives the knot-holder of Birman and Williams
for A,. We remark that Birman and Williams have shown that the periodic orbits
of A, are in 1-1 correspondence with the periodic orbits of the semi-flow on the
knot-holder. On any finite set of periodic orbits, the correspondence is via isotropy
in X. We will make use of this later.

Each block as in figure 2 is easily foliated transverse to <p, and transverse to
d(X)n K by horizontal leaves. The induced foliation on the top and bottom arch
has an interval in the centre which is tangent to the foliation. We can eliminate the
tangencies in the interior of the arch by perturbing the leaves in a small neighbour-
hood of the interval. If we lift the leaves slightly in the front, the top arch has the
induced foliation shown in figure 3(a). If we lift the leaves in back, it has the
foliation shown in figure 3(b). A similar modification can be done on the bottom
arch. This type of modification to eliminate an interval of tangencies will be used
several times in our proof. The decision of which direction to tilt the leaves on any
block will be made later.

FIGURE 3(a)

FIGURE 3(b)

Since the foliation is tangent to the tops and bottoms on each block, the various
blocks can be easily identified preserving the foliation. We now have a foliation of
the neighbourhood K of Af transverse to (p. Notice that we have not yet made use
of the linking property. This will come next, as we extend the foliation to the rest
of X, staying transverse to <p and to dX.

Extension of the foliation to X. Note that K n d+X is a 2-manifold with boundary
a finite union of circles. It is composed of the inverted Y-shaped piece on the sides
of a block and the top arches. The edges of the arches and the top edges of the
inverted Y's are identified with the bottom edges of the inverted Y's. A deformation
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retract of Knd+X is a 1-dimensional graph with one vertex on each inverted Y
(at the branch point) and one vertex in the middle of each arch. The edges of the
graph have a natural orientation induced by the flow.

Also note that there* is at least one closed oriented loop on this graph. Begin at
any vertex and travel back, against the orientation. (In this direction, the path is
well-defined.) At some point, since the graph is finite, and since it can never enter
an arch for orientation reasons, the path must close up. It may not return to its
starting point, but the path contains a closed oriented loop.

We now use the linking property for the first time.

LEMMA 3.1. If <p satisfies the linking property, d+X is a finite union of tori, for all i.

Proof. Suppose some component of d+X, say N, is homeomorphic to S2. Let a be
a closed oriented loop of the graph described above. Then a is a closed curve on
N n K, hence null-homotopic in N. The curve a may be isotoped into the interior
of K to a periodic orbit of the semi-flow on the knot-holder for A,. Hence by [B-W],
it is isotopic to a periodic orbit a of A;. Since a — 0 on N, a is null-homotopic in
X, contradicting corollary 2.3.

M,- is a manifold with boundary, say (iV, = N) u N2 u • • • Nt = dMt = 8+X. It has
a non-singular flow <p/ M{, transverse in d+X. A theorem of Reinhart [R] says that

0 = index <p = k(-i X(Nj)Nj)J .

We have just shown that X(A/,)<0 for all j , so 0 = £J=1 X(Nj) implies X(N,) = 0
for all j . Therefore every component of d+X is homeomorphic to T2. •

LEMMA 3.2. On each (toral) component N of d+X, there is a foliation F transverse
to the graph retract ofdK n Nwith the transverse orientation of the foliation correspond-
ing to the orientation on the graph except for a point oftangency at the vertex of each
arch, and without Reeb components.

Proof. As we saw in the proof of lemma 3.1, any closed oriented loop on the graph
corresponds (under isotopy) to a periodic orbit of the basic set Af since it isotopes
to a knot on the knot-holder for A,. Hence by the linking property, the loop must
be essential in vl(d

+X). Further, no two closed oriented loops intersect since
branching of the. graph occurs in only one direction. Hence the set of closed oriented
loops on the graph restricted to any (toral) component of dM, consists of parallel
essential curves (with possibly different orientations). The set determines up to sign
a generator of the fundamental group of the torus. Take an infinite cycle covering
of the torus determined by a homomorphism irx{T2)^l with value ±1 on this
generator. Now split each arch at its vertex and let each half go off to that same
end of the cylinder that the Y-shaped piece it is attached to does.

The orientation of the graph identifies a positive end of each component of the
graph, which corresponds to one end of the cylinder, and a negative end of each
component which corresponds to the other end of the cylinder. Of course, two
components may switch positive and negative ends.
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If it is the case that all the components have the same positive end, one may
approximate the graph with a flow, which by [Fri] has a cross-section.

So the graph on the cylinder is transverse to a foliation of the cylinder by circles.
We may then rejoin the arches that were split in the step above so that each arch
is transverse to the foliation except for a single tangency at the vertex. Now project
back to the torus. There we have the desired foliation F. See figure 4(a) for an
illustration of this procedure.
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Now suppose that the components do not all have the same positive and negative
ends. If the orientation were reversed on the components which have the opposite
positive end from a given one, the lifted and split graph would be transverse to a
foliation by circles once again. We will alter this foliation to change the transverse
orientation where needed. Separate adjacent components of the graph with opposite
positive ends by a copy of the real line, not intersecting the graph, going from one
end of the cylinder to the other and intersecting the circle foliation transversely.
Now 'turbularize' ([No]) the foliation near the line (away from the graph) so that
the line becomes a leaf, the circles split to approach that leaf asymptotically, and
the transverse orientation of the foliation is reversed on one side. Then rejoin the
arches where they were split so that they are transverse except at the vertices and
project to the torus. See figure 4(b) for an illustration.

Note that we choose the direction of turbularization to avoid (two-dimensinal)
Reeb components. This last condition of no Reeb components will become important
later. •

Recall that dK<jd+X is a 2-manifold (with boundary) consisting of the Y's from
the sides of each block and the top arches. The foliation induced on these pieces
by the foliation on K can be made to match the foliation F on d+X just constructed
by an appropriate tilt of the top arch as referred to in figure 3 earlier. The foliation
on the sides clearly matches. The remaining portion of d+X, that is d+X — dK, is a
union of disks and annuli parallel to the circles. Every orbit which enters d+X-dK
exits d~K -dK without entering K. Hence there is a homeomorphism induced by
the flow <p between d+X -dK and d~X -dK. So X - K consists of pieces homeomor-
phic to Nx [0,1], where N is a disk or annulus and where the orbits of <p on each
piece may be assumed to be {x}x[0,1], xe N. We will use F on Nx0cd+X to
extend the foliation on K to all of X.

Let N be a disk or annulus in 8+X - dK. There is a foliation induced on N by
F, with an even (possibly zero) number of tangencies of dN. Foliate Nx[0,1] by
the product foliation F given by the F/Nx[0,1]. F on Nx[Q, 1] is tangent to <p
and has intervals of tangencies corresponding to the tangencies on dN. By perturbing
F, leaving it fixed on d+X, we will make it transverse to <p and match the foliation
on dNx[0,1] induced by K, which we shall denote by FK.

First of all, notice that FK on dNx[0,1], single annulus or two, has an even
(possibly zero) number of 'Reeb panels', one for each tangency on dN x {0}. For
orientation reasons, these panels alternate in direction. See figure 5 for an illustration.

0 11 (((
FIGURE 5
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Notice also that the product foliation F ondNx [0,1] has, again for orientation
reasons, intervals of tangencies which alternate between outer tangencies (like the
two local maximums in figure 6) and inner tangencies. On F, there is a transverse
orientation induced by a transverse orientation on F. Tilt the leaves of F back with
respect to this transverse orientation as they go from 8+X to B"X. This not only
makes the foliation on N x [0,1] transverse to <p; it makes the foliation on dN x [0,1]
match FK. (See figure 3 again.) Two examples of this perturbation are shown in
figure 6.

FIGURE 6

In spite of the care taken in lemma 3.2 to produce a foliation of 3+X with no
two-dimensional Reeb components it may happen that the extended foliation of
d~X has Reeb components (in the case of twisted connectors). In the next section,
the foliation is spun near dX to make the boundary components leaves of the
foliation. Hence we must eliminate these Reeb components on d~X. This may be
done as follows:

Let R (=Slx[0,1]) be a two-dimensional Reeb component on <TX. Let U =
Sl x [-e, 1 + e] be a neighbourhood of R in d~X. Let U x [0, e] be a one-sided collar
of U in Af,_i such that the flow <p is transverse to U x {t}, t e [0, e]. Foliate U x [0, e]
transversely to <p in the following way. There is a leaf L, homeomorphic to Sl x [0,1]
with 8L = S1 x {0,1} = dR £ d~X. The leaves in the interior of R extend to approach
L asymptotically. On d U x [0, e] u U x {e}, the foliation is trivial with leaves being
level sets in the S1 direction. These leaves also extend to the interior approaching
L asymptotically. See figure 7 for an illustration of the foliation of l/x[0, e].
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FIGURE 7

Now extend M, slightly to include £/x[0, e]. We have reduced the number of
Reeb components on M;_! by at least one. Repeat this process until all Reeb
components on M,_! are eliminated.

Turbularization near the boundary. We now have a foliation of X = M, — Mt-X

transverse to <p and transverse to dX. The foliation restricted to any component of
dX is either a trivial foliation by circles or a foliation with some compact circles
leaves, and the other leaves noncompact, approaching these circles asymptotically
(but without Reeb components). In either case the foliation may be modified in a
small collar neighbourhood of the boundary, sweeping the leaves asymptotically
around the toral boundary components, and making the boundary tangent to the
foliation (called turbularization in [No]). Since <p is tangent to the boundary, this
may be done keeping the foliation transverse to <p.

We now have a foliation on Mo and M, — Mi_l for each i, transverse to (p. Since
the foliations are all tangent to the boundary, they may clearly be glued together
along the boundary tori to produce a foliation of all M transverse to <p. This
completes the proof of sufficiency of the linking property for flows with a hyperbolic
1-dimensional chain recurrent set.

COROLLARY 3.3. For a non-singular vector field <p with a I-dimensional hyperbolic
chain recurrent set, the following are equivalent:

(i) (p satisfies the linking property;
(ii) no periodic orbit in a basic set A( is null-homotopic in M, - Mj_,.

(iii) there is a 2-dimensional foliation everywhere transverse to <p.

Remark. In any component where the foliation on dMt is not a trivial foliation by
circles, the foliation after turbularization is only C1 -smooth at the boundary torus.
See ([G]) for a proof. As we saw there, some flows which have transverse foliations
do not have C2-smooth ones.

Remark If the foliation F (from lemma 3.2) is a trivial foliation by circles for
each component of dM,, the flow <p restricted to M, - M,_! has a cross-section (trans-
verse to dM,udM,_,), This is a straightforward application of Fried's ([Fri]) or
Schwartzman's ([Sch]) work. So in that case Mi-Mi_l fibres over S\ But this is
certainly not true in general. In fact, we see homology directions which are antipodal.
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Remark The flow having a transverse foliation seems to place no restriction on the

ambient manifold or the homotopy class of the flow (assuming Smale flows are

C°-dense). If <p is any non-singular flow on any 3-manifold, it may be homotoped

to a flow ijj with a transverse foliation, since any 2-plane field may be homotoped

to an integrable one ([T]). Then </» may be approximated by a Smale flow iff' which

is still tranverse to the foliation.
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