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INTRODUCTION

When the distribution of the number of claims in an interval of
time of length t is mixed Poisson and the moments of the inde-
pendent distribution of individual claim amounts are known, the
moments of the distribution of aggregate claims through epoch t
can be calculated (O. Lundberg, 1940, ch. VI). Several approxima-
tions to the corresponding distribution function, F(-,t), are
available (see, e.g., Seal, 1969, ch. 2) and, in particular, a simple
gamma (Pearson Type III) based on the first three moments has
proved definitely superior to the widely accepted "Normal Power"
approximation (Seal, 1976). Briefly,

F(t + 2|/x7, t) ** ~^r Y' " efy*-1 = P(a, a + zfe) (l)
1 (a) 0

where the P-notation for the incomplete gamma ratio is now-
standard and a, a function of t, is to be found from

~~ x2 /x3 ^ v2
*3/*2 Tl

the kappas being the cumulants of F(-,t). An excellent table of
the incomplete gamma ratio is that of Khamis (1965).

The problem that is solved in this paper is the production of an
approximation to U(w, t), the probability of non-ruin in an interval
of time of length t, by using the above mentioned gamma ap-
proximation to F( •, t).

THE PROBABILITY OF NON-RUIN IN A PERIOD OF LENGTH T

In Seal (1974) it was shown that when the distribution of the
number of claims in an arbitrary interval of time is generated by
a stationary point process the probability of non-ruin in an in-
terval which the insurance company enters with a risk-reserve of
w and operates throughout with a risk-premium loading of v), is
U(w, t) given by

U(w, t) = F(w + Tut, I ) - J T I | U(o, T) f(w + nit — T, t — T) d-r (2)
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where m is the risk-loaded pure premium rate and / ( • , t) is the
density corresponding to F( •, t). This is the formula which we will
use for our numerical approximations.

The only stationary point processes that have been utilized by
actuaries in practical applications are those that lead to ordinary
or mixed Poisson distributions (O. Lundberg, I.e.) and in these
circumstances the Prabhu-Benes-Takacs formula (Seal, 1974)

U{0' t) = h JF{y'l) dy (3)

may be used to produce the first factor in the integrand of (2).

APPLICATION OF RELATION (I)

Considering (1) as applied to (2) we note that if the distribution
of the number of claims is Poisson with mean t and the density of
individual claim amounts, b(-), has mean

(A = I so that TZI = 1 + 7), F(w + 1 + ?) • t, t) s» P(a, a + zya)

where

4*1
_

a = a(r) —

fiz and p3 being the second and third moments about zero of the
&(-)-distribution of individual claim amounts (Seal, 1969, 2.41). In
order to evaluate z we have

t + z]/^=t + zV^h) = w + (1 + rfit

so that
z = [w + -qt) {tp2)-1/2

Further, by differentiation of (1) with respect to z,

/(T + zlfe, T) « ^ exp [— a - z)fc\ (a + z/a)^1 (4)

where

4 T /»S ,/
a = a(x) = —^— P = K(a/x2)

and, when T + zyy.2 = w + (1 + •/)) T,

2 = (zei + 7) T) (T p2) ~1/2 0 < T < t
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Finally, by (3),

u(°'T) = (Tqhjh TF{y> T) iy

J P(a, a + z|/a)iz by (1)

l/(xa/«) a + ^ <
/•T J_ w \ _ J

1 3

1 r du " ,

= ( 7 ^ J r w / '

[ J {<x+ ritf —

flt-Tg

J (a — T P •—*)*«-

— (a — Tp) P(a, a — rp) + a P(oc + I, oc — Tp)] (5)

where

P = |/(a/x2) and a = a(r).

A remarkable feature of the approximation (1) is that only the
first three moments of the distribution of individual claim amounts
are involved. If, therefore, a two-parameter distribution is success-
fully fitted to the observational distribution of claim amounts by
means of the mean and variance it implies that the appropriateness
of the chosen functional form has been determined by the ap-
proximate equivalence of the third moments of the observational
and theoretical distributions of individual claims. For example, if
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the gamma distribution (Johnson & Kotz, 1970, ch. 17) were
fitted the third central moment (or cumulant) would necessarily
be twice the variance.

Now only two functional forms for &(•), the density function of
individual claim amounts, result in explicit results for F(x, t) when
the distribution of the number of claims in an interval of length t is
Poisson with mean t (Seal, 1969, p. 31, referring to Hadwiger,
1942). These are the gamma and the inverse Gaussian distributions
and it would be convenient to use one or other of these forms for
b(.) so that direct checks may be made of our numerical approx-
imations using (1).

THE INVERSE GAUSSIAN DISTRIBUTION

According to Seal (1969, p. 30) by far the greatest number of
graduations of observed individual claim amounts have been based
on the lognormal distribution, namely where the logarithm of the
claim amount (the latter possibly increased or decreased by some
constant) has a Normal distribution.

On the other hand the inverse Gaussian density (Tweedie, 1957)

> o . * > o . X > o (6)

which has the distribution function

as shown by Shuster (1968) (but misprinted in Johnson & Kotz,
1970), where O(-) is the standardized Normal distribution function,
can be made to start at the same claim amount (which we take as
the origin) as the lognormal and be given the same mean ;x and
variance jz3/A. Although the Inverse Gaussian has never been used
to graduate a set of individual claim amounts it may produce
nearly the same yi-value as that possessed by the corresponding
lognormal distribution and would then lead to approximately the
same distribution of aggregate claims as provided by (1).

When individual claims are distributed according to the inverse
Gaussian,

v^ tk 1 A y/2 r A(X — My\
f(x, t) = e~t ) 77 J exp — — — ^ - - - (8)
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where A = &2X and M = k[i, and from (6) and (7)

We mention that (3(s), the Laplace transform of (6), is given by

In m = - >i - (1 + — j ) (10)

CHOICE OF PARAMETERS

Upwards of 50 actual individual claim distributions have been
fitted by the lognormal (Seal, 1969, p. 30). The yi-values for 45
of these were calculated *, using the formulas provided by Johnson
& Kotz (1970) applicable to the constants of the linear transform,
and compared with the corresponding yi's calculated for (6) using
the calculated mean and variance. 60% of the yi pairs were ap-
proximately equal implying that the lognormal and inverse Gaus-
sian distributions would produce nearly the same value for (1).
Among the 27 distributions was Cannella's (1963) costs of 124, 279
"specialty" pharmaceutical prescriptions in the province of Rome
during i960. The two yi's were • 355 and • 354, respectively, but the
mean and variance of the distribution were stated to be 786.4 and
280582.09 after lognormal fitting. Unfortunately this mean and
variance produce yi's of 2.326 and 2.021, respectively, for the
lognormal and inverse Gaussian indicating that, in fact, the latter
distribution is not in this case a very good approximation to the
lognormal. This error of Cannella was not discovered until too late
and we had already chosen y. = 1 and X = (786.4)2/280582.09 =
2.20408 for the inverse Gaussian. In order to apply this to (1) we
have (Tweedie, loc. cit.) ftz = jj.2 + (Ĵ X^1 = 1.453704 and fi3 =

+ 3C-8*-2 = 2.978654 so that <*(*) = 1-384993 *•

RESULTS

The following Table compares the results obtained for / ( io +
t, t) by (4) and (8) and for F(io + t, t) by (1) and (9). In the first
set of comparisons the gamma approximation is only in error by a
few units in the fifth decimal place. In the second set the gamma

* It is not always easy to decide whether an author is using natural or
common logarithms for his transform.
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approximation is never more in error than by two units in the
fourth decimal place. These are very good results.

TABLE I

t

I

2

3
4
5
6

7
8
9

IO

II

12

13
14

15

16

17
18

19
2O

21

22

23
24
25

Values

/(10 +

(4)

.00004

.00019

.00049

.00095

.00154

.00226

.00305

.00390

.00479

.00569

.00658

•00747
.00833
.00916
.00997

.01074

.01147

.01217

.01283

.01346

.01406

.01462

•01515
.01564
.01611

off (10 ̂

t,t)

(8)

.00003

.00016

.00045

.00090

.00150

.00222
• 00303

.00390

.00479

.00570

.00661

.00750

.00837

.00921

.01002

.01079

•01153
.01223
.01289
•01352

.01411

.01467

.01520

.01570

.01617

- t,t),F(io

F(io +

(1)

.99996

.99978

•99937
.99866

.99764

.9963

•9947
•9927
. 9906

.9882

•9857
.9830
.9801
•9772
.9742

.9711

.9680

.9649

.9618

.9586

•9554
•9523
.9491
.9460
.9429

+ t, t) and

t.t)

(9) (

• 99997
.99983

• 99945
.99879

•99779

.99O5

.9948

• 9929
.9908

. 9884

.9858

•9831
• 9803

•9774
•9744

•97J3
. 9682

.9651

.9619

.9588

•9556
•9524
•9493
.9462

•9431

U{IO, t)

U(io,

:o to (5)

• 9999

•9997
•9991
. 9980

• 9904

• 9943
.9916

.9884

.9847

. 9807

.9762

•97]5
.9665
.9613
•9559

• 95°3

•9447
•93f»9

•9331
•9273

.9214

•9155

• 9O97
•9038

.8980

t)
method
of 1974
paper

1.0000
1.0000

•9993
.9981
.9964

•9943
•9915
.9883

. 9846

. 9804

• 9759
.9711
.9660
.9607
•9552

•9495
,9438

.9380

.9321

.9262

.9202

•9H3
.9083
.9024
.8965

The approximate values of/, F and U(o, t) (by relation (5)) were
then inserted into (2) with w = 10 and TJ = o using repeated
Simpson at unit steps in t for the value of the integral. When t was
odd the last three panels were approximated by the three-eighths
rule; U(o, 1) was obtained by the trapezoidal. There is no "exact"
result for U(io, t) but the Laplace transform inversion methods
described in Seal (1974) were used to produce results supposedly
correct to three decimals. These, together with our new approx-
imations appear in the last two columns of the Table. The new
method appears to be producing values of U(io, t) "nearly" cor-
rect to three decimals.
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CONCLUSION

The proposed new approximation to U(w, t) using the gamma
approximation to F(x, t) produces reasonably accurate results. Is
it easy to apply ? The writer confessed in his 1974 paper that steps
in t at greater intervals than unity tended to harm the efficiency of
the approximation to the integral in (2). For example, by using
steps of five instead of unity in (2) we obtained, with the new ap-
proximations, the following values which are barely correct to two

t

1 0

15
2 0

U(io,

Unit steps
(Table 1)

.996

.981
•956
.927
.898

t)
Quinquennial

steps
•994
•977
•947
.918
.887

decimals. Nevertheless this may be considered sufficient if a
computer is not being used and desk calculations are the order of
the day.
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