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1. Introduction
In (1) numbers related to the Stirling numbers are defined. Later in (2)

these numbers were called Lah-numbers (cf. 2, p. 43, Ex. 16). According
to (1) these numbers are of importance in Mathematical Statistics. In this
paper we shall generalise the method and apply it to generalised Stirling numbers
as denned in (3).

In (3) the polynomials Q and the numbers As
n and Bs

n were defined by the
relations

Q(x; M, N, ri) = Q(x, «) = f l [M(m)+N(w)x] = £ As
nx

s, n^l,
m = 1 s = 0

Q(x,0) = M(0), (1)

*"= t B:Q(x,m),
m = 0

1 = B°0Q(x, 0) = iJgM(0), ( 2 )

where M and iV are two functions such that M(0) # 0, M(n) is defined for all
positive integers n, and N(ri) is defined for all positive integers n and N(ri) # 0.
The numbers A'n and Bs

n are called generalised Stirling numbers.

2. Relationship between different Q-polynomials
Let Qt{x, ri) = Q(x; Mu Nu n) and Q2(x, ri) = Q(x; M2, N2, n), then

Ql(x,n)= f A°Unx\ x"= t *7.»Gi(*.»0> (3)
s = 0 m = 0

e,(x, 0) = M^O), l = B?>0<21(x,0)=B?,0M1(0), (3a)
and

G2(x,«)= t A2,nx\ x"= £ BlnQ2{x,m), (4)
s = 0 m = 0

Q2(x, 0) = M2(0), 1 = BS. 0 e 2 (^ . 0) = Bl 0M2(0), (4a)

where A™ and 5™ are zero for m>n, m<0, « < 0 .
Let us express Q2(x, ri) in terms of Qi(x, m). We can write

Q2(x,n)= t A'2iKxT= t A'2J
s = 0 s = 0 . | _ m

,«)= I I A^Bl^ix, m). (5).
i = 0 m = 0
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Considering the conditions on the numbers A and B we can extend the second
summation to n and then change the order of summation, thus,

Qi(.x,n)= £ £ As
2,nBZsQl(x,m)= £ Gi(*. m) £ A\<nBm

Us, (6)
s = 0 m = 0 m = 0 s = 0

and, using again the conditions on the A and B numbers, we have,

Qi(x,n)= £ Qx(x,m) £ A*2,nB
m

Us. (7)
m = 0 s = m

Let
£ A2inBm

Us = L\Un, (8)
s = m

where L"r l i , = 0 for m<0, «<0, m>n.
Similarly, if we express Qt(x, n) in terms of (22-polynomials we obtain

Qi(x,n)= £ Q2(x,m) £ As
UnB^s, (9)

m ~ 0 s = m

with
I As

1>nBls = L m
l t 2 < n , (10)

s = m

and where L"J2 n = 0, for «<0, m<0, n<m. It is clear that in the special
case where £>i = 62. L"I,2,n = £2,1,11 = ^> where 5" is the Kronecker delta.

3. Quasi-orthogonality of the L-numbers
For obvious reasons we shall call the L-numbers generalised Lah-numbers

(cf. Ex. 2 hereafter). Using (7) and (8) we can write

G2(*.«)= £ Qi(x,m)L\1-n, (11)
m = 0

and using (9) and (10)
& ( * , » ) = £ Qi(x, m)L"},2,B. (12)

m = 0

Substituting (12) into (11) we obtain

G2(x.«)= £ L!i ,» £ i?i.2.-G2(x,s),
m = 0 s = 0

and using the conditions on the L-numbers we obtain

- 62(*.«)= £ G2(*,s) £ IZ.I.JCI.2.M,
s = 0 m = s

thus

(13) expresses the quasi-orthogonality of L-numbers for reversed indices.
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4. Recurrence relations
According to (1) we can write

l , [ ] £
m = 0 m = 0

and,

Q2(x, X > [ ] £ >
m = 0 m = 0

which according to (11) yields

Q2(x,n + 1)= " ^ Qi(x,m)LJ.i.11+i = [Af2(« + l)+iV2(/i + l)x]
m - 0

t Qi(.x,m)L\Un. (14)
m = 0

But
Q^x, m + 1) = [M1{m + l)+N1(m+l)x']Q1(x, m),

so that

xQ^x, m) = [Si(x, m + V-M^m+VQ^x, mfl/JV^m + l). (15)

Substituting (15) into (14) we obtain

" l Qi(x,m)Lm
2tUH+1=M2(n + l) f

m = 0 m = 0

X [
m = 0

By equating the coefficients of Qi(x, m) we obtain

or,

f "] JV2(«) rm_t
iV^m + l)

and by inverting the indices 2 and 1,

m +1)1 N,(II
^l ,2 ,n - l + ,J ^ wiV2(m+l)

5. Examples
1. Let Mt(a) = a, ^ ( a ) = a - 1 , M2(a) = a+1, JV2(a) = I/a. We obtain,

taking L2> i, i = A , 2, I = 1> and a>0,

U2> l p n- i+ ^ : L V / .
«m J n(m —1)
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and the following numerical values:

jm
Ll2, 1, n-

L"l,2,,

n:

1

2

3

4

n:

1

2

3

4

m = 1

1

2

20/3

30

m = 1

1

- 4

36

- 5 0 4

2

1/2

29/12

1233/96

2

2

- 5 8

2072

3

1/12

199/288

3

12

-1194

4

1/144

4

144

2. Let Afi(a) = 1-a, A^a) = 1, M2(a) = a - 1 , AT2(a) = 1, then the
numbers obtained are the Lah-numbers as studied in (1).
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