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Abstract

In 2005, Knutson–Vakil conjectured a puzzle rule for equivariant K-theory of

Grassmannians. We resolve this conjecture. After giving a correction, we establish a

modified rule by combinatorially connecting it to the authors’ recently proved tableau

rule for the same Schubert calculus problem.

1. Introduction

Knutson–Vakil [CV09, § 5] conjectured a combinatorial rule for the structure coefficients of the

torus-equivariant K-theory ring of a Grassmannian. The structure coefficients are with respect to

the basis of Schubert structure sheaves. Their rule extends puzzles, combinatorial objects founded

in work of Knutson and Tao [KT03] and in their collaboration with Woodward [KTW04]. The

various puzzle rules play a prominent role in modern Schubert calculus; see, e.g., [BKT03, Vak06,

CV09], recent developments [Knu10, KP11, BKPT16, Buc15] and the references therein.

This paper is a sequel to [PY15], where we gave the first proved tableau rules for these

structure coefficients, including a conjecture of Thomas and the second author [TY12]. Here we

use these results to prove a mild correction of the puzzle conjecture.

1.1 The puzzle conjecture

Let X = Grk(Cn) denote the Grassmannian of k-dimensional subspaces of Cn. The general linear

group GLn acts transitively on X by change of basis. The Borel subgroup B ⊂ GLn of invertible

lower triangular matrices acts on X with finitely many orbits, i.e., the Schubert cells X◦λ. These

orbits are indexed by {0, 1}-sequences λ of length n with k-many 1’s. The Schubert varieties are

the Zariski closures Xλ := X◦λ. The Xλ are stable under the action of the maximal torus T ⊂ B
of invertible diagonal matrices. Therefore, their structure sheaves OXλ admit classes in KT(X),

the Grothendieck ring of T-equivariant vector bundles over X. Now KT(X) is a KT(pt)-module

and the
(
n
k

)
Schubert classes form a module basis. One may make a standard identification

KT(pt) ∼= Z[t±1i : 1 6 i 6 n]. The structure coefficients Kν
λ,µ ∈ KT(pt) are defined by

[OXλ ] · [OXµ ] =
∑
ν

Kν
λ,µ[OXν ].

Consider the n-length equilateral triangle oriented as ∆. A puzzle is a filling of ∆ with the

following puzzle pieces:
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The double-labeled edges are gashed. A filling requires that the common (non-gashed) edges of

adjacent puzzle pieces share the same label. Two gashed edges may not be overlayed. The pieces

on either side of a gash must have the indicated labels. The first three may be rotated but the

fourth (equivariant piece) may not [KT03]. We call the remainder KV-pieces; these may not be

rotated. The fifth piece may only be placed if the equivariant piece is attached to its left. There

is a ‘non-local’ requirement [CV09, § 5] for using the sixth piece: it ‘may only be placed (when

completing the puzzle from top to bottom and left to right as usual) if the edges to its right are

a (possibly empty) series of horizontal 0’s followed by a 1’. A KV-puzzle is a puzzle filling of ∆.

For simplicity, we will illustrate these six puzzle pieces by the following respective shaded

versions (colour online):

Let ∆λ,µ,ν be ∆ with the boundary given by:

• λ as read ↗ along the left-hand side;

• µ as read ↘ along the right-hand side; and

• ν as read → along the bottom side.

The weight wt(P ) of a KV-puzzle P is a product of the following factors. Each KV-piece

contributes a factor of −1. For each equivariant piece one draws a ↘ diagonal arrow from the

center of the piece to the ν-side of ∆; let a be the unit segment of the ν-boundary, as counted

from the right. Similarly, one determines b by drawing a ↙ antidiagonal arrow. The equivariant

piece contributes a factor of 1− ta/tb.

Conjecture 1.1 (The Knutson–Vakil puzzle conjecture). Kν
λ,µ =

∑
P wt(P ), where the sum is

over all KV-puzzles of ∆λ,µ,ν .

We consider the structure coefficient K10010
01001,00101 for Gr2(C5). The reader can check that

there are six KV-puzzles P1, P2, . . . , P6 with the indicated weights.
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Using double Grothendieck polynomials [LS82] (see also [FL94] and references therein),
one computes K10010

01001,00101 = −(t2/t4) = wt(P2) + wt(P3) + wt(P5) + wt(P6). This gives a
counterexample to Conjecture 1.1. Actually, this subset of four puzzles is explained by the rule
of Theorem 1.2 below.

1.2 A modified puzzle rule
We define a modified KV-puzzle to be a KV-puzzle with the non-local condition on the second
KV-piece replaced by the requirement that the second KV-piece only appears in the combination
pieces or .

Theorem 1.2. Kν
λ,µ =

∑
P wt(P ), where the sum is over all modified KV-puzzles of ∆λ,µ,ν .

We have a few remarks. First, the rule of Theorem 1.2 is ‘positive’ in the sense of Anderson
et al. [AGM11]; cf. the discussion in [PY15, § 1.4]. Second, it is a natural objective to interpret
Theorem 1.2 via geometric degeneration; see [CV09, Knu10]. Third, the first author has found a
tableau formulation similar to that of [PY15] to complement the puzzle rule of [Knu10] for the
different Schubert calculus problem in KT(X) of multiplying a class of a Schubert variety by that
of an opposite Schubert variety; further discussion may appear elsewhere. Fourth, we observe
that the rule of Theorem 1.2 may be easily reformulated to avoid gashed edges and restricted
placement rules, as in the following result.

Corollary 1.3. Kν
λ,µ =

∑
P wt(P ), where the sum is over all tilings of ∆λ,µ,ν by

(where only the first three may be rotated and the pieces are given the appropriate weights).

While this latter formulation is arguably simpler and involves fewer puzzles, we focus here
on the modified KV-puzzles of Theorem 1.2 to emphasize the close connection to Conjecture 1.1.

To prove Theorem 1.2, we first give a variant of the main theorem of [PY15]; see § 2. In § 3,
we then give a weight-preserving bijection between modified KV-puzzles and the objects of the
rule of § 2.

2. A tableau rule for Kν
λ,µ

We need to briefly recall the definitions of [PY15, §§ 1.2–1.3]; there the Schubert varieties Xλ

are indexed by Young diagrams λ contained in a k × (n− k) rectangle. (Throughout, we orient
Young diagrams and tableaux according to the English convention.)
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An edge-labeled genomic tableau is a filling of the boxes and horizontal edges of a skew
diagram ν/λ with subscripted labels ij , where i is a positive integer and the j that appear for
each i form an initial interval of positive integers. Each box of ν/λ contains one label, whereas
the horizontal edges weakly between the southern border of λ and the northern border of ν are
filled by (possibly empty) sets of labels. A genomic edge-labeled tableau T is semistandard if:

(S.1) the box labels of each row strictly increase lexicographically from left to right;

(S.2) ignoring subscripts, each label is strictly less than any label strictly south in its column;

(S.3) ignoring subscripts, the labels appearing on a given edge are distinct;

(S.4) if ij appears strictly west of ik, then j 6 k.

Index the rows of ν from the top starting at 1. We say that a label ij is too high if it appears
weakly above the north edge of row i. We refer to the collection of all ij (for fixed i, j) as a gene
of family i. The content of T is the composition (α1, α2, . . . ), where αi is greatest so that iαi is
a gene of T .

Recall that in the classical tableau theory, a semistandard tableau S is ballot if, reading
the labels down columns from right to left, we obtain a word W with the following property:
for each i, every initial segment of W contains at least as many i’s as (i + 1)’s. Given an
edge-labeled genomic tableau T , choose one label from each gene and delete all others; now
delete all subscripts. We say that T is ballot if, regardless of our choices from genes, the resulting
tableau (possibly containing holes) is necessarily ballot in the above classical sense. (In the case
of multiple labels on a edge, read them from least to greatest.)

We now diverge slightly from the treatment of [PY15], borrowing notation from [TY12].
Given a box x in an edge-labeled genomic tableau T , we say that x is starrable if it contains
ij , is in row > i and ij+1 is not a box label to its immediate right. Let StarBallotGenµ(ν/λ)
be the set of all ballot semistandard edge-labeled genomic tableaux of shape ν/λ and content µ
with no label too high, where the label of each starrable box may freely be marked by ? or not.
The tableau T illustrated in Figure 2 is an element of StarBallotGen(10,5,3)((15, 8, 5)/(12, 2, 1)).
There are three starrable boxes in T , in only one of which the label has been starred.

Let Man(x) denote the length of any {↑,→}-lattice path from the southwest corner of
k × (n − k) to the northwest corner of x. For x in row r containing i?j , set starfactor(x) :=
1 − (tMan(x)+1)/(tr−i+µi−j+1+Man(x)). For an edge label ` = ij in the southern edge of x in row
r, set edgefactor := 1− (tMan(x))/(tr−i+µi−j+1+Man(x)). Finally for T ∈ StarBallotGenµ(ν/λ),
define

ŵt(T ) := (−1)d̂(T ) ×
∏
`

edgefactor(`)×
∏
x

starfactor(x);

here the products are respectively over edge labels ` and boxes x containing starred labels, while
d̂(T ) := #(labels in T ) + #(?’s in T )− |µ|. Let

L̂νλ,µ :=
∑
T

ŵt(T ),

where the sum is over all T ∈ StarBallotGenµ(ν/λ).
We need a reformulation of [PY15, Theorem 1.3]; the proof is a simple application of the

‘inclusion–exclusion’ identity
∏
i∈[m] ai =

∑
S⊆[m](−1)|S|

∏
i∈S(1− ai).

Theorem 2.1. Kν
λ,µ = L̂νλ,µ.
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Example 2.2. Let k = 2, n = 5 and λ = (2, 0), µ = (1, 0) and ν = (3, 1). The four tableaux
contributing to L̂νλ,µ are

Our indexing of these tableaux alludes to the precise connection to the four puzzles P2, P3, P5

and P6 of § 1.1, as explained in the next section. 2

3. Proof of Theorem 1.2: bijecting the tableau and puzzle rules

3.1 Description of the bijection
To relate the modified KV-puzzle rule of Theorem 1.2 with the tableau rule of Theorem 2.1, we
give a variant of Tao’s ‘proof without words’ [Vak06] (and its modification by Purbhoo [Pur08])
that bijects cohomological puzzles (using the first three pieces) and a tableau Littlewood–
Richardson rule. An extension of this proof for equivariant puzzles (i.e., fillings that additionally
use the equivariant piece) was given by Kreiman [Kre10]; we also incorporate elements of his
bijection in our analysis.

Figure 1 gives a ‘generic’ example of a (modified) KV-puzzle P . We will define a track πi
from the ith 1 (from the left) on the ν-boundary of ∆λ,µ,ν to the ith 1 (from the top) on the
µ-boundary. To do this, we describe the flow through the (oriented, non-KV) puzzle pieces that
use a 1 and four combination pieces (possible ways one can use the KV-pieces under the rules
for a modified KV-puzzle):

Thinking of the (combination) pieces in (A.1)–(A.9) as letters of an alphabet, we can encode
the northernmost track in P (from Figure 1) as the word

Recall, if κ is a letter/word in some alphabet, then the Kleene star is κ∗ := {∅, κ, κκ, . . .}.
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Figure 1. A ‘generic’ modified KV-puzzle P (k = 3, n = 20).

Proposition 3.1 (Decomposition of πi). The list of (combination) pieces that appear in πi, as
read from southwest to northeast, is a word from the following formal grammar:

boxes[edges startrow boxes]∗ edges, (3.1)

where

Proof. This is by inspection of the rules for modified KV-puzzles. 2

The remaining filling of the puzzle is forced, which we explain in two steps. First there is the
NWray of each N, i.e., the (possibly empty) path of upward-pointing rhombi growing from
the / of this N.

Lemma 3.2. The NWray of N ends either at the λ-boundary of ∆ or with a piece from startrow.
In the latter case, the shared edge is the south-then-easternmost edge of the (combination) piece.

Proof. The north / of is labeled 1. By inspection, the only (combination) pieces that can

connect to this edge are and those from startrow (at the stated shared edge). 2

Second, pieces of the puzzle not in a track or NWray are 0-triangles (depicted white).
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Figure 2. The tableau T := φ(P ) corresponding to the modified KV-puzzle P of Figure 1.

We correspond Young diagrams to {0, 1}-sequences. Trace the {←, ↓}-lattice path defined
by the southern boundary of λ (as placed in the northwest corner of k × (n− k)) starting from
the northeast corner of k× (n− k) towards the southeast corner of k× (n− k). Record each←
step with ‘0’ and each ↓ step with ‘1’.

We now convert P into (we claim) an edge-labeled starred genomic tableau T := φ(P )
of shape ν/λ with content µ. The placement of the labels of family i is governed by the
decomposition (3.1) of πi. The initial sequence of k ’s indicates the leftmost possible placement
of box labels iµi , iµi−1, . . . , iµi−k+1 (from right to left) in row i of T . Continuing to read the
sequence, one interprets:

Applying φ to the puzzle P of Figure 1 gives the tableau T of Figure 2. Here λ = 0510101010,
corresponding to the inner shape (12, 2, 1) (which is shaded in grey). Since µ = 07105102103, the
content of T is (10, 5, 3). Finally, since ν = 02107103105, the outer shape of T is (15, 8, 5). As
another example, φ connects the puzzles P2, P3, P5 and P6 of § 1 respectively with the tableaux
T2, T3, T5 and T6 of Example 2.2.

Conversely, given T ∈ StarBallotGenµ(ν/λ), construct a word σi using the correspondences
(B.1)–(B.9), for 1 6 i 6 k. That is, read the occurrences (possibly zero) of family i in T from
right to left and from the ith row down. We note about (B.6) in the degenerate case that there
are no labels of family i in the next row: use N after reading the leftmost box in that row of ν/λ
(i.e., the one without any family-i box entries) without a label of family < i.

Lemma 3.3. Each σi is of the form (3.1).

Proof. Since T is semistandard, in any row, all box labels of family i are contiguous and strictly
right of any (lower) edge labels of that family on that row. The lemma follows. 2

We describe a claimed filling P := ψ(T ) of ∆λ,µ,ν . There are k 1’s on each side of ∆λ,µ,ν ; to the
ith 1 from the left on the ν-boundary of ∆λ,µ,ν , place puzzle pieces in the order indicated by σi.
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That is, attach the next (combination) piece using the northernmost \ edge on its west side, if
it exists. Otherwise attach at the piece’s unique southern edge. We attach at the unique — or \
edge of the thus far constructed track. Fill in the order i = 1, 2, 3, . . . , k. Now stack ’s northwest
of each N until (we claim) we reach one of the pieces of (A.6)–(A.9) at the southernmost / edge
or the λ-boundary of ∆λ,µ,ν . Complete using white triangles.

Sections 3.2–3.4 prove that φ and ψ are well-defined and weight-preserving maps between

P := {modified KV-puzzles of ∆λ,µ,ν} and T := StarBallotGenµ(ν/λ).

Semistandardness (specifically (S.4)) implies that knowing the locations of labels of family i,
and which labels are repeated or ?-ed, uniquely determines the gene(s) in each location. The
injectivity of φ and ψ is easy from this. Moreover, by construction (cf. Lemma 3.3), the two
maps are mutually reversing. Thus, Theorem 1.2 follows from Theorem 2.1. 2

3.2 Well definedness of φ : P → T
Let P ∈ P be a modified KV-puzzle for ∆λ,µ,ν . For the track πi, let Ni,j refer to the jth N seen
along πi (as read from southwest to northeast). Let S denote any of the (combination) pieces
that appear in startrow. Similarly, we let Si,j be the jth such piece on πi.

Figure 1 illustrates the ‘ragged honeycomb’ structure of modified KV-puzzles. To formalize
this, first note by inspection that the πi do not intersect. Second, we have the following claim.

Claim 3.4. There is a bijective correspondence between the 1’s on the λ-boundary and the N’s
in π1. Specifically, the jth 1 on the λ-boundary is the terminus of the NWray of N1,j . Similarly,
there is a bijective correspondence between Ni+1,j and Si,j in that the former’s NWray terminates
at the southernmost / edge of the latter.

Proof. This follows by combining Proposition 3.1 and Lemma 3.2. 2

Define Li to be the left sequence of πi: start at the southwest corner of ∆λ,µ,ν and read the
{→,↗}-lattice path that starts along the ν-boundary and travels up the left-hand boundary of
πi. The {0, 1}-sequence records the labels of the edges seen. Similarly, define Ri to be the right
sequence of πi by traveling up the right-hand side of πi but only reading the → and ↗ edges.
(In Figure 1, L1 = 0510101010(= λ) while R1 = 021011102102.)

In view of Claim 3.4, the following is ‘graphically’ clear by considering the n diagonal strips
through P .

Claim 3.5. L1 = λ, Li+1 = Ri for 1 6 i 6 k − 1 and Rk = ν.

Let T (i) be the tableau after adding labels of family 1, 2, . . . , i. We declare T (0) to be the
empty tableau of shape λ/λ. Let ν(i) be the outer shape of T (i) (interpreted as the {0, 1}-sequence
for its lattice path).

Claim 3.6. Li = ν(i−1) and Ri = ν(i).

Proof. Both assertions follow by inspection of the correspondences (B.1)–(B.9). (Also, the second
follows from the first, by Claim 3.5.) 2

It is straightforward from Claims 3.5 and 3.6 that T = φ(P ) is semistandard in the sense of
(S.1)–(S.4) of [PY15]. By Proposition 3.1, no label of T is ?-ed unless it is the rightmost box
label of its family in a row (> i). Since labels of family i are placed in the boxes of row i or
below, no label of T can be too high. Since Rk = ν, the shape of T is ν/λ.
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Claim 3.7. T has content µ.

Proof. Let β be the content of T . Then βi is the number of (distinct) genes of family i that

appear in T , which, in terms of P , is the number of and in πi minus the number of

purple KV-pieces in πi. Thus, the vertical height hi of πi (at its right end point) is βi + # N.
However, hi equals the number of line segments strictly below the ith 1 on the µ-boundary; i.e.,
hi = n− i− (n− k − µi) = (k − i) + µi. By Claims 3.4 and 3.1, # N = (k − i), hence β = µ, as
desired. 2

Finally, we have the following claim.

Claim 3.8. T is ballot.

Proof. The height of a (combination) piece is the distance of any northernmost point to the
ν-boundary as measured along any (anti)diagonal. The height h of Ni+1,j equals the number

of ’s, N’s and ’s that appear weakly before Ni+1,j in πi+1 minus the number of ’s before

Ni+1,j in πi+1. There are exactly j such N’s, while the number of ’s and ’s is the number

of labels used and the number of ’s is the number of these labels that are repeats. That
is, h = j + (#distinct genes of family i + 1 in row j + 1 and above), where we do not include
labels on the lower edges of row j + 1. Similarly, the height h′ of Si,j is given by h′ = j +
(#distinct genes of family i in row j and above), where we include labels on the lower edges of
row j. If Si,j = H, then, by Claim 3.4, h′ − h > 0, and ballotness follows, since the h′ − j genes
of family i appearing in row j and above appear entirely in those rows. Otherwise Si,j is a
combination piece, and h′ − h > 1 by Claim 3.4; ballotness follows, since of the h′ − j genes of
family i that appear in row j and above, all but at most one appear entirely in those rows. 2

3.3 Well definedness of ψ : T → P
Let T ∈ T be a starred ballot genomic tableau of shape ν/λ and content µ. Let P = ψ(T ). Let
πi be the track associated to σi. As in § 3.2, we define the {0, 1}-sequences Li and Ri associated
to πi. Here T (i) is defined as the subtableau of T using the labels of family 1, 2, . . . , i. Hence,
T (0) is the empty tableau of shape λ/λ. Let ν(i) be the outer shape of T (i).

Claim 3.9 (Cf. Claim 3.6). Li = ν(i−1) and Ri = ν(i).

Proof. By inspection of the correspondences (B.1)–(B.9). 2

By the lattice path definition, each ν(j) is a length-n sequence. So, πi is a track that (by
definition) starts at the south border of ∆ and terminates at the east border of ∆. Also, define
Hi,j and Si,j as before.

Claim 3.10. Si,j and Ni+1,j share a diagonal with the former strictly northwest of the latter.

Proof. The 1’s in Li+1 result solely from the N’s appearing in πi+1 while the 1’s appearing in
Ri result solely from the S (combination) pieces. Thus, that the pieces share a diagonal follows
from Claim 3.9. For the ‘northwest’ assertion, repeat Claim 3.8’s argument but reverse the logic
of the final sentence: since by assumption T is ballot, it follows that h′ > h. 2
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Since Claims 3.9 and 3.10 combine to imply that the πi are non-intersecting, attaching
NWrays to each N and filling with white 0-triangles as prescribed, we have a filling P of ∆

λ̃,µ̃,ν
satisfying the modified KV-puzzle rule. It remains to check the λ- and µ-boundaries.

Claim 3.11. λ̃ = λ.

Proof. Graphically, λ̃ = L1. On the other hand, by Claim 3.9, we know that L1 = λ. 2

Claim 3.12. µ̃ = µ.

Proof. This is given by reversing the logic of the proof of Claim 3.7; here we are given the content
of T and are determining the heights of the tracks πi. 2

3.4 Weight preservation
We wish to show the following result.

Claim 3.13. φ is weight preserving, i.e., wt(P ) = ŵt(T ).

Proof. The ±1 sign associated to P and T is the same since each usage of a KV-piece in P
corresponds to a ?-ed label or a repetition of a gene in T .

Now consider the weight 1 − ta/tb assigned to an equivariant piece p in P . Here a is the
ordinal (counted from the right) of the line segment s on the ν-boundary hit by the diagonal
‘right leg’ emanating from p. Then b equals a + h − 1, where h is the height of the piece p.
Suppose that p lies in track πi, and corresponds either to ij on the lower edge of box x in row r
or to i?j ∈ x in row r. Consider the edge e on the left boundary of πi that is on the same diagonal
as s. If p is not attached to the first KV-piece, so it corresponds to an edge label, then e’s index
from the right in the string Li equals Man(x). Otherwise e’s index from the right in the string
Li equals Man(x) + 1.

Note that h equals the number of ’s, N’s and ’s appearing weakly before p in πi minus the

number of ’s appearing before p in πi. The number of such N’s equals 1 + r− i if p corresponds
to an edge label and equals r − i if p corresponds to a starred label. The number of such ’s
and ’s minus the number of such ’s equals µi − j + 1. Weight preservation follows. 2
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CV09 I. Coşkun and R. Vakil, Geometric positivity in the cohomology of homogeneous spaces and
generalized Schubert calculus, in Algebraic geometry—Seattle 2005, Part 1, Proceedings of
Symposia in Pure Mathematics, vol. 80 (American Mathematical Society, Providence, RI,
2009), 77–124.

FL94 W. Fulton and A. Lascoux, A Pieri formula in the Grothendieck ring of a flag bundle, Duke
Math. J. 76 (1994), 711–729.

Knu10 A. Knutson, Puzzles, positroid varieties, and equivariant K-theory of Grassmannians,
Preprint (2010), arXiv:1008.4302.

KP11 A. Knutson and K. Purbhoo, Product and puzzle formulae for GL(n) Belkale–Kumar
coefficients, Electron. J. Combin. 18 (2011), P76.

KT03 A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians,
Duke Math. J. 119 (2003), 221–260.

KTW04 A. Knutson, T. Tao and C. Woodward, The honeycomb model of GLn(C) tensor products II:
puzzles determine facets of the Littlewood–Richardson cone, J. Amer. Math. Soc. 17 (2004),
19–48.

Kre10 V. Kreiman, Equivariant Littlewood–Richardson skew tableaux, Trans. Amer. Math. Soc.
362 (2010), 2589–2617.

LS82 A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et
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