Toshihiro Hadano Nagoya Math. J. Vol. 53 (1974), 199-210

ON THE CONDUCTOR OF AN ELLIPTIC CURVE WITH A RATIONAL POINT OF ORDER 2

TOSHIHIRO HADANO

1. Introduction

Let C be an elliptic curve (an abelian variety of dimension one) defined over the field Q of rational numbers. A minimal Weierstrass model for C at all primes p in the sense of Néron [3] is given by a plane cubic equation of the form

$$y^{2} + a_{1}xy + a_{3}y + x^{3} + a_{2}x^{2} + a_{4}x + a_{6} = 0, \qquad (1.1)$$

where a_j belongs to the ring Z of integers of Q, the zero of C being the point of infinity.

Following Weil, we define the conductor N of C by

$$N = \prod_{\text{all } p} p^{(\operatorname{ord}_p d + 1 - n_p)}$$
,

where Δ denotes the discriminant of C, and n_p is the number of components of the Néron reduction of C over Q without counting multiplicities. It is well-known that the *p*-exponent of N is

 $\operatorname{ord}_p \mathcal{A} + 1 - n_p = \begin{cases} 0 & \text{for non-degenerate reduction} \\ 1 & \text{for multiplicative reduction} \\ 2 & \text{for additive reduction and } p \neq 2, 3 \\ \geqq 2 & \text{for additive reduction and } p = 2, 3 \end{cases}.$

Therefore both N and Δ of a minimal model are divisible exactly by those primes at which C has degenerate reduction. (See Ogg [6], [7]).

We consider the problem to find all the elliptic curves over Q of given conductor N. As we may reduce this problem to find the rational solutions of the diophantine equation $y^2 = x^3 + k$ with $k \in \mathbb{Z}$, there are only finitely many such curves by virtue of Thue's theorem. Ogg [5], [6] has found all the curves by showing that they have a rational point

Received September 27, 1973.

TOSHIHIRO HADANO

of order 2 for $N = 2^m$, $3 \cdot 2^m 9 \cdot 2^m$, while Vélu [8] found all the curves of $N = 11^m$ under the Weil's conjecture for $\Gamma_0(N)$. On the other hand, Miyawaki [1] has culculated all the curves of prime power conductor with a rational point of finite order >2.

In this paper we treat the curves of $N = p^m$ and $2^m p^n$ (for this case, see [10] as résumé) with a rational point of order 2. For $N = p^m$, we can find all admissible p, and, a fortiori, all the curves for each p. (Section 3). For $N = 2^m p^n$, we can find all the curves under an assumption which can be eliminated for 'non-large' p with $p \equiv 3$ or 5 (mod 8). Moreover, we get some results on the elliptic curve which has multiplicative reduction at 2 and p, and these are generalizations of the results of Ogg [6]. (Section 4). In Appendix all the elliptic curves of 3-power conductor are determined.

2. Diophantine lemma

We prepare all the diophantine results we need afterwards.

LEMMA. The only non-zero integral solutions of the equations below for a given odd prime p are as follows:

1) If $X^2 - 1 = 2^{\alpha}p^{\beta}$, then $(|X|, 2^{\alpha}p^{\beta}) = (2, 3), (3, 2^3), (5, 2^33), (7, 2^43), (9, 2^45), (17, 2^53^2)$ for $p \equiv 3$ or 5 (mod 8), and $\beta = 1$, $p = 2^{\alpha-2} \pm 1$ ($\alpha \ge 5$) for $p \equiv 1$ or 7 (mod 8).

2) If $X^2 + 1 = 2^{\alpha}p^{\beta}$, then $(|X|, 2^{\alpha}p^{\beta}) = (1, 2)$ for $p \equiv 3 \pmod{4}$, and either $\alpha = 0, \beta = 1$ or $\alpha = 1, \beta = 1, 2, 4$ for $p \equiv 1 \pmod{4}$. In particular we have $\beta = 4$ if and only if p = 13, |X| = 239.

3) If 2X² - 1 = p^α, α > 0, then there is no solution for p ≡ 3 or 5 (mod 8).
4) If 2X² + 1 = p^α, α > 0, then α = 1, 2 or (|X|, p^α) = (11, 3⁵) for p ≡ 1 or 3 (mod 8), and there is no solution for p ≡ 5 or 7 (mod 8).

5) We assume here that p satisfies the conjecture of Ankeny-Artin-Chowla and the analogy (See [2], Chapter 8) for $p \equiv 3$ or 5 (mod 8). If $|\pm p^{\alpha} - X^2| = 2^{\beta}$, then $(\pm p^{\alpha}, |X|) = (1, 3), (-1, 1), (3, 2), (-3, 1), (3^2, 1), (3^2, 5),$ $(3^3, 5), (3^4, 7)$ or $\alpha = \beta = 1$ for $p \equiv 3 \pmod{8}$, and $(\pm p^{\alpha}, |X|) = (1, 3), (-1, 1),$ $(5^2, 3), (5^3, 11), \alpha = 1, \beta = 0$ or $\alpha = 1, \beta = 2$ for $p \equiv 5 \pmod{8}$.

6) If $pX^2 - Y = \pm 2^{\alpha}$, and $Y = \pm 2^{\beta}$, then either 2|X, 4|Y, or (|X|, Y) = (1, 4), (1, 2), (1, 1), (1, -1) for p = 3, (1, 4), (1, 1) for p = 5, and there is no solution for $p \neq 3, 5$.

7) If $X^2 - 64 = p^{\alpha}$, then $(|X|, p^{\alpha}) = (9, 17)$.

8) If $X^2 + 64 = p^{\alpha}$, then $(|X|, p^{\alpha}) = (15, 17^2)$ or $\alpha = 1$ for all p.

ELLIPTIC CURVE

This lemma except 7) and 8) is a generalization of Diophantine lemma of Ogg [6]. The methods for solving these equations are standard and elementary. We refer to each parts of this lemma as D_1, \dots, D_8 . D_1 is easy by [2], Chapter 30. D_2 may be solved by factorization in $\mathbb{Z}[\sqrt{-1}]$ and Ljunggren's result in [2], Chapter 28. D_3 is easy. D_4 and D_5 may be solved by the congruence method and the results of Pell's equation. D_6 and D_7 are easy. D_8 may be solved by factorization in $\mathbb{Z}[\sqrt{-1}]$.

3. The case of $N = p^m$

Let C be an elliptic curve of conductor $N = p^m$ with a rational point of order 2. Then we have m = 1 or 2 from Section 1 if $p \neq 2,3$ (cf. Appendix) and we have a defining equation for C of the form

$$y^2 + x^3 + a_2 x^2 + a_4 x = 0 ag{3.1}$$

with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2$, and such that we do not have $2^2 | a_2$ and $2^4 | a_4$. This curve is isomorphic to

$$y^{2} + xy + x^{3} + \left(\frac{a_{2} + 1}{4}\right)x^{2} + \frac{a_{4}}{16}x = 0$$
, (3.2)

minimal at all p. If these coefficients are not integers, they can be made integers by a translation.

Now we propose to find all possible p such that the discriminant of (3.2) is

$$\varDelta = 2^{-8}a_4^2(a_2^2 - 4a_4) = \pm p^2$$

This result will give the determination of all C above up to isomorphisms. At first, dividing the curve (3.2) by the group generated by (x, y) = (0, 0), we have an isogenous curve of degree 2 given by

$$y^{2} + xy + x^{3} + \left(\frac{1-2a_{2}}{4}\right)x^{2} + \left(\frac{a_{2}^{2}-4a_{4}}{16}\right)x = 0$$
, (3.3)

which also has a rational point (x, y) = (0, 0) of order 2. Its discriminant is $2^{-4}a_4(a_2^2 - 4a_4)^2 = \pm p^u 2^{12k}$ $(k \in \mathbb{Z}, k \ge 0)$, since (3.3) is not necessarily minimal at p = 2 and there is a relation, in general, $12 | (\operatorname{ord}_p \mathcal{A}' - \operatorname{ord}_p \mathcal{A})$ between the discriminant \mathcal{A}' of a non-minimal model and the discriminant \mathcal{A} of its minimal model. Hence we have $p^{21} = \pm 2^{12k-12}a_4^3p^u$, and so $|a_4| = 1$, 16, p^{α} or $16p^{\alpha}$ and k = 0 or 1. On the other hand, either a_2 is odd or $2||a_2|$ as we see below, and we see that only if $a_2 \equiv 3 \pmod{4}$ or $a_2 \equiv 2 \pmod{8}$ according as $2 \nmid a_2$ or $2||a_2|$ respectively, we may rewrite the equation (3.3) to the minimal equation of integral coefficients by a suitable translation.

If $a_4 = \pm 1$, then $a_2 = 2b_2$ is even, so $|b_2^2 \pm 1| = 2^6 p^2$, and by D_1 and D_2 we get $(p, a_2, a_4) = (17, 66, 1)$. If $a_4 = \pm 16$, then $|a_2^2 \pm 64| = p^2$; by D_7 and D_8 we get $(p, a_2, a_4) = (17, -9, 16), (17, 15, -16), \text{ or } (X^2 + 64, X, -16).$ If $a_4 = \pm p^{\alpha}$, then $a_2 = 2b_2$ is even, so $|b_2^2 \pm p^{\alpha}| = 2^6 p^{\lambda - 2\alpha}$. Suppose first $\lambda = 2\alpha$, then $|b_2^2 \pm 64| = p^{\alpha}$; by D_7 and D_8 we get $(p, a_2, a_4) = (17, 18, 17)$, $(17, -30, 17^2)$ or $(X^2 + 64, -2X, X^2 + 64)$. Henceforth put $b_2 = p^t c_2$ $(p \nmid c_2)$ so that $|p^{2t}c_2^2 \pm p^{\alpha}| = 2^{\theta}p^{\lambda-2\alpha}$. If $\alpha \ge 4$, then t = 1 since otherwise we can find a better model, so $c_2^2 \pm p^{\alpha-2} = \pm 2^6 p^{\lambda-2\alpha-2}$ and by D_7 and D_8 we get $(p, a_2, a_4) = (17, -510, 17^4)$. If $\alpha = 3$, then $|c_2^2 \pm p^{3-2t}| = 2^6 p^{2-2t-6}$ or $|p^{2t-3}c_2^2 \pm 1| = 2^6 p^{1-9}$, and by D_7 and D_8 we get $(p, a_2, a_4) = (17, 306, 17^3)$, $(X^2 + 64, 2X(X^2 + 64)), (X^2 + 64)^3)$ or $(7, -294, -7^3)$. If $\alpha = 2$, then $|c_2^2 \pm p^{2-2t}| = 2^6 p^{\lambda-2t-4}$ or $|p^{2t-2}c_2^2 \pm 1| = 2^6 p^{\lambda-6}$, and by D_1, D_2, D_7 and D_8 we get $(p, a_2, a_4) = (17, 66 \cdot 17, 17^2)$. If $\alpha = 1$, then $|p^{2t-1}c_2^2 \pm 1| = 2^6 p^{2-3}$ and we get $(p, a_2, a_4) = (7, 42, -7)$. Lastly if $a_4 = \pm 16p^{\alpha}$, then $|a_2^2 \pm 2^6 p^{\alpha}| =$ $p^{1-2\alpha}$. Therefore similarly to above, we get $(p, a_2, a_4) = (17, -33, 16 \cdot 17)$, $(17, -17 \cdot 9, 16 \cdot 17^2), (17, 17 \cdot 15, -16 \cdot 17^2), (17, 17 \cdot 33, 16 \cdot 17^3), (7, 147, 16 \cdot 7^3),$ $(X^2 + 64, X(X^2 + 64), -16(X^2 + 64)^2)$ or $(7, -21, 16 \cdot 7)$. This completes all cases.

By identifying the isomorphic curves each other we have

THEOREM I. There are elliptic curves of conductor $N = p^m$, (where $p \neq 2$ and m = 1 or 2), with a rational point of order 2 for p = 7, 17 and primes p such that p - 64 is square.

The minimal models with integral coefficients for p = 7, 17, 73 are following:

N	minimal equation	Δ	2-division points $(x,y) \neq \infty$
7^2	$y^2 + xy + x^3 - 5x^2 + 7x = 0$		(0,0)
	$y^2 + xy + x^3 - 5x^2 - 28x + 3 \cdot 7^2 = 0$	73	$\left(\frac{21}{4},-\frac{21}{8}\right)$
	$y^2 + xy + x^3 + 37x^2 + 7^3x = 0$	-79	(0,0)
	$y^2 + xy + x^3 + 37x^2 - 4 \cdot 7^3x - 3 \cdot 7^5 = 0$	79	$\left(-\frac{147}{4},\frac{147}{8}\right)$

Table 1.

202

ELLIPTIC CURVE

N	minimal equation	Δ	2-division points $(x,y) \neq \infty$
17	$y^2 + xy + x^3 - 2x^2 + x = 0$	17	(0,0),(1,0),(1,-1)
	$y^2 + xy + x^3 + 16x^2 - 8x + 1 = 0$	17	$\left(\frac{1}{4},-\frac{1}{8}\right)$
	$y^2 + xy + x^3 + 4x^2 - x = 0$	172	$(0,0), (-4,2), \left(\frac{1}{4}, -\frac{1}{8}\right)$
	$y^2 + xy + x^3 - 20x^2 + 136x - 17^2 = 0$	-17^{4}	$\left(\frac{17}{4},-\frac{17}{8}\right)$, (0, ±17)
17^{2}	$y^2 + xy + x^3 - 38x^2 + 17^2x = 0$	17^{7}	(0,0), (-17,9.17), (-17,-8.17)
	$y^2 + xy + x^3 + 268x^2 - 8 \cdot 17^2x + 17^3 = 0$	177	$\left(\frac{17}{4},-\frac{17}{8}\right)$
	$y^2 + xy + x^3 - 140x^2 + 17^3x = 0$	178	$(0,0), (68, -34), \left(\frac{17^2}{4}, -\frac{17^2}{8}\right)$
	$y^2 + xy + x^3 - 344x^2 + 8 \cdot 17^3 x - 17^5 = 0$	-17^{10}	$\left(rac{17^2}{4},-rac{17^2}{8} ight)$
73	$y^2 + xy + x^3 + x^2 - x = 0$	73	(0,0)
	$y^2 + xy + x^3 + x^2 + 4x + 3 = 0$	-73^{2}	$\left(-\frac{3}{4},\frac{3}{8}\right)$
73^{2}	$y^2 + xy + x^3 + 55x^2 - 73^2x = 0$	73^{7}	(0,0)
	$y^2 + xy + x^3 + 55x^2 + 4 \cdot 73^2 x + 3 \cdot 73^3 = 0$	-73^{8}	$\left(-\frac{219}{4},\frac{219}{8}\right)$

Remark. We see that the members in each N above are isogenous to each other. (See Vélu [9]). For p = 2, see Ogg [5]. It is well known that $N \neq 7$.

4. The case of $N = 2^m p^n$

In this section we deal with the case $N = 2^m p^n$ for odd prime p and generalize the results of Ogg using his ideas ([6], § 2).

Let $K = Q(C_2)$ be a Galois field generated by the group C_2 of 2-division points on the elliptic curve C defind over Q. For each prime p, e_p denotes the ramification degree of K/Q at p. Then we know the following results:

LEMMA (Ogg [6]). (1) If C has non-degenerate reduction at each $p \neq 2$, then $e_p = 1$. (2) If C has multiplicative reduction at all p, then $e_p = 1$ or 2.

(3) Suppose C has no non-zero point of order 2 in rational coordinates, then K/k is cyclic of degree 3 over a field k of degree 1 or 2 over Q. Suppose furthermore $e_p = 1$ or 2 for all p. Then the class number of k is divisible by 3.

Now let p be an odd prime such that none of the class numbers of four fields $Q(\sqrt{\pm p})$, $Q(\sqrt{\pm 2p})$ is divisible by 3, and fix this p. Suppose C has non-degenerate reduction (i.e. good reduction) at all primes $q \neq 2$, p. Then $e_q = 1$ by (1) in Lemma, and if the first conditions of (3) in Lemma is satisfied, then k in (3) is $Q, Q(\sqrt{-1}), Q(\sqrt{\pm 2}), Q(\sqrt{\pm p})$ or $Q(\sqrt{\pm 2p})$. Hence $3|e_2$ or $3|e_p$. Therefore $3|e_2$ by virtue of (2) in Lemma if $N = 2^m p$, that is, C has a rational point of order 2 if $e_2 = 1$ or 2 and $N = 2^m p$. In particular by (2) in Lemma C has a rational point of order 2 if N = 2p. So we can generalize Ogg's result:

THEOREM II. If none of the class numbers of four quadratic fields $Q(\sqrt{\pm p})$, $Q(\sqrt{\pm 2p})$ for a prime $p \equiv 3$ or 5 (mod 8) is divisible by 3, then there are no elliptic curves of conductor N = 2p.

Proof. If there exists such a curve, we can choose an equation

$$y^2 + x^3 + a_2 x^2 + a_4 x = 0$$

with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2$. We also assume that we do not have $2^2 | a_2$ and $2^4 | a_4$. Since we have multiplicative reduction at 2 and p, $\operatorname{ord}_2 j < 0$ and $p \nmid a_2$ (cf. [3]), where $j = 2^{12} (a_2^2 - 3a_4)^3 \Delta^{-1}$ is the invariant of the curve with the discriminant $\Delta = 2^4 a_4^2 (a_2^2 - 4a_4) = \pm 2^{\mu} p^{\nu}$. Hence we have $\mu = \operatorname{ord}_2 \Delta > 12$. If a_2 is odd, then $a_2^2 - 4a_4 = \pm p^{\alpha}$, $\operatorname{ord}_2 (4a_4) > 6$. If $p | a_4$, then $a_2^2 \pm 1 = 4a_4 = 2^{\alpha} p^{\beta}$, which is impossible by D_1 and D_2 since $\alpha > 6$. If $p \nmid a_4$, then $|\pm p^{\alpha} - a_2^2| = |4a_4| = 2^{\beta}$, $\beta > 6$, which is also impossible by D_5 (without the assumption there). Then we see that this theorem can be proven by the same method as used by Ogg to show $N \neq 10$, 12 in [6], § 4. (Replace Diophantine lemma there with our D_1 and D_5 ! 'Of type C1' in his proof should be 'of type C2'.)

For example, we have p = 37, 43, 67, 197, 227 etc. except p = 3, 5, 11. However, it is well-known that this is not true for $p \equiv 1$ or 7 (mod 8), but on the other hand we have

THEOREM III. If none of the class numbers of four quadratic fields $Q(\sqrt{\pm p})$, $Q(\sqrt{\pm 2p})$ for a prime $p \equiv 1$ or 7 (mod 8) is divisible by 3, then the elliptic curves of conductor $N = 2^m p$, (m > 0), have a rational point of order 2.

204

Proof. As a defining equation for a curve C of $N = 2^m p$, we can take

$$y^2 + x^3 + a_2 x^2 + a_4 x + a_6 = 0$$

with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2$. If $3 \nmid a_2$, then we get an equation

$$y^2 + x^3 + a_4 x + a_6 = 0 \tag{4.1}$$

with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2, 3$ and such that we do not have $2^4 | a_4$ and $2^6 | a_6$. The discriminant Δ of this curve is

$$arDelta=-2^4(4a_4^3+27a_6^2)=\pm 2^\mu 3^{12}p^
u$$
 , $(\mu,
u>0)$.

Suppose that C has no rational point of order 2, then an irrational point (x, y) of order 2 is (r, 0), where r is a root of $f(X) = X^3 + a_4X + a_6$ and $r \notin Q$. Therefore the ramification degree e_2 at the prime 2 of Q(r)/Q is 3 under the assumption as we have seen. Considering the discriminant of this cubic field, we see that a_6 is even. If a_4 is odd, then x = 0 refines to a root r of f(X) in Q_2 by Newton's method. This is a contradiction. Put $a_4 = -2u$, $a_6 = 2v$. Then $8u^3 - 27v^2 = \pm 2^{\mu-6}3^{12}p^{\nu}$, so v is even, since otherwise $8u^3 - 27v^2 = \pm 3^{12}p^{\nu}$, which is impossible modulo 8 for $p \equiv 1$ or 7 (mod 8). Put $v = 2v_1$. Then we have $f(X) = X^3 - 2uX + 2^2v_1$, hence u is even by $e_2 = 3$. Put $u = 2u_1$, then $16u_1^3 - 27v_1^2 = \pm 2^{\mu-8}3^{12}p^{\nu}$, so v_1 is even, since otherwise $16u_1^3 - 27v_1^2 = \pm 3^{12}p^{\nu}$, which is impossible as above. Therefore we have $2^2 |a_4$ and $2^3 |a_6$. Thus to solve f(X) = 0 is the same thing as to solve

$$2^{-3}f(2X) = X^3 + 2^{-2}a_4X + 2^{-3}a_6$$
 .

Hence repeating the above arguments, we have $2^4 | a_4$ and $2^6 | a_6$, and this is a contradiction. If $3 | a_2$, then we get (4.1) with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2$, such that the discriminant

$$\varDelta = -2^{4}(4a_{4}^{3} + 27a_{6}^{2}) = \pm 2^{\mu}p^{\nu} \qquad (\mu, \nu > 0)$$

and such that we do not have $2^4 | a_4$ and $2^6 | a_6$. In the same manner as above, we can complete the proof of this case, too.

For example we have p = 7, 17, 41, 47, 73, 97 etc. as such p.

In another direction:

THEOREM IV. All the elliptic curves of the conductor $N = 2^m p^n$, where $p \equiv 3$ or 5 (mod 8) and $p \neq 3$, that have a rational point of order

TOSHIHIRO HADANO

2 are effectively determined under the conjecture of Ankeny-Artin-Chowla and the analogy. In particular if p-2 or p-4 is a square number, then the assumption on the conjecture can be eliminated.

Proof. We can take a defining equation for C of the form

$$y^2 + x^3 + a_2 x^2 + a_4 x = 0 (4.2)$$

with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2$, and such that we do not have $2^2 |a_2|$ and $2^4 |a_4|$. The discriminant of this model is

$$\Delta = 2^4 a_4^2 (a_2^2 - 4a_4) = \pm 2^{\mu} p^{\nu} . \qquad (4.3)$$

It is sufficient to find all the pairs (a_2, a_4) satisfying (4.3) for a given p. Noting that $p \nmid a_2$ (resp. $p \mid a_2$) if $N = 2^m p$ (resp. $N = 2^m p^2$), we can get all the pairs (a_2, a_4) , up to isomorphisms, by virtue of Diophantine lemma D_1, \dots, D_6 in view of the fact that $2^2 \nmid a_2$ and $2^4 \nmid a_4$. (For details, see Ogg [6], § 3.)

We know that n = 1 or 2 only if $p \ge 5$. For p = 3, Remark. Ogg [6] has found all the curves of conductor $N = 3 \cdot 2^m$ and $9 \cdot 2^m$ by showing that they have a rational point of order 2 (cf. [4]), and Coghlan has found in his thesis all the curves of conductor $N = 2^m 3^n$. For example, if $N = 2^{m}5$ in our case, then $2 \leq m \leq 7$ and there are 56 curves with a rational point of order 2. We can prove, in general, that the integer m is not larger than 8. Moreover, we see that the equation (4.2) is minimal at all p (including p = 2), in fact, otherwise we can consider the same situation as in Section 3 for $N = 2^m p^n$ to show that we cannot find the pairs (a_2, a_4) of the equation (3.2) since the equation $|X^2 \pm p^{\alpha}|$ $=2^{\beta}$, $\beta > 6$, has no integer solutions for $p \equiv 3$ or 5 (mod 8) by D_{5} . For $p \equiv 1$ or 7 (mod 8), it seems to be difficult to solve the equations of D_3 , $D_{\mathfrak{s}}$ (especially $D_{\mathfrak{s}}$) in general, but the theorem remains valid for all p>3so long as those equations are solved.

5. Supplementary discussions

We can find all the curves of some other conductors N with a rational point of order 2 so long as the corresponding diophantine equations can be solved as in the previous sections. In fact, for example, we can find all the curves of conductor $N = p^m q^n$, where m, n > 0, p and q are primes such that $p \equiv 3$, $q \equiv 5 \pmod{8}$, with a rational point

ELLIPTIC CURVE

of order 2. By solving the equations

$$egin{array}{lll} X^2 \pm 64 = \pm p^lpha q^eta \,, & X^2 \pm 1 = 2^6 p^lpha q^eta \,, & |p^lpha X^2 \pm 1| = 2^6 q^eta \,, \ |p^lpha X^2 \pm 2^6 q^eta| = X^2 \,, & |p^lpha X^2 \pm 64| = q^eta \,. \end{array}$$

induced from the defined equation (3.2) in Section 3 with $\Delta = \pm p^{\mu}q^{\nu}$, we get 136 curves of (p,q) = (3,5), (3,13), (11,5), (19,5), (3,37), (3,61),(59, 5), (11, 53) and m, n = 1 or 2. Moreover, a fortiori, we can find all the curves of a given conductor N with a rational point of order r > 2so long as the corresponding diophantine equations can be solved. In fact, for example, if $N = 2^m p^n$, and r = 4 (cyclic), then such curves can be defined by

$$y^2 + x^3 \pm (s^2 + 2t)x^2 + t^2x = 0$$

with s, $t \in \mathbb{Z}$, s > 0, minimal at all $p \neq 2$, and these curves are isogenous to

$$y^2 + x(x \mp s^2)(x \mp s^2 \mp 4t) = 0$$
,

which have three rational points of order 2. Then we have either p = $2^k \pm 1$ $(k \ge 1)$ or $N = 2^5 p^2$, $2^6 p^2$ for all p. In particular, we have only $N = 17^n$ for m = 0 and the curves are included in Table 1 in section 3. As another example, suppose $N = 2^m p^n$ and r = 6 (non-cyclic, that is, curves which have both a rational point of order 2 and of order 3); then we have N = 14, 20, 34 and 36 as Table 2 below. Note that there exist two curves; $y^2 + xy + x^3 - 45x^2 + 2^9x = 0$, $y^2 + xy + x^3 - 45x^2 - 45x^$ $2^{11}x + 2^{9}181 = 0$ (resp. $y^2 + x^3 + 11x^2 - x = 0$, $y^2 + x^3 - 22x^2 + 125x = 0$; $y^{2} + x^{3} - 9x^{2} + 27x = 0$, $y^{2} + x^{3} + 18x^{2} - 27x = 0$ in addition to these for N = 14 (resp. 20; 36), and the 6 or 4 curves for N = 14, 20, 36 are isogenous to each other of degree 2 or 3.

Ν		minimal model	Δ	j	2-isogenous to:
14	1	$y^2 + xy + y + x^3 = 0$	$-2^{2}7$	$-5^{6}2^{-2}7^{-1}$	2,*
14	2	$y^2 - 5xy + y + x^3 = 0$	2.7^{2}	$5^{3}101^{3}2^{-1}7^{-2}$	1,**
14	3	$y^2 - 5xy + 7y + x^3 = 0$	$-2^{6}7^{3}$	$5^{3}43^{3}2^{-6}7^{-3}$	4,*
14	4	$y^2 - 11xy + 49y + x^3 = 0$	$2^{3}7^{6}$	531133132-37-6	3,**
20	5	$y^2 + x^3 - x^2 - x = 0$	245	$2^{14}5^{-1}$	6
20	6	$y^2 + x^3 + 2x^2 + 5x = 0$	$-2^{8}5^{2}$	2 ⁴ 11 ³ 5 ⁻²	5
34	7	$y^2 + xy + x^3 + 6x^2 + 8x = 0$	2617	$5^{3}29^{3}2^{-6}17^{-1}$	8

Table 2.

TOSHIHIRO HADANO

N		minimal model Δ j		2-isogenous to:	
34	8	$y^2 + xy + x^3 - 43x - 105 = 0$	2 ³ 17 ²	53735932-317-2	7
36	9	$y^2 + x^3 + 3x^2 + 3x = 0$	$-2^{4}3^{3}$	0	10
36	10	$y^2 + x^3 - 6x^2 - 3x = 0$	2833	243353	9

* (resp. **) denotes the isogeny of degree 3 between the curves with the same symbol.

APPENDIX

We can find all the elliptic curves of 3-power conductor defined over Q, up to isomorphism, as listed in Table below. Coghlan found all the curves of $N = 2^m 3^n$ in his thesis, in which the curves of $N = 3^n$ are dealt with in a manner different from below.

The minimal model (1.1) in Section 1 with $\Delta = \pm 3^{\mu}$ is reduced to

$$y^2 + x^3 + a_4 x + a_6 = 0 \tag{A-1}$$

with $a_j \in \mathbb{Z}$, minimal at all $p \neq 2, 3$, and with the discriminant

$$-2^{4}(4a_{4}^{3}+27a_{6}^{2})=\pm 2^{12}3^{\nu}$$

This may be reduced to the diophantine equation

$$y^2 = x^3 \pm 3^{\nu-3}$$
 with $a_4 = -2^2 3x$, $a_6 = 2^4 y$, (A-2)

where $\nu \ge 3$ and $x, y \in \mathbb{Z}$. In fact, it is well-known that there are no elliptic curves of the conductor $N = 3^n$ with $0 \le n \le 2$. In order to show that $x, y \in \mathbb{Z}$, we have to show that the equations $y^2 = x^3 \pm 2^{63^{\nu-3}}$ have no odd integral solutions. Since the ranks of the Mordell-Weil groups of the elliptic curves $y^2 = x^3 \pm 1$, $y^2 = x^3 - 3$ and $y^2 = x^3 - 9$ are all zero, it is sufficient to show that $y^2 = x^3 + k$ for $k = 2^63^2$, 2^63 , -2^63^4 , and -2^63^5 has only integral solutions. This is easily done in a familiar manner.

LEMMA. The elliptic curve with the conductor $N = 3^m$ is of the form

$$y^2 + y + x^3 + a_4 x + a_6 = 0$$

with $a_j \in \mathbb{Z}$, minimal at all p.

Proof. By a transformation the equation (1.1) is reduced to

$$y^{2} + x^{3} + (4a_{2} - a_{1}^{2})x^{2} + 8(2a_{4} - a_{1}a_{3})x + 16(4a_{6} - a_{3}^{2}) = 0$$

or

$$\begin{array}{l}y^2+x^3+3^4\{24(2a_4-a_1a_3)-(4a_2-a_1^2)^2\}x\\+3^3\{2(4a_2-a_1^2)^3+16\cdot 3^3(4a_6-a_3^2)-8\cdot 3^2(4a_2-a_1^2)(2a_4-a_1a_3)\}=0\end{array}$$

with the discriminant $\pm 2^{12}3^{\mu}$ or $\pm 2^{12}3^{\mu+12}$ respectively. Then, since this should coincide with (A-1), a_1 is even by (A-2). If a_3 is even, then (A-2) is minimal at 2, and so the conductor of the model is 2^m3^n (m > 0). Hence we may put $a_3 = 1$ by a transformation $x \to x + r(r \in \mathbb{Z})$. Finally $3|a_2|$ in (1.1) since C has an additive reduction at 3. Hence we may put $a_2 = 0$.

Now we can determine all the curves of $N = 3^n$. By the above Lemma, the discriminant is

$$arDelta=-2^{6}a_{4}^{3}-27(1-4a_{6})^{2}=\pm3^{\mu}$$
 ,

and so $(1 - 4a_b)^2 = (4c_4)^3 + 3^{\mu-3}$ with $a_4 = -3c_4$. We see that ν is odd, looking modulo 8. On the other hand, all the integral solutions of the equation $y^2 = x^3 + 3^n$ with $x \equiv 0 \pmod{4}$, 2|n and $n \leq 10$ are given by:

n	0	2	4	6	8	10
solutions (x, y)	(0,1)	(0,3) (40,253)	(0,32)	(0,33)	$(0,3^4)$ $(40\cdot3^2,253\cdot3^3)$	(0,35)

Therefore we get the Table below by taking into consideration that we have a better model whenever $\mu \ge 15$. The 8 curves listed are all non-isomorphic and the 4 curves of N = 27 are isogenous to each other of degree 3.

Table: Curves of conductor $N=3^i$ and of the form $y^2+y+x^3+a_4x+a_6=0$

Curve	a4	a_6	Δ	N	3-type	j	$C_{Q,3} \neq 0$?	3-isogenous to:	isomorphic $/Q(\sqrt{-3})$ to:
1	0	0	-3^{3}	33	C1	0	yes	2,3	3
2	-30	-63	-3^{5}	33	C3	$-2^{15} \cdot 3 \cdot 5^{3}$	yes	1	4
3	0	7		33	C6	0	yes	1,4	1
4	-270	1708	-311	33	C8	$-2^{15} \cdot 3 \cdot 5^{3}$		3	2
5	0	1	35	35	C1	0		7	7
6	0	-2	-37	35	C3	0	yes	8	8
7	0	-20	311	35	C6	0	yes	5	5
8	0	61	-3^{13}	35	<i>C</i> 8	0		6	6

TOSHIHIRO HADANO

References

- I. Miyawaki, Elliptic curves of prime power conductor with Q-rational points of finite order, Osaka J. Math., 10 (1973), 309-323.
- [2] L. J. Mordell, Diophantine equations, Academic Press London and New York, (1969).
- [3] A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Publ. Math. I.H.E.S. no. 21 (1965), 5-125.
- [4] O. Neumann, Die elliptischen Kurven mit den Führern 3.2^m und 9.2^m, Math. Nachr., 48 (1971), 387-389.
- [5] A. P. Ogg, Abelian curves of 2-power conductor, Proc. Camb. Phil. Soc., 62 (1966), 143-148.
- [6] —, Abelian curves of small conductor, J. reine angew. Math., 226 (1967), 205– 215.
- [7] -----, Elliptic curves and wild ramification, Amer. J. Math., 89 (1967), 1-21.
- [8] J. Vélu, Courbes elliptiques sur Q ayant bonne réduction en dehors de {11}, C. R. Acad. Sci. Paris, 273 (1971), 73-75.
- [9] —, Isogénies entre courbes elliptiques, C.R. Acad. Sci. Paris, 273 (1971), 238– 241.
- [10] T. Hadano, Remarks on the Conductor of an Elliptic Curve, Proc. Jap. Acad., 48 (1972), 166-167.

Nagoya University