# SOME NEW DIFFERENCE SETS 

BASIL GORDON, W. H. MILLS, and L. R. WELCH

1. A difference set is a set $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ of $k$ distinct residues modulo $v$ such that each non-zero residue occurs the same number of times among the $k(k-1)$ differences $d_{i}-d_{j}, i \neq j$. If $\lambda$ is the number of times each difference occurs, then

$$
\begin{equation*}
\lambda(v-1)=k(k-1) . \tag{1}
\end{equation*}
$$

When we wish to emphasize the particular values of $v, k$, and $\lambda$ involved we will call such a set a ( $v, k, \lambda$ ) difference set. Another ( $v, k, \lambda$ ) difference set $E=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ is said to be equivalent to the original one if there exist $a$ and $t$ such that $(t, v)=1$ and $E=\left\{a+t d_{1}, \ldots, a+t d_{k}\right\}$. If $t=1$ we will call the set $E$ a slide of the set $D$. If $D=E$, then $t$ is called a multiplier of $D$.

Difference sets have been studied extensively, partly for their own sake, and partly because of their close connection with symmetric block designs.

A number of cases are known of inequivalent difference sets with the same values of $v, k$, and $\lambda$. For example, Hall (2) has shown that for every prime $p$ of the form $4 x^{2}+27$ there are at least two inequivalent difference sets with $v=p, k=\frac{1}{2}(p-1), \lambda=(p-3) / 4$. He also found four inequivalent difference sets with $v=121, k=40, \lambda=13$ and two such sets with $v=63, k=31$, $\lambda=15$.

We have found a close connection between the two inequivalent $(63,31$, 15) difference sets and have succeeded in generalizing this situation. We will prove:

Theorem 1. Let $q$ be any prime power, say $q=p^{e}$. Let $n$ and $m$ be positive integers, $n \geqslant 3$. Let $m$ be the product of $r$ prime numbers, not necessarily distinct, and let $N=n m$. Then there are at least $2^{r}$ inequivalent difference sets with

$$
\begin{equation*}
v=\frac{q^{N}-1}{q-1}, k=\frac{q^{N-1}-1}{q-1}, \lambda=\frac{q^{N-2}-1}{q-1} . \tag{2}
\end{equation*}
$$

Our methods not only prove the existence of these sets, but provide the means for actually constructing them. Theorem 1 has the following consequence:

Corollary. Given any positive integer $s$, there exist $v, k, \lambda$ for which there are at least $s$ inequivalent $(v, k, \lambda)$ difference sets.

In particular this answers the question of whether or not there is an infinite number of ( $v, k, \lambda$ ) for which inequivalent difference sets exist (cf. (2, p. 980)).

[^0]We also prove that the only multipliers of the difference sets that we construct are powers of $p$. The difference sets arising from geometries over finite fields are included in our class. Thus we are able to determine completely the multipliers of these particular sets-in fact these multipliers are precisely the powers of the characteristic of the coefficient field.

With the exception of the finite geometries and the case $v=63$, all of the difference sets that we construct are new.
2. By a linear functional from a field $E$ to a subfield $F$ we will mean a mapping from $E$ to $F$ which is linear over $F$.

We begin with a well-known lemma:
Lemma 1. Let $F$ be a finite field, $E$ a finite extension field of $F$, and $L$ a nonzero linear functional from $E$ to $F$. Then every linear functional from $E$ to $F$ is of the form $L_{\mu}, \mu \in E$, where $L_{\mu}(\omega)=L(\mu \omega)$ for all $\omega \in E$. Moreover if $\mu \neq \nu$, then $L_{\mu} \neq L_{\nu}$.

This lemma is a consequence of the fact that if $s$ is the number of elements of $E$, then there are exactly $s$ distinct linear functionals from $E$ to $F$ and exactly $s$ distinct linear functionals of the form $L_{\mu}, \mu \in E$.
3. For each prime power $q=p^{e}$ and each integer $N \geqslant 2$, there is a wellknown difference set, with $v, k, \lambda$ given by (2), that is obtained from an appropriate finite geometry over the field $G F(q)$. We now give an algebraic description of this difference set.

Let $\alpha$ be a primitive element of $G F\left(q^{N}\right)$, that is, an element of order $q^{N}-1$. Let $L$ be a non-zero linear functional from $G F\left(q^{N}\right)$ to $G F(q)$. Let $v, k, \lambda$ be given by (2). We will show that the set of all $j$ such that

$$
\begin{equation*}
L\left(\alpha^{j}\right)=0 \tag{3}
\end{equation*}
$$

is a $(v, k, \lambda)$ difference set.
Since $v=\left(q^{N}-1\right) /(q-1)$, it follows that $\alpha^{v} \in G F(q)$, and hence (3) determines a set of residues modulo $v$. Moreover $\alpha^{i}$ runs through all non-zero elements of $G F\left(q^{N}\right)$. Hence $L\left(\alpha^{i}\right)=0$ for exactly $q^{N-1}-1$ values of $i$ modulo $q^{N}-1$. Thus (3) gives us a set of exactly $k$ residues modulo $v$. Finally let $b$ be a non-zero residue modulo $v$. We seek the number of solutions modulo $v$ of $L\left(\alpha^{i}\right)=L\left(\alpha^{i+b}\right)=0$; that is, the number of values of $i$ modulo $v$ such that

$$
\begin{equation*}
L_{\alpha^{i}}(1)=L_{\alpha^{i}}\left(\alpha^{b}\right)=0 \tag{4}
\end{equation*}
$$

Since $\alpha^{b} \notin G F(q)$ and since $L_{\alpha^{i}}$ runs through all non-zero linear functionals from $G F\left(q^{N}\right)$ to $G F(q)$, it follows that (4) is satisfied by exactly $q^{N-2}-1$ values of $i$ modulo $q^{N}-1$, and hence by exactly $\lambda$ values of $i$ modulo $v$. Since $\lambda$ is independent of $b$ it follows that (3) defines a ( $v, k, \lambda$ ) difference set. We denote this set by $\mathfrak{D}_{0}$.

We now consider the effect of replacing $L$ by another non-zero linear functional $L^{\prime}$ from $G F\left(q^{N}\right)$ to $G F(q)$. By Lemma 1 we have $L^{\prime}=L_{\mu}$ for some $\mu \in G F\left(q^{N}\right), \mu \neq 0$. Clearly $\mu=\alpha^{c}$ for some integer $c$. Now $L^{\prime}\left(\alpha^{i}\right)=L\left(\mu \alpha^{i}\right)$ $=L\left(\alpha^{i+c}\right)$. Hence $L^{\prime}\left(\alpha^{i}\right)=0$ if and only if $i+c$ is in the original difference set $\mathfrak{D}_{0}$. Thus the effect of replacing $L$ by $L^{\prime}$ is to replace the difference set $\mathfrak{D}_{0}=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ by its slide $\left\{d_{1}-c, d_{2}-c, \ldots, d_{k}-c\right\}$. Therefore, without loss of generality, we can assume that $L(1)=1$.

The effect of replacing $\alpha$ by another primitive element is to replace $\mathfrak{D}_{0}$ by an equivalent difference set.
4. The complement of a difference set is a difference set with the same $v$, with $k$ replaced by $v-k$, and with $\lambda$ replaced by $v-2 k+\lambda$. For our purpose it is desirable to make this change. Then (2) becomes

$$
\begin{equation*}
v=\frac{q^{N}-1}{q-1}, k=q^{N-1}, \lambda=q^{N-2}(q-1) \tag{5}
\end{equation*}
$$

The difference set described in $\S 3$ now becomes the set of all $j$ such that $L\left(\alpha^{j}\right) \neq 0,0 \leqslant j<v$. We denote this difference set by $\mathfrak{D}(L, \alpha)$.

For an arbitrary difference set $\left\{d_{1}, \ldots, d_{k}\right\}$ Hall (3) has introduced the polynomial

$$
\Theta(x)=\sum_{i=1}^{k} x^{d_{i}}
$$

Since the $d_{i}$ are defined modulo $v$, it follows that $\Theta(x)$ is determined modulo $x^{0}-1$ by the difference set. We call $\theta(x)$ the Hall polynomial of the set $\left\{d_{1}, \ldots, d_{k}\right\}$, whether or not this set is a difference set. Let $d_{1}, d_{2}, \ldots, d_{k}$ be distinct modulo $v$. They form a ( $v, k, \lambda$ ) difference set if and only if

$$
\begin{equation*}
\Theta(x) \Theta\left(x^{-1}\right) \equiv k-\lambda+\lambda T_{v}(x) \quad\left(\bmod x^{0}-1\right) \tag{6}
\end{equation*}
$$

where $T_{v}(x)=\left(x^{v}-1\right) /(x-1)=1+x+\ldots+x^{v-1}$.
Let $\left\{e_{1}, \ldots, e_{k}\right\}$ be a second ( $v, k, \lambda$ ) difference set, and let

$$
\Theta_{0}(x)=\sum_{i=1}^{k} x^{e_{i}}
$$

These two difference sets are equivalent if and only if there exist integers $a$ and $t$ such that $(t, v)=1$ and

$$
\Theta_{0}(x) \equiv x^{a} \theta\left(x^{l}\right) \quad\left(\bmod x^{v}-1\right)
$$

while they are slides of each other if and only if there is an integer $a$ such that

$$
\Theta_{0}(x) \equiv x^{a} \theta(x) \quad\left(\bmod x^{0}-1\right)
$$

Furthermore $t$ is a multiplier of $\left\{d_{1}, \ldots, d_{k}\right\}$ if and only if $(t, v)=1$ and there exists an integer $a$ such that

$$
\Theta(x) \equiv x^{a} \theta\left(x^{t}\right) \quad\left(\bmod x^{0}-1\right)
$$

5. Now let $\theta(x)$ be the Hall polynomial of the particular difference set $\mathfrak{D}(L, \alpha)$. We have

$$
\theta(x)=\sum_{i=0}^{v-1} \epsilon_{i} x^{i},
$$

where

$$
\epsilon_{i}=\left\{\begin{array}{lll}
0 & \text { if } & L\left(\alpha^{i}\right)=0 \\
1 & \text { if } & L\left(\alpha^{i}\right) \neq 0
\end{array}\right.
$$

Now let $n \mid N$. Let $L_{0}$ be the restriction of $L$ to $G F\left(q^{n}\right)$. We know that $L_{0}$ is not identically zero because of the normalization $L(1)=1$. Furthermore if $n=1$, then $L_{0}$ is the identity mapping.

Let $\zeta$ be an element of $G F\left(q^{N}\right)$. Then $\delta \rightarrow L(\zeta \delta)$ is a linear functional from $G F\left(q^{n}\right)$ to $G F(q)$. Hence, by Lemma 1, there is a unique element $\widetilde{L}(\zeta) \in G F\left(q^{n}\right)$ such that

$$
L_{0}(\widetilde{L}(\zeta) \delta)=L(\zeta \delta)
$$

for all $\delta \in G F\left(q^{n}\right)$. The mapping $\tilde{L}$ is a linear functional from $G F\left(q^{N}\right)$ to $G F\left(q^{n}\right)$. We have $\widetilde{L}(1)=1$. If $n=1$, then $\widetilde{L}=L$.

Now put $\xi=\left(q^{N}-1\right) /\left(q^{n}-1\right)$ and $\beta=\alpha^{\xi}$. Then $\beta$ is a primitive element of $G F\left(q^{n}\right)$. Put

$$
\begin{equation*}
w=\frac{q^{n}-1}{q-1}, l=q^{n-1}, \mu=q^{n-2}(q-1) . \tag{7}
\end{equation*}
$$

Let $\theta(y)$ be the Hall polynomial of $\mathfrak{D}\left(L_{0}, \beta\right)$. Thus

$$
\theta(y)=\sum_{j=0}^{w-1} \delta_{j} y^{j},
$$

where

$$
\delta_{j}=\left\{\begin{array}{lll}
0 & \text { if } & L_{0}\left(\beta^{j}\right)=0, \\
1 & \text { if } & L_{0}\left(\beta^{j}\right) \neq 0 .
\end{array}\right.
$$

It is understood that $\theta(y)=1$ if $n=1$.
We put $y=x^{\xi}$. Then $\theta(y)$ becomes a polynomial in $x$, and since $y^{w}-1$ $=x^{v}-1$ we have

$$
\begin{equation*}
\theta(y) \theta\left(y^{-1}\right) \equiv l-\mu+\mu T_{w}(y) \quad\left(\bmod x^{v}-1\right) \tag{8}
\end{equation*}
$$

We will now establish a connection between $\theta(y)$ and $\theta(x)$. The polynomial $\theta(x)$ can be written in the form

$$
\Theta(x)=\sum_{i=0}^{\xi-1} x^{i} \omega_{i}(y)
$$

where

$$
\omega_{i}(y)=\sum_{j=0}^{w-1} \epsilon_{i+\xi j} y^{j} .
$$

For every value of $i, \tilde{L}\left(\alpha^{i}\right)$ is either 0 or a power of $\beta$. If $\tilde{L}\left(\alpha^{i}\right) \neq 0$ we put $\widetilde{L}\left(\alpha^{i}\right)=\beta^{-m_{i}}$. Now $\epsilon_{i+\xi j}=0$ if and only if $L\left(\alpha^{i+\xi j}\right)=0$. We have

$$
\begin{aligned}
L\left(\alpha^{i+\xi j}\right) & =L\left(\alpha^{i} \beta^{j}\right) \\
& =L_{0}\left(\widetilde{L}\left(\alpha^{i}\right) \beta^{j}\right) \\
& =\left\{\begin{array}{lll}
0 & \text { if } & \widetilde{L}\left(\alpha^{i}\right)=0, \\
L_{0}\left(\beta^{j-m_{i}}\right) & \text { if } & \widetilde{L}\left(\alpha^{i}\right) \neq 0 .
\end{array}\right.
\end{aligned}
$$

Hence

$$
\boldsymbol{\epsilon}_{i+\xi j}=\left\{\begin{array}{lll}
0 & \text { if } & \widetilde{L}\left(\alpha^{i}\right)=0, \\
\delta_{j-m_{i}} & \text { if } & \widetilde{L}\left(\alpha^{i}\right) \neq 0 .
\end{array}\right.
$$

Therefore $\omega_{i}(y)=0$ if $\tilde{L}\left(\alpha^{i}\right)=0$, while if $\tilde{L}\left(\alpha^{i}\right) \neq 0$ we have

$$
\begin{aligned}
\omega_{i}(y) & =\sum_{j=0}^{w-1} \epsilon_{i+\xi} y^{j}=\sum_{j=0}^{w-1} \delta_{j-m_{i}} y^{j} \\
& \equiv \sum_{j=0}^{w-1} \delta_{j} y^{j+m_{i}}=y^{m_{i}} \theta(y) \quad\left(\bmod x^{v}-1\right) .
\end{aligned}
$$

Thus we have proved:
Theorem 2. Let $q$ be a power of the prime $p$ and let $N$ be an integer, $N \geqslant 2$. Let $L$ be a linear functional from the finite field $G F\left(q^{N}\right)$ to the subfield $G F(q)$, such that $L(1)=1$. Let $L_{0}$ be the restriction of $L$ to an intermediate field $G F\left(q^{n}\right)$, where $n \mid N$. Let $\tilde{L}$ be the linear functional from $G F\left(q^{N}\right)$ to $G F\left(q^{n}\right)$ such that $L_{0}(\tilde{L}(\zeta) \delta)=L(\zeta \delta)$ for all $\zeta \in G F\left(q^{N}\right)$ and $\delta \in G F\left(q^{n}\right)$. Set $v=\left(q^{N}-1\right) /(q-1)$, $w=\left(q^{n}-1\right) /(q-1)$, and $\xi=v / w$. Let $\alpha$ be a primitive element of $G F\left(q^{N}\right)$, and set $\beta=\alpha^{\xi}$. Let $\theta(x)$ and $\theta(y)$ be the Hall polynomials of $\mathfrak{D}(L, \alpha)$ and $\mathfrak{D}\left(L_{0}, \beta\right)$ respectively. If $n=1$ it is understood that $\theta(y)=1$. Let $y=x^{\xi}$. Then $\theta(y)$ divides $\theta(x)$ in the sense that there exists a polynomial $\Omega(x)$ such that

$$
\theta(x) \equiv \Omega(x) \theta(y) \quad\left(\bmod x^{0}-1\right)
$$

The polynomial $\Omega(x)$ is given by

$$
\begin{equation*}
\Omega(x)=\Sigma x^{i} y^{m_{i}}, \tag{9}
\end{equation*}
$$

where the summation is over those values of $i$ for which

$$
\widetilde{L}\left(\alpha^{i}\right) \neq 0,0 \leqslant i<\xi, \quad \text { and } \quad \widetilde{L}\left(\alpha^{i}\right)=\beta^{-m_{i}}
$$

6. If $n>1$, then the set $\mathfrak{D}\left(L_{0}, \beta\right)$ is a ( $w, l, \mu$ ) difference set, where $w, l, \mu$ are given by (7). Let $\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ be an arbitrary difference set with the same parameters $w, l, \mu$. Let $\theta_{0}(y)$ be the associated Hall polynomial

$$
\begin{equation*}
\theta_{0}(y)=\sum_{i=1}^{l} y^{b_{i}}, \tag{10}
\end{equation*}
$$

and put

$$
\begin{equation*}
\theta_{0}(x)=\Omega(x) \theta_{0}(y), \tag{11}
\end{equation*}
$$

where $y=x^{\xi}$ as before and $\Omega(x)$ is given by (9). It follows from (9), (10), and (11) that

$$
\Theta_{0}(x)=\sum_{i=1}^{k} x^{e_{i}},
$$

where the $e_{i}$ are distinct modulo $v$. Furthermore, from (8) and the analogous congruence for $\theta_{0}(y)$, we have

$$
\theta_{0}(y) \theta_{0}\left(y^{-1}\right) \equiv l-\mu+\mu T_{w}(y) \equiv \theta(y) \theta\left(y^{-1}\right) \quad\left(\bmod x^{0}-1\right)
$$

Hence, using (11) and (6),

$$
\begin{aligned}
\Theta_{0}(x) \theta_{0}\left(x^{-1}\right) & =\Omega(x) \Omega\left(x^{-1}\right) \theta_{0}(y) \theta_{0}\left(y^{-1}\right) \\
& \equiv \Omega(x) \Omega\left(x^{-1}\right) \theta(y) \theta\left(y^{-1}\right) \\
& =\theta(x) \theta\left(x^{-1}\right) \\
& \equiv k-\lambda+\lambda T_{v}(x) \quad\left(\bmod x^{0}-1\right) .
\end{aligned}
$$

Therefore $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ is a ( $v, k, \lambda$ ) difference set with the same values of $v, k, \lambda$, that is, those given by (5).
7. We now determine the conditions under which two difference sets obtained in this way are equivalent to each other. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{l}\right\}$ and $C=$ $\left\{c_{1}, c_{2}, \ldots, c_{l}\right\}$ be two ( $w, l, \mu$ ) difference sets, and let $\theta_{b}(y)=\sum y^{b_{i}}$ and $\theta_{c}(y)=\sum y^{c_{i}}$ be their Hall polynomials. If $n=1$ it is understood that $\theta_{b}(y)=\theta_{c}(y)=1$. Put

$$
\Theta_{b}(x)=\Omega(x) \theta_{b}(y), \quad \theta_{c}(x)=\Omega(x) \theta_{c}(y)
$$

Then $\Theta_{b}(x)$ and $\theta_{c}(x)$ are the Hall polynomials of $(v, k, \lambda)$ difference sets, say $\bar{B}$ and $\bar{C}$ respectively. Suppose $\bar{B}$ and $\bar{C}$ are equivalent. Then there exist integers $a$ and $t$ such that $(t, v)=1$ and

$$
\begin{equation*}
\Theta_{b}(x) \equiv x^{a} \Theta_{c}\left(x^{t}\right) \quad\left(\bmod x^{v}-1\right) \tag{12}
\end{equation*}
$$

Our analysis of (12) will not only give us necessary and sufficient conditions that $\bar{B}$ and $\bar{C}$ be equivalent, but by putting $B=\mathrm{C}$ it will give us the multipliers of $\bar{B}$.

Lemma 2. If (12) holds, then there exist integers $r$ and $s$ such that

$$
\begin{equation*}
\Omega(x) \equiv x^{\tau} \Omega\left(x^{t}\right) \quad\left(\bmod x^{0}-1\right) \tag{13}
\end{equation*}
$$

and

$$
\theta_{b}(y) \equiv y^{s} \theta_{c}\left(y^{t}\right) \quad\left(\bmod y^{w}-1\right)
$$

In particular if $B$ and $C$ are inequivalent, then so are $\bar{B}$ and $\bar{C}$.
Proof. By construction $\Theta_{b}(x)=\sum x^{i} y^{m i} \theta_{b}(y)$, where the summation is over those values of $i$ for which $\widetilde{L}\left(\alpha^{i}\right) \neq 0,0 \leqslant i<\xi$. Similarly

$$
x^{a} \theta_{c}\left(x^{t}\right)=\sum x^{a+t i} y^{t m_{i}} \theta_{c}\left(y^{t}\right)
$$

where the summation is over the same values of $i$. Choose an $h$ such that $\tilde{L}\left(\alpha^{h}\right) \neq 0$. Then, by comparing terms in (12), we obtain

$$
x^{h} y^{m h} \theta_{b}(y) \equiv x^{a+t j} y^{t m j} \theta_{c}\left(y^{t}\right) \quad\left(\bmod x^{v}-1\right)
$$

where $a+t j \equiv h(\bmod \xi)$. Since $x^{0}-1=y^{w}-1$, this gives us

$$
\theta_{b}(y) \equiv y^{s} \theta_{c}\left(y^{t}\right) \quad\left(\bmod y^{w}-1\right)
$$

where $s=t m_{j}-m_{h}+\xi^{-1}(a+t j-h)$. Now

$$
\Omega(x) \theta_{b}(y) \equiv x^{a} \Omega\left(x^{t}\right) \theta_{c}\left(y^{t}\right) \quad\left(\bmod x^{0}-1\right)
$$

by (12). Since

$$
\theta_{b}(y) \theta_{b}\left(y^{-1}\right) \equiv l-\mu+\mu T_{w}(y) \quad\left(\bmod y^{w}-1\right)
$$

it follows that $\theta_{b}(y)$ is relatively prime to $y^{w}-1$. Hence

$$
\Omega(x) \equiv x^{a} y^{-s} \Omega\left(x^{t}\right) \quad\left(\bmod x^{0}-1\right)
$$

which proves the lemma.
Now let $Q=G F(q)$, and let $Q^{*}$ be the set of all non-zero elements of $Q$.
Lemma 3. Suppose (13) holds with $(t, v)=1$. Put $\eta=\alpha^{\gamma}$, and let $\omega \in G F\left(q^{N}\right)$. Then $\widetilde{L}(\omega) \in Q^{*}$ if and only if $\widetilde{L}\left(\eta \omega^{t}\right) \in Q^{*}$.

Proof. From (9) we have

$$
\begin{equation*}
\Omega(x)=\sum x^{i} y^{m_{i}}=\sum x^{i+\xi m_{i}}=\sum_{j \in S} x^{j} \tag{14}
\end{equation*}
$$

where $S$ is the set of all $j$ such that $L\left(\alpha^{j}\right)=1,0 \leqslant j<q^{N}-1$. Since $\alpha^{v}$ is a primitive element of $Q^{*}$, the effect of adding $v$ to $j$ is to multiply $\widetilde{L}\left(\alpha^{j}\right)$ by a primitive element of $Q^{*}$. Therefore (14) can be written in the form

$$
\Omega(x) \equiv \sum_{j \in S^{\prime}} x^{j} \quad\left(\bmod x^{v}-1\right)
$$

where $S^{\prime}$ is the set of all $j$ such that $\widetilde{L}\left(\alpha^{j}\right) \in Q^{*}, 0 \leqslant j<v$. The assumption (13) implies that $\widetilde{L}\left(\alpha^{j}\right) \in Q^{*}$ if and only if $\widetilde{L}\left(\alpha^{r+j t}\right) \in Q^{*}$. If $\omega=0$ the lemma is immediate. If $\omega \neq 0$, we obtain the desired result by putting $\omega=\alpha^{j}$.

Lemma 4. Suppose (13) holds with $(t, v)=1$. Let $\eta=\alpha^{r}, \zeta \in G F\left(q^{n}\right)$, and $\omega \in G F\left(q^{N}\right)$. Then $\tilde{L}(\omega) \in \zeta Q^{*}$ if and only if $\widetilde{L}\left(\eta \omega^{t}\right) \in \zeta^{t} Q^{*}$.

Proof. Suppose first that $\zeta \neq 0$. Then $\widetilde{L}(\omega) \in \zeta Q^{*}$ is equivalent to $\widetilde{L}\left(\omega \zeta^{-1}\right) \in Q^{*}$. By Lemma 3 this is true if and only if $\widetilde{L}\left(\eta \omega^{t} \zeta^{-t}\right) \in Q^{*}$, which in turn is equivalent to $\widetilde{L}\left(\eta \omega^{t}\right) \in \zeta^{t} Q^{*}$. Next suppose $\widetilde{L}(\omega)=0$. We have $\widetilde{L}\left(\eta \omega^{t}\right) \in \nu^{t} Q^{*}$ for some $\nu \in G F\left(q^{n}\right)$. If $\nu \neq 0$, then by the first part of the proof we have $\widetilde{L}(\omega) \in \nu Q^{*}$, a contradiction. Hence $\nu=0$ and $\widetilde{L}\left(\eta \omega^{t}\right)=0$, which completes the proof of the lemma.

Lemma 5. Suppose that (13) holds with $(t, v)=1$. Let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}$ be
elements of $G F\left(q^{N}\right)$ that are linearly independent over $G F\left(q^{n}\right)$. Let $c_{i}, a_{i}, 1 \leqslant i \leqslant m$ be elements of $G F\left(q^{n}\right)$ such that

$$
\left(\sum_{i=1}^{m} c_{i} \zeta_{i}\right)^{t}=\sum_{i=1}^{m} a_{i} S_{i}^{t}
$$

Then $a_{i} \in c_{i}{ }^{t} Q^{*}, 1 \leqslant i \leqslant m$.
Proof. By Lemma 1 there exist elements $\mu_{j}$ of $G F\left(q^{N}\right)$ such that $\widetilde{L}\left(\mu_{j} \zeta_{i}\right)=\delta_{i j}$, $1 \leqslant i, j \leqslant m$, where as usual,

$$
\delta_{i j}=\left\{\begin{array}{lll}
0 & \text { if } & i \neq j, \\
1 & \text { if } & i=j .
\end{array}\right.
$$

Then, by Lemma 4, $\tilde{L}\left(\eta \mu_{j}{ }^{t}{ }^{t}{ }^{t}\right)=0$ if $i \neq j$, and $\tilde{L}\left(\eta \mu_{j}{ }^{t}{ }_{j}{ }^{t}\right) \in Q^{*}$. Now $\tilde{L}\left(\mu_{j} \sum c_{i} S_{i}\right)=c_{j}$, so that

$$
\tilde{L}\left(\eta \mu_{j}^{t}\left(\sum c_{i} \zeta_{i}\right)^{t}\right) \in c_{j}^{t} Q^{*}
$$

On the other hand,

$$
\widetilde{L}\left(\eta \mu_{j}^{t}\left(\sum c_{i} \zeta_{i}\right)^{t}\right)=\sum_{i} a_{i} \widetilde{L}\left(\eta \mu_{j}^{t} \zeta_{i}^{t}\right) \in a_{j} Q^{*}
$$

Hence $a_{j} \in c_{j}{ }^{2} Q^{*}$.
Lemma 6. Suppose (13) holds with $(t, v)=1$. Let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}$ be a basis for $G F\left(q^{N}\right)$ over $G F\left(q^{n}\right)$. Then $\zeta_{1}{ }^{t}, \zeta_{2}{ }^{2}, \ldots, \zeta_{m}{ }^{l}$ is also a basis for $G F\left(q^{N}\right)$ over $G F\left(q^{n}\right)$.

Proof. Suppose $\sum a_{i} \zeta_{i}{ }^{t}=0$ with $a_{i} \in G F\left(q^{n}\right), 1 \leqslant i \leqslant m$. We apply Lemma 5 with $c_{1}=c_{2}=\ldots=c_{m}=0$ and obtain $a_{1}=a_{2}=\ldots=a_{m}=0$. Hence $\zeta_{1}{ }^{t}, \zeta_{2}{ }^{t}, \ldots, \zeta_{m}{ }^{t}$ are linearly independent over $G F\left(q^{n}\right)$. It follows that they form a basis for $G F\left(q^{N}\right)$ over $G F\left(q^{n}\right)$.

Lemma 7. Suppose (13) holds with $(t, v)=1$. Let $\omega$ be an element of $G F\left(q^{N}\right)$, and suppose that $N>n$. Then there exist $a_{1}$ and $a_{2}$ in $Q^{*}$ such that $(1+\omega)^{t}$ $=a_{1}+a_{2} \omega^{t}$.

Proof. Suppose first that $\omega \notin G F\left(q^{n}\right)$. Then we can find a basis $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{m}$ of $G F\left(q^{N}\right)$ over $G F\left(q^{n}\right)$ with $\zeta_{1}=1$ and $\zeta_{2}=\omega$. Taking $c_{1}=c_{2}=1, c_{3}=\ldots$ $=c_{m}=0$, we have

$$
1+\omega=\sum_{i=1}^{m} c_{i} \zeta_{i}
$$

Moreover $\zeta_{1}{ }^{t}, \zeta_{2}{ }^{t}, \ldots, \zeta_{m}{ }^{t}$ is also a basis by Lemma 6, so that we have

$$
(1+\omega)^{t}=\sum_{i=1}^{m} a_{i} \zeta_{i}^{t}
$$

with $a_{i} \in G F\left(q^{n}\right)$. By Lemma 5 we have $a_{3}=a_{4}=\ldots=a_{m}=0, a_{1} \in Q^{*}$, $a_{2} \in Q^{*}$, which settles the case $\omega \notin G F\left(q^{n}\right)$.

Now suppose $\omega \in G F\left(q^{n}\right)$. We recall that $\widetilde{L}(1)=1$. Let $\zeta$ be an element of $G F\left(q^{N}\right)$ such that $\zeta \notin G F\left(q^{n}\right)$ and $\widetilde{L}(\zeta)=\omega$. Then $\widetilde{L}(1+\zeta)=1+\omega$ and $\tilde{L}\left(\eta(1+\zeta)^{t}\right) \in(1+\omega)^{t} Q^{*}$. By the first part of the proof $(1+\zeta)^{t}=b+c \zeta^{t}$ with $b, c \in Q^{*}$. Therefore

$$
\tilde{L}\left(\eta(1+\zeta)^{t}\right)=\widetilde{L}\left(\eta\left(b+c \zeta^{t}\right)\right)=b \widetilde{L}(\eta)+c \widetilde{L}\left(\eta \zeta^{t}\right)
$$

Now $\tilde{L}(\eta)=\tilde{L}\left(\eta 1^{t}\right) \in Q^{*}$ and $\tilde{L}\left(\eta \zeta^{t}\right) \in \omega^{t} Q^{*}$. It follows that $(1+\omega)^{t}=a_{1}$ $+a_{2} \omega^{t}$ with $a_{1}, a_{2} \in Q^{*}$.
8. To complete our discussion we need a theorem about finite fields that is of interest for its own sake. Throughout this section we make the following assumptions: $N \geqslant 3, q$ is a power of the prime $p, Q=G F(q), Q^{*}$ is the set of non-zero elements of $Q, v=\left(q^{N}-1\right) /(q-1), t$ is an integer relatively prime to $v$, and for every $\omega \in G F\left(q^{N}\right)$ there exist $a_{1}, a_{2}$, in $Q^{*}$ such that

$$
\begin{equation*}
(1+\omega)^{t}=a_{1}+a_{2} \omega^{t} \tag{15}
\end{equation*}
$$

Since (15) holds for all $\omega \in G F\left(q^{N}\right)$ it follows that for every pair $\psi_{1}, \psi_{2}$ of elements of $G F\left(q^{N}\right)$ we have $\left(\psi_{1}+\psi_{2}\right)^{t}=b_{1} \psi_{1}{ }^{t}+b_{2} \psi_{2}{ }^{t}$ for suitable $b_{1}, b_{2}$ in $Q^{*}$. By induction it follows that given any $\psi_{1}, \psi_{2}, \ldots, \psi_{u}$ in $G F\left(q^{N}\right)$ there exist $b_{1}, b_{2}, \ldots, b_{u}$ in $Q^{*}$ such that

$$
\begin{equation*}
\left(\psi_{1}+\psi_{2}+\ldots+\psi_{u}\right)^{t}=b_{1} \psi_{1}^{t}+b_{2} \psi_{2}^{t}+\ldots+b_{u} \psi_{u}^{t} . \tag{16}
\end{equation*}
$$

We write (15) in the form

$$
(1+\omega)^{t}=r_{\omega}\left(1+s_{\omega} \omega^{t}\right),
$$

where $r_{\omega}, s_{\omega}$ are elements of $Q^{*}$. Since $(t, v)=1$, it follows that if $\omega \notin Q$, then $\omega^{t} \notin Q$ and $r_{\omega}, s_{\omega}$ are uniquely determined.

Lemma 8. If $\omega^{t}, \tau^{t}$, $\zeta^{t}$ are linearly independent over $Q$, then $s_{\zeta / \omega}=s_{\zeta / \tau} s_{\tau / \omega}$.
Proof. For uniquely determined $b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}$ in $Q^{*}$ we have

$$
\begin{aligned}
b_{1} \omega^{t}+b_{2} \tau^{t}+b_{3} \zeta^{t} & =(\omega+\tau+\zeta)^{t} \\
& =c_{1}(\omega+\tau)^{t}+c_{2} \zeta^{t} \\
& =c_{1} \omega^{t}(1+\tau / \omega)^{t}+c_{2} \zeta^{t} \\
& =c_{3}\left(\omega^{t}+s_{\tau / \omega} \tau^{t}\right)+c_{2} \zeta^{t} .
\end{aligned}
$$

It follows that $s_{\tau / \omega}=b_{2} / b_{1}$. By symmetry $s_{\zeta / \tau}=b_{3} / b_{2}$ and $s_{\zeta / \omega}=b_{3} / b_{1}$. The lemma follows immediately.

Let $\alpha$ be a primitive element of $G F\left(q^{N}\right)$. We have $(1+\alpha)^{t}=r_{\alpha}\left(1+s_{\alpha} \alpha^{t}\right)$. Later we shall reduce the general case to the case $s_{\alpha}=1$. We now derive a few consequences of this equality.

Lemma 9. If $s_{\alpha}=1$ and if $\omega \notin Q$, then $s_{\omega}=1$.
Proof. Since $(t, v)=1$ it follows that $\alpha^{t}$ is not contained in any proper subfield of $G F\left(q^{N}\right)$. Hence $\alpha^{t}$ has degree $N$ over $Q$. Hence $1, \alpha^{t}$, and $\alpha^{2 t}$ are
linearly independent over $Q$. Put $\omega=\alpha^{u}, 1 \leqslant u<q^{N}-1$. We proceed by induction on $u$. By Lemma 8 we have $s_{\alpha^{2}}=s_{\alpha} s_{\alpha}=1$. Thus the lemma holds for $u=1$ and $u=2$. Suppose that $u \geqslant 3$ and that the lemma holds for all positive integers less than $u$. Since $\omega \notin Q$ and $(t, v)=1$ it follows that $\omega^{t} \notin Q$, so that 1 and $\omega^{t}$ are linearly independent over $Q$. Since $1, \alpha^{t}$, and $\alpha^{2 t}$ are linearly independent over $Q$, it follows that $1, \alpha^{j t}, \alpha^{u t}$ are linearly independent over $Q$ either for $j=1$ or for $j=2$.

Lemma 8 now gives us $s_{\omega}=s_{\alpha^{u}}=s_{\alpha} ; s_{\alpha^{u-j}}=1$ which completes the proof by induction.

Lemma 10. If $s_{\alpha}=1$ then $(1+\omega)^{t}=1+\omega^{t}$ for all $\omega \notin Q$.
Proof. Since $N \geqslant 3$ there is a $\zeta$ such that $1, \omega^{t}, \zeta^{t}$ are linearly independent over $Q$. Then, for suitable $c_{1}, c_{2}, c_{3}$ in $Q^{*}$, we have $(1+\omega+\zeta)^{t}=c_{1}+c_{2} \omega^{t}+$ $c_{3} \zeta^{t}$. Moreover, $c_{1}, c_{2}, c_{3}$ are uniquely determined. Now $(1+\omega)^{t}=r_{\omega}\left(1+\omega^{t}\right)$ by Lemma 9. It follows that $(1+\omega)^{t} / \zeta^{t} \notin Q$ and hence $(1+\omega) / \zeta \notin Q$. Applying Lemma 9 again we have

$$
\begin{aligned}
(1+\omega+\zeta)^{t} & =a(1+\omega)^{t}+a \zeta^{t} \\
& =a r_{\omega}+a r_{\omega} \omega^{t}+a \zeta^{t}
\end{aligned}
$$

where $a=r_{(1+\omega) / 5}$. Hence $c_{1}=c_{2}$. Similarly $c_{1}=c_{3}$. Therefore $r_{\omega}=1$, and $(1+\omega)^{t}=1+\omega^{t}$.

We now come to the main theorem of this section:
Theorem 3. Let $N \geqslant 3, q$ be a power of the prime $p, v=\left(q^{N}-1\right) /(q-1)$, and $t$ an integer relatively prime to $v$. Suppose that for every $\omega \in G F\left(q^{N}\right)$ there exist non-zero elements $a_{1}$ and $a_{2}$ in $G F(q)$ such that $(1+\omega)^{t}=a_{1}+a_{2} \omega^{t}$. Then $t$ is congruent to a power of $p$ modulo $v$.

Proof. Without loss of generality suppose $0<t<v$. Using the notation already developed we have $(1+\alpha)^{t}=r_{\alpha}\left(1+s_{\alpha} \alpha^{t}\right)$, where $\alpha$ is a fixed primitive element of $G F\left(q^{N}\right)$. Since $s_{\alpha} \in Q^{*}$ we have $s_{\alpha}=\alpha^{0 c}$ for some $c$ such that $0 \leqslant c<q-1$. Put $t^{\prime}=t+v c$. Then $0<t^{\prime}<q^{N}-1$, and ( $t^{\prime}, v$ ) $=1$. Furthermore for any $\omega$ in $G F\left(q^{N}\right)$ there exist $r_{\omega}{ }^{\prime}$ and $s_{\omega}{ }^{\prime}$ in $Q^{*}$ such that

$$
(1+\omega)^{t^{\prime}}=r_{\omega}^{\prime}\left(1+s_{\omega}^{\prime} \omega^{t^{\prime}}\right)
$$

Moreover $s_{\alpha}{ }^{\prime}=1$. Hence, by Lemma 10,

$$
\begin{equation*}
(1+\omega)^{t^{\prime}}=1+\omega^{\prime \prime} \tag{17}
\end{equation*}
$$

for all $\omega \in G F\left(q^{N}\right), \omega \notin Q$. Now suppose that $t^{\prime}$ is not a power of $p$. Then (17) becomes a polynomial equation of degree at most $t^{\prime}-1$, with at least $q^{N}-q$ roots. Therefore $t^{\prime}>q^{N}-q$. Put $u=q^{N}-1-t^{\prime}$. Multiplying (17) by $\omega^{u}(1+\omega)^{u}$ we obtain

$$
\omega^{u}=(1+\omega)^{u} \omega^{u}+(1+\omega)^{u}
$$

for all $\omega \in G F\left(q^{N}\right), \omega \notin Q$. Hence $2 u \geqslant q^{N}-q$. Therefore

$$
q^{N}-1=t^{\prime}+u>\frac{3}{2}\left(q^{N}-q\right)
$$

or $q^{N}<3 q-2$ which is impossible since $N \geqslant 3, q \geqslant 2$. It follows that $t^{\prime}$ is a power of $p$, and hence $t$ is congruent to a power of $p$ modulo $v$, which completes the proof of the theorem.

Theorem 3 is false for $N=2$; in fact the hypothesis is fulfilled for all $t$ relatively prime to $v$.
9. We now apply Theorem 3 to the situation of $\S 7$. We recall that we started with two ( $w, l, \mu$ ) difference sets $B=\left\{b_{1}, \ldots, b_{l}\right\}$ and $C=\left\{c_{1}, \ldots, c_{l}\right\}$. We used these to construct two ( $v, k, \lambda$ ) difference sets with associated polynomials $\theta_{b}(x), \theta_{c}(x)$ respectively. We now suppose, as before, that there exist $a$ and $t$ with $(t, v)=1$ and

$$
\Theta_{b}(x) \equiv x^{a} \Theta_{c}\left(x^{t}\right) \quad\left(\bmod x^{0}-1\right)
$$

From Lemma 2, Lemma 7, and Theorem 3 we deduce that if $N \geqslant 3$ and $N>n$, then $t$ is congruent to a power of $p$ modulo $v$. Suppose first that $n>1$. Since $w \mid v$ it follows that $t$ is also congruent to a power of $p$ modulo $w$. Now $l-\mu=q^{n-2}$, which is a power of $p$, and $p \nmid w$. A theorem of Hall (2, p. 976) states that in this situation every power of $p$ is a multiplier of each ( $w, l, \mu$ ) difference set. (Hall's theorem applies directly to the complement of our difference set.) In particular, $t$ is a multiplier of $C$. Hence

$$
\theta_{c}\left(y^{t}\right) \equiv y^{u} \theta_{c}(y)
$$

$\left(\bmod y^{w}-1\right)$
for some integer $u$. It follows from Lemma 2 that

$$
\theta_{b}(y) \equiv y^{s+u} \theta_{c}(y)
$$

$$
\left(\bmod y^{w}-1\right)
$$

Therefore $B$ is a slide of $C$. Thus we have proved:
Theorem 4. Let $q$ be a power of the prime $p$ and let $N$ be a positive integer. Let $n \mid N, N>n \geqslant 2$. Let $v, k, \lambda, w, l, \mu$ be given by (5) and (7), let $\xi=v / w$, and let $\Omega(x)$ be the polynomial given by (9). To any ( $w, l, \mu$ ) difference set $B$ with Hall polynomial $\theta(y)$, there corresponds a ( $v, k, \lambda$ ) difference set $\bar{B}$ with Hall polynomial $\theta(x)=\Omega(x) \theta\left(x^{\xi}\right)$. If $B$ and $C$ are $(w, l, \mu)$ difference sets then $\bar{B}$ and $\bar{C}$ are equivalent if and only if $B$ is a slide of $C$.

Theorem 4 is uninteresting if $n=2$-in this case no new difference sets can be obtained by our methods. The smallest interesting case is $q=p=2$, $n=3, N=6$. Here $w=7, l=4, \mu=2$. The two ( $7,4,2$ ) difference sets $\{0,1,2,4\}$ and $\{0,-1,-2,-4\}$ are not slides of each other, but every $(7,4,2)$ difference set is a slide of one of them. They lead to two inequivalent $(63,32,16)$ difference sets. One of the latter corresponds to a finite geometry and the other does not. See Hall (2, p. 985). We note that the two (7, 4, 2) difference sets are equivalent. Similarly if we take $q=p=2, n=3, N=9$ we obtain two inequivalent $(511,256,128)$ difference sets, one of which corresponds to a finite geometry. The other one is a new difference set.

In the above agument it was concluded that

$$
\Theta_{b}(x) \equiv x^{a} \Theta_{c}\left(x^{t}\right)
$$

$$
\left(\bmod x^{\circ}-1\right)
$$

implies that $t$ is congruent to a power of $p$ modulo $v$. Applying this to the case $B=C$ we conclude that every multiplier of $B$ is a power of $p$ modulo $v$. Since $k-\lambda=q^{N-2}$, which is a power of $p$, and $p \nmid v$, Hall's theorem asserts that every power of $p$ is a multiplier of $B$. Thus the multipliers of the difference set $B$ are precisely the powers of $p$. Setting $n=1$, this gives us the result that if $N \geqslant 3$, then the multipliers of the set $\mathfrak{D}(L, \alpha)$ are precisely the powers of $p$. Dismissing the difference sets corresponding to $N=2$ as trivial we have the following result:

Theorem 5. Let $D$ be either one of the ( $v, k, \lambda$ ) difference sets $B$ of Theorem 4 or a non-trivial ( $v, k, \lambda$ ) difference set that corresponds to a finite geometry over a finite field. Then the multipliers of $D$ are precisely the powers of $p$ modulo $v$.
10. Let $n \geqslant 3$, and let $M$ denote the number of inequivalent ( $w, l, \mu$ ) difference sets where $w, l, \mu$ are given by (7). It is known that -1 is not a multiplier of a non-trivial difference set, that is, a difference set with $1<k<v-1$. Hence there are at least $2 M$ possible ( $w, l, \mu$ ) difference sets, none of which is a slide of any other. Hence there are at least $2 M$ inequivalent ( $v, k, \lambda$ ) difference sets with $v, k, \lambda$ given by (5) or by (2). It follows by induction that if $N=n m$ where $n \geqslant 3$ and $m$ is the product of $r$ primes, not necessarily distinct, then there are at least $2^{r}$ inequivalent ( $v, k, \lambda$ ) difference sets with $v, k, \lambda$ given by (5), or equivalently by (2). This establishes Theorem 1 stated in § 1 .

Actually the number of inequivalent difference sets is usually much greater than $2^{r}$, as there will normally exist non-multipliers other than -1 . For example in the case $q=2, n=5, N=10$, there are two known difference sets with parameters $(31,16,8)$. One of these leads to two inequivalent sets with parameters $(1023,512,256)$ and the other leads to six more inequivalent sets with the same parameters.

## References

1. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc., 43 (1938), 377-385.
2. M. Hall, $A$ survey of difference sets, Proc. Amer. Math. Soc., 7 (1956), 975-986.
3.     - Cyclic projective planes, Duke Math. J., 14 (1947), 1079-1090.
4. M. Hall and H. J. Ryser, Cyclic incidence matrices, Can. J. Math., 3 (1951), 495-502.

University of California
Yaie University
Institute for Defense A nalyses, Princeton


[^0]:    Received August 7, 1961. This research was supported, in part, by the Institute for Defense Analyses.

