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1. Introduction

Let R denote the set of real numbers, B the a-field of all Borel subsets of
R. A homogeneous Markov Chain with state space a Borel subset Q of R is a
sequence {«„}, n ^ 0, of random variables, taking values in Q, with one-step
transition probabilities P(i)(f, A) defined by

(1.1) P 1 ^ , A) = P r K + 1 sA\an = £, an_x = f,_lf • • • a0 = £„} n ^ 0

for each choice of f, f0, • • •, £n_x in £? and all Borel subsets A of Q. The fact
that the right-hand side of (1.1) does not depend on the t-it 0 ^ i < w, is of
course the Markovian property, the non-dependence on n is the homogeneity
of the chain.

The one-step transition probabilities are assumed to be such that for
fixed $, P(1) (£, A) is a probability measure over the cx-field of Borel subsets of
Q and for fixed vl, a Borel measurable function of f. The w-step transition
probabilities are defined by

+

and satisfy
(1.2) P(<+"(f, 4 ) = Jfl P<»(»?, 4)P<«(£, di;)

We suppose also that there is given an initial probability measure P<0) (A) =
Pr{a0 eA}.U P™(A) = Pr{an e A} then

(1.3) P<n>(A) = / f lP
( n )(f , A)P<0)(d£)

Throughout this paper we write "set" for "Borel subset of Q". The Borel
w-field over Q will be denoted by BQ.

Theorem 1 to be proved in the next section remains valid when the state
space Q is the set R but the interesting applications seem to be when Q is a
compact set in which there is a particular point w, usually a boundary point,
and an integer r ^ 1, such that G.L.B. P(r'(f, {w}) > 0. Here {w} denotes
the set containing the single point w.
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The proof of Theorem 1 is based on ideas which go back to Markov's
method of proving ergodicity for a Markov Cahin with finite number of
states, Doob [1]. A similar argument is used by Doob [1] to establish a
limit theorem based on a condition on the one-step transition probability
density.

2. The limit theorem

THEOREM 1. If {an} is a homogeneous Markov Chain with state space Q then
either (1), for each r ^ 1 and arbitrarily small e > 0 there is at least one pair
of points f, rjeQ and a set S, depending on f and r\, such that

(2.1) P">(|, S)

The set S is such that

(2.2) <pc> (f, V,A) = P<'> (£, A) - Pi" (17, A)

is non-negative on every subset of S and negative on every subset of S the
complement of S in Q.

Or (2), there is an integer r ^ 1, a constant d, and a probability measure
P(A) defined over BQ such that

(2.3) |P(B)(£, A)-P(A)\ ^ dc/"-1 < 1, for all geQ,

all Ae BQ.
and

(2.4) P ( A ) = J f i P « " » ( f , A)P{d£), n ^ l .

REMARK. The disjunction of the theorem is meant in the sense that if the
first alternative is false then the second alternative is true. It is possible,
however, that both alternatives are true.

PROOF. Write

M<n*{A) = L.U.B. P<">{£, A), m^(A) = G.L.B. P<n>(f, A)

for A e BQ. It follows from (1.2) that for fixed A, Min){A) is a mono-
tonic non-increasing sequence. Similarly, for fixed A, m{n)(A) is a monotonic
non-decreasing sequence. Thus for any integers, n, r S: 1,

0 ^ M<"+••> {A)—
(2.5) f

^ L.U.B. PW(C,
i,V JO

&lr)(g,ri, A) defined by (2.2) is a completely additive set function over
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BQ and there is a set S, depending on f and r) on which <P(r) (£, rj, A) is a
maximum. This set has the properties stated in the theorem. It follows from
(2.5) that

0 ^ Mln+ri(A)—min+r>(A)
"'6' ^ {M™{A)~mn(A)} L.U.B. 0^(£, rj, S)

i,n
Either

(2.7) L.U.B.0>«'>(£,i/>S) = l
S,v

for all r Sg 1 in which case the first alternative of the theorem is true, or
there is some r ^ 1 such that

(2.8) 0 < L . U . B . <£<'>(£, 77, S) = <5< 1.

When (2.8) is true it follows from (2.6) that

Thus P(A) = limB^o0M<n»(4) = limn^0Ow<n>(,4) exists and (2.3) follows
from

\Pin>(£,A)-P(A)\ ^ \M^(A)-m^(A)\ ^ dW-1

P(Q) = 1, P(A) ̂  0 and P(A) is the uniform limit of completely additive
set functions, thus P(A) is a probability measure. Equation (2.4) follows
from (1.2).

We mention the following corollary which is easily proved.

COROLLARY. When (2.3) is true lim,,.,^P<n>(A) = P{A), further

\PW(A)—P{A)\ ^5<n/r»-1

P(A) does not depend on the initial distribution P°(A) and is the unique
probability measure solution to the integral equation

We deduce from theorem 1 the following theorem which is useful in
applications.

THEOREM 2. Let an be a homogeneous Markov Chain with state space
Q 6 B. If there is an integer r 3; 1 and a point {w} such that

(2.9) G.L.B. P<')(f, {w}) > 0
£eO

then there exists a constant 8, and a probability measure P(A) over BQ such
that
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(2.10) |P(n)(f, A) — P(A)\ ^ dW-1 for all £ e Q, all A € BQ.

(2.11) P(A) = foP™{£,A)P{dt), n ^ 1

P(A) is the unique -probability measure solution of (2.11) with n = 1.

PROOF. We have only to show that the first alternative of theorem 1
cannot occur. To do so choose e < G.L.B.^€fl P

( r )( | , {w}). Equation (2.1)
implies that weS. Thus P<r>(??, 5) ^ P{r)(r), {w}) > s. But (2.1) implies
that P(r)(r], S) ^ e. This contradiction establishes that the second alterna-
tive of Theorem 1 is true and this proves Theorem 2.

3. Applications

We prove

THEOREM 3. Define a sequence {wn} of random variables by

( 0 if wn+un ^ 0
(3.1) wn+1 = wn + un if 0 < wn+un ^ W

{ W if W < wn+un

where {un} is a sequence of independently and identically distributed random
variables with common distribution function (d.f.)G(x). Write Fn(x) = Pr
{wn :S x} then F{x) = \imn^0QFn{x) exists and is a d.f-, it is independent of
the initial distribution F0(x) and is the unique (d.f.) solution of the following
integral equation

!

0 x < 0

[x F{x~y)dG(y) 0^x<W

1 W <x.
This theorem is proved in Finch [2] by a generalisation of an argument due
to Lindley [5]. Equations (3.1) occur in certain storage problems, Finch [2],
and in certain queueing systems with customer impatience, Finch [3], [4].
The equations (3.1) can be regarded as a random walk with independent
steps on the closed interval (0, W).

PROOF. The sequence of random variables {wn} is a homogeneous Markov
Chain with state space the closed interval (0, W) In order to prove Theorem 3
it is sufficient to verify that (2.9) is true. If the random variables un take on
only nonpositive values the theorem is trivial, we can assume therefore that
there is an integer r S; 1 such that Pr{w 2; r^W} > 0. It follows from (3.1)
that

Vr{wn+r =l\wn = l-}^> P r K + , ^ r-*W, j = 1, 2, • • •, r) > 0.
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Thus G.L.B.£P<r>(£, {1}) > 0 and this proves the theorem.
This proof of Theorem 3 gives more than the proof in Finch (2) since by

means of Theorem 2. We have established not only ergodicity but geometric
ergodicity. Thus there is a constant 8 such that

\Fn(z)-F{x)\ ^<5<"/'-'-1< 1.

In many cases of practical interest it is possible to obtain an upper bound
for 6 means of Theorem 1, namely

(3.3) ,5 ̂  L.U.B. <*><"(£,»?, (S)).
i.v

For example, if the d.f. G(x) is given by

(3-4) G{x) =

the random variables un are of the form (sn—tn) where {sn}, {tn} are mutually
independent sequences of independently and identically distributed non-
negative random variables with

Pr{sn^x}= l—e-^.x^O and Pr {tn ̂  x) = \—e-Xx, x ^ 0.

This case occurs in the single server queueing system with Poisson arrivals
at a rate A, exponential service times and customers departing impatiently
if they wait as long as the fixed time W. It is shown in Finch (3) that

I

**'^ \

We shall now prove that

(3.5) |F n (*) -F(

where p = k/fi is the traffic intensity and K = fiW is the maximum waiting
time expressed in units of mean service time.

To prove (3.5) we note first that from (3.4) Vx{un > W} > 0 so that we
can take r = 1 in (3.3). We have to find the set S on which P(1)(f, A) — Pw

(rj, A) is a maximum and to take the least upper bound over these maxima
for f, rj varying in (0, W).

It is easily verified that

(3.6)

and that

J ^ i, x)] = G{-£)-G(-r,)

, x)] = G{W-$)-G(W-v)
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Thus the set 5 must contain the point 0 if £ < r\ and the point W if f > r\.
For 0 < x < W, the set S consists of these points x for which g(x—£) =5
g{x—r}), where g(x) = G'(x) is obtained from (3.4). It will be found that

e f t 0 - (MS+klW+f*)-1} if £<V
\[(^+)(X+^\W] if S>v

and that

(3.7) P<»(£, S J - P ' 1 ' ^ , 5) = l - e x p -

The least upper bound of the expression (3.7) is obtained by taking ||—rj\
= W, thus giving (3.5).

As a second example of the use of theorems 1 and 2 we consider the
problem of the finite dam in discrete time. At time n let the content of a dam
of capacity K be Zn. In the time interval (n, n-\-l) an amount Mva(Xn,
K—Zn) is put into the dam where (Xn) is a sequence of independently and
identically distributed non-negative random variables. Just before the
instant («+l) an amount Yn or Min(K, Xn-\-Zn), whichever is the smaller,
is released from the dam, where (Yn) is a sequence of independently and
identically distributed non-negative random variables distributed independ-
ently of the sequence (Xn). Then

(3.8) Zn+1 = Max[0, Mm(K, Zn+Xn)~Yn].

The sequence (Zn) is a homogeneous Markov Chain with state space the
interval (0, K—M) where M is the greatest lower bound with probability
one of the sequence (Yn). In order to prove the ergodicity of this chain it is
sufficient, by Theorem 1, to prove that there is a positive probability of
emptiness in exactly r steps, for some integer r ^ 1, independently of the
initial level. Alternatively it is sufficient to prove that there is a positive
pr ability of overflow in a finite number of steps independently of the
initial level. We shall not consider the general case here but will confine
ourselves to a model due to Moran [6] in which the release quantity Yn = M
a constant. There is a probability concentration at the point (K—M) and if
we assume that Pr(Xn ^K) > 0 then G.L.B.^ P(1)(£, {K—M}) > 0 since

, {K-M}) = Pr{Zn+1 = K-M\Zn = !•} = Pr{Xn ^ # - £ } .

The geometric ergodicity of the cain follows from Theorem 2.
We examine now the particular case in which the random variables Xn

have an exponential distribution Vr(Xn ^x) = \—e~Xx, x 5: 0. The limit-
ing distribution of dam content for this case has been obtained by Moran
[7]. Write Pn(x) = Vx{Zn ^ x], P{x) = l i m ^ P ^ ) , we prove

(2.9) \Pn{x)-P{x)\ £ [l~exp{-X(K-M)}T -\
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The state space is the closed interval (0, K—M), the one-step transition
probability has a probability concentration at the point {K—M), namely

(3.10) pm{£, {K-M}) = «-*<*-«>, 0 ^ £ ^ K-M

For 0 ^ f < M there is also a probability concentration at the point {0},
namely

(3.11) P«>(|, {0}) = l-c-Aflf-C), 0 ^ | ^ M

For 0 < x < (if—iW) the one-step transition probabilities have a density
given by

e-Mx+M-i) ^ (t_7if)+ <r x < K—M

where a+ = Max(0, a).
The set 5 on which Pll)(g, A)—Pw(r), A) is a maximum is given by

[(g-M)+, ( i f -M)] if I > n and by [ ( | -M)+, fo-M)+] if g < rj. Thus

(3.12) L.U.B. P<"(£, S)-P<»fo, S) = L.U.B. { l - e - ^ - ' l } .

The least upper bound is attained when |f—J?| = K—M and this proves (3.9).

4. Concluding remarks

The applications of theorem 2 have been to Markov Chains with an inter-
val state space with a probability concentration at some point of the space
in the sense of (2.9). It is worthwhile noting that we can ensure that the
first alternative of Theorem 1 cannot occur if (1) the space Q is compact, (2)
the bivariate function &'(£, rj, S), given by (2.2) where S is the set occurring
in Theorem 1, is a continuous function of f, t] in the product space QxQ and
(3) the chain is such that if there is an integer r 5; 1, a point w1eQ and a
set AeBQ such that P^{wlt A) = 1 then P<r)(w, A) > 0 for all weQ.

To prove that the first alternative of Theorem 1 cannot occur under these
conditions we note that if it does occur then (2.7) holds. By conditions (1)
and (2) above the least upper bound must be attained for points g, r\eQ.
This implies the existence of a set S and points g, r\ for which P( r )( | , S) = 1
and PiT)(rj, S) — 0 thus contradicting condition (3). In fact the ergodicity
of the examples considered in section 3 could have been proved in this way,
for from (3.7) and (3.12) we see that condition (2) is satisfied and it is not
difficult to establish condition (3). However the approach through Theorem
2 seems more natural and intuitive for these examples.

Finally we remark that although we have formulated Theorem 1 in terms
of a particular state space, namely a Borel subset of the set of real numbers,
it is possible to formulate the theorem in terms of an abstract state space.
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In particular, the theorem can be applied to an m-dependent Markov Process,
in an obvious way, by regarding the random variable an as an m-tuple
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