PERMANENT PRESERVERS ON THE SPACE OF DOUBLY STOCHASTIC MATRICES

B. N. MOYLS, MARVIN MARCUS, AND HENRYK MINC

1. Introduction. Let M_n be the linear space of *n*-square matrices with real elements. For a matrix $X = (x_{ij}) \in M_n$ the permanent is defined by

per
$$X = \sum_{\sigma} \prod_{i=1}^{n} x_{i\sigma(i)}$$
,

where σ runs over all permutations of $1, 2, \ldots, n$. In (2) Marcus and May determine the nature of all linear transformations T of M_n into itself such that per T(X) = per X for all $X \in M_n$. For such a permanent preserver T, and for $n \ge 3$, there exist permutation matrices P, Q, and diagonal matrices D, L in M_n , such that per DL = 1 and either

$$T(X) = DPXQL$$
 for all $X \in M_n$,

or

$$T(X) = DPX'QL$$
 for all $X \in M_n$.

Here X' denotes the transpose of X. In the case n = 2, a different type of transformation is also possible.

In the present paper we consider those linear mappings which preserve the permanents of doubly stochastic matrices. A matrix is doubly stochastic (d.s.) if its elements are non-negative real numbers and its row and column sums are all 1. The set of d.s. matrices in M_n forms a convex polyhedron Ω_n in which the vertices are permutation matrices. By a *permanent preserver* on Ω_n we mean a mapping T of Ω_n into itself such that, for $A, B \in \Omega_n$ and for real numbers $\alpha, \beta, 0 \leq \alpha \leq 1, 0 \leq \beta \leq 1, \alpha + \beta = 1$,

(1.1)
$$T(\alpha A + \beta B) = \alpha T(A) + \beta T(B).$$

(1.2)
$$\operatorname{per} T(A) = \operatorname{per} A.$$

We shall show that for such T there exist fixed permutation matrices P, Q such that either

T(A) = PAQ for all $A \in \Omega_n$,

or

$$T(A) = PA'Q$$
 for all $A \in \Omega_n$.

Received February 9, 1961. Research supported by the United States Air Force Office of Scientific Research under Contract AF 49(638)-776.

2. Results. Let T be a mapping of Ω_n into itself satisfying (1.1) and (1.2). In (3, Lemma 1) it is shown that for $A \in \Omega_n$, per A = 1 if and only if A is a permutation matrix. It follows that T maps permutation matrices into permutation matrices. Suppose that $T(I) = P_I$, where I is the identity matrix. Define the mapping ϕ on Ω_n by

$$\phi(A) = P'_I T(A).$$

Then ϕ has properties (1.1), (1.2), and

$$(2.1) \qquad \qquad \phi(I) = I.$$

If $A \in \Omega_n$, then A is in the convex hull of at most $(n-1)^2 + 1$ permutation matrices (1); i.e.,

(2.2)
$$A = \sum_{j=1}^{k} \theta_{j} P_{j}, \qquad k \leq (n-1)^{2} + 1,$$

where $\theta_j > 0$, j = 1, ..., k, and $\sum_{j=1}^k \theta_j = 1$. Then

(2.3)
$$\phi(A) = \sum_{j=1}^{k} \theta_j \phi(P_j).$$

It is thus sufficient to discuss the action of ϕ on permutation matrices.

We shall say that two permutation matrices P_1 and P_2 coincide in the position (i, j) if the elements of P_1 and P_2 in this position are both 1; and we shall denote by $c[P_1, P_2]$ the number of positions in which P_1 and P_2 coincide.

LEMMA 1. If $c[P_1, P_2] = \alpha$ and

$$A = \theta P_1 + (1 - \theta) P_2, \qquad 0 < \theta < 1,$$

then there exist integers

$$e_j > 0, j = 1, \ldots, r, \sum_{j=1}^r e_j = n - \alpha,$$

such that

per
$$A = \prod_{j=1}^{r} [\theta^{e_j} + (1-\theta)^{e_j}].$$

Proof. There exists a permutation matrix P such that

$$P'(P'_1P_2)P = I_{\alpha} \dotplus \sum_{j=1}^{r} R_{e_j}, \sum_{j=1}^{r} e_j = n - \alpha,$$

where I_{α} is the identity in Ω_{α} and

(2.4)
$$R_{t} = \begin{pmatrix} 0 & 1 & & \\ & 0 & 1 & \\ & & \ddots & \\ & & \ddots & 1 \\ 1 & 0 & & 0 \end{pmatrix}$$

is *t*-square. (All elements not shown as 1's are zero.) Here + and \sum indicate direct sums. Note that $P'(P'_1P_1)P = I$. Hence we have

$$per A = per [P'(P'_{1}A)P]$$

$$= per [\theta I + (1 - \theta)P'P'_{1}P_{2}P]$$

$$= per \left[I_{\alpha} + \sum_{j=1}^{r} (\theta I_{e_{j}} + (1 - \theta)R_{e_{j}})\right]$$

$$= \prod_{j=1}^{r} per [\theta I_{e_{j}} + (1 - \theta)R_{e_{j}}]$$

$$= \prod_{j=1}^{r} [\theta^{e_{j}} + (1 - \theta)^{e_{j}}].$$

LEMMA 2. For two permutation matrices P_1, P_2 ,

$$c[\phi(P_1), \phi(P_2)] = c[P_1, P_2].$$

Proof. Let $c[P_1, P_2] = \alpha$ and $c[\phi(P_1), \phi(P_2)] = \beta$. For $A(\theta) = \theta P_1 + (1 - \theta)P_2$ $0 < \theta < 1, \phi(A(\theta)) = \theta \phi(P_1) + (1 - \theta)\phi(P_1)$. By Lemma 1,

per
$$A(\theta) = \prod_{j=1}^{r} [\theta^{e_j} + (1-\theta)^{e_j}],$$

where

$$\sum_{j=1}^r e_j = n - \alpha;$$

and

per
$$\phi(A(\theta)) = \prod_{j=1}^{s} [\theta^{f_j} + (1-\theta)^{f_j}],$$

where

$$\sum_{j=1}^{s} f_j = n - \beta$$

Since ϕ preserves permanents,

(2.5)
$$\prod_{j=1}^{r} \left[\theta^{e_j} + (1-\theta)^{e_j}\right] = \prod_{j=1}^{s} \left[\theta^{f_j} + (1-\theta)^{f_j}\right]$$

for all θ , $0 < \theta < 1$, and hence for all real θ . We may assume that $e_1 \leq \ldots \leq e_r$, $f_1 \leq \ldots \leq f_s$, and $e_r \leq f_s$. Now the polynomial $\theta^{f_s} + (1 - \theta)^{f_s}$ in θ has at least one root which is not a root of $\theta^t + (1 - \theta)^t$ for any t, $0 < t < f_s$. Since this root must occur in both sides of (2.5), $e_r = f_s$. By induction, $e_j = f_j$ for $j = 1, \ldots, s$, and r = s. Hence $\alpha = \beta$.

Let $\mathfrak{A}_i^{(t)}$ be the set of those permutation matrices in Ω_t which have 1 in position (i, i). Since we shall be dealing mainly with the case t = n, we shall write \mathfrak{A}_i for $\mathfrak{A}_i^{(n)}$.

LEMMA 3. There exists a permutation σ of 1, 2, ..., n such that $P \in \mathfrak{A}_i$ implies $\phi(P) \in \mathfrak{A}_{\sigma(i)}, i = 1, ..., n$.

Proof. If n = 2, σ is the identity. For $n \ge 3$, set $R = I_1 + R_{n-1}$ (see (2.4)). Since c[I, R] = 1, $c[I, \phi(R)] = 1$ by Lemma 2, $\phi(R) \in \mathfrak{A}_{\sigma_1}$ for a unique positive integer $\sigma_1 \le n$. Similarly, for any $P \in \mathfrak{A}_1$, $\phi(P) \in \mathfrak{A}_{\tau}$ for at least one τ . We shall show that $\phi(P) \in \mathfrak{A}_{\sigma_1}$.

Case (*i*): c[I, P] = 1. Let P_{ij} be the permutation matrix which coincides with *I* except in rows *i* and *j*, $i \neq j$. By Lemma 2, $c[\phi(R), \phi(P_{1j})] = 0$; hence $\phi(P_{1j}) \notin \mathfrak{A}_{\sigma_1}$. Similarly, $c[\phi(P), \phi(P_{1j})] = 0$; hence $\phi(P_{1j}) \notin \mathfrak{A}_{\tau}$. Now $c[I, \phi(P_{1j})] = n - 2$; thus, if $\tau \neq \sigma_1$, $\phi(P_{1j}) = P_{\tau\sigma_1}$, valid for $j = 2, \ldots, n$. This contradicts Lemma 2; hence $\tau = \sigma_1$.

Case (ii): c[I, P] = k > 1. If $k \ge n - 1$, P = I, which is in all \mathfrak{A}_i . If k < n - 1, we can choose a matrix Q such that c[R, Q] = c[P, Q] = 0, while c[I, Q] = n - k. In fact there is no loss in generality in assuming that $P = I_k + P_1$ for some permutation matrix $P_1 \in \Omega_{n-k}$; in which case $Q = R_k' + I_{n-k}$ will do. By Lemma 2, $c[\phi(R), \phi(Q)] = c[\phi(P), \phi(Q)] = 0$, while $c[I, \phi(P)] = k$ and $c[I, \phi(Q)] = n - k$. This forces $\phi(P)$ into \mathfrak{A}_{r_1} .

We have shown that for any $P \in \mathfrak{A}_1$, $\phi(P) \in \mathfrak{A}_{\sigma_1}$, for some particular integer σ_1 , $1 \leq \sigma_1 \leq n$. Similarly, we can find for each i, $1 \leq i \leq n$, an integer σ_i , such that $P \in \mathfrak{A}_i$ implies $\phi(P) \in \mathfrak{A}_{\sigma_1}$. Clearly $\sigma_i \neq \sigma_j$ if $i \neq j$; thus $\sigma(i) = \sigma_i$ gives the desired permutation.

Let P_{σ} be the permutation matrix whose $\sigma(i)$ th column is the *i*th column of I; σ is the permutation given by Lemma 3. Define the linear transformation ψ on Ω_n :

(2.6)
$$\psi(A) = P_{\sigma}\phi(A)P'_{\sigma}, \qquad A \in \Omega_n.$$

Denote by \mathfrak{G}_t the set of permanent preservers on Ω_t which map $\mathfrak{A}_i^{(t)}$ into $\mathfrak{A}_i^{(t)}$, $i = 1, 2, \ldots, t$. It follows at once that $\psi \in \mathfrak{G}_n$. Let E be the identity mapping on Ω_n , and let F be the transpose mapping on Ω_n ; that is, F(A) = A' for all $A \in \Omega_n$.

LEMMA 4. If
$$G \in \mathfrak{G}_n$$
 then $G = E$ or $G = F$.

Proof. The proof is by induction on n. For n = 1, 2 it is immediate that G = E. For n = 3 it is easily checked that G must be E or F.

For $n \ge 4$, each permutation matrix $P \in \mathfrak{A}_1$ can be written: $P = I_1 \dotplus \tilde{P}$, where \tilde{P} is a permutation matrix in Ω_{n-1} . Thus G induces a linear mapping \tilde{G} on Ω_{n-1} defined by: $G(P) = I_1 \dotplus \tilde{G}(\tilde{P})$ and (2.3); moreover, $\tilde{G} \in \mathfrak{G}_{n-1}$. By the induction hypothesis \tilde{G} is the identity or transpose mapping, and hence G = E or F on \mathfrak{A}_1 . Similarly G = E or F on \mathfrak{A}_2 . To see that G = E or Funiformly on $\mathfrak{A}_1 \cup \mathfrak{A}_2$, consider the matrices: $P_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \dots & 0 \\ 0 & 0 & 1 & 0 & 0 \dots & 0 \\ 0 & 0 & 0 & 1 & 0 \dots & 0 \\ 0 & 0 & 0 & 0 & 1 \dots & 0 \\ \dots & & & & \\ 0 & 0 & 0 & 0 & 0 \dots & 1 \\ 0 & 1 & 0 & 0 & \dots & 0 \end{pmatrix}, \qquad P_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \dots & 0 \\ 0 & 1 & 0 & 0 & 0 \dots & 0 \\ 0 & 0 & 0 & 1 & 0 \dots & 0 \\ 0 & 0 & 0 & 0 & 1 \dots & 0 \\ \dots & & & & \\ 0 & 0 & 0 & 0 & 0 \dots & 1 \\ 1 & 0 & 0 & 0 & 0 \dots & 0 \end{pmatrix}.$

Since $c[P_1, P_2] = n - 3$ while $c[P_1, P_2'] = 0$, it follows from Lemma 2 that $G(P_2) = P_2$ if $G(P_1) = P_1$ and $G(P_2) = P_2'$, if $G(P_1) = P_1'$. Similarly G = E or F uniformly on all \mathfrak{A}_i , $i = 1, \ldots, n$.

There remains to show that, for $P \notin \mathfrak{A}_i$, $i = 1, \ldots, n$, G(P) = P or P'according as G = E or F on the \mathfrak{A}_i . We shall discuss the case where G = Eon \mathfrak{A}_i ; the argument for transposition is the same. Let $P_{\alpha\beta}$ be the matrix obtained from I by permuting columns α and β . For each α , $1 \leq \alpha \leq n$, $\exists \gamma \neq \alpha \ni PP_{\alpha\gamma} \in \mathfrak{A}_{\alpha}$. Then $G(PP_{\alpha\gamma}) = PP_{\alpha\gamma}$. Since $c[G(P), G(PP_{\alpha\gamma})] = n-2$ and $G(P) \notin \mathfrak{A}_{\alpha}$, $G(P) = PP_{\alpha\gamma}P_{\alpha\delta}$ for some δ . When $n \ge 4$, this cannot hold for all α unless $\delta = \gamma$. Thus G(P) = P, and the proof of the lemma is complete.

Since $T(A) = P_I P_{\sigma} \psi(A) P_{\sigma}$, we have immediately our main result:

THEOREM: Let T be a linear mapping of Ω_n into Ω_n such that per T(A) = per Aor all $A \in \Omega_n$. Then there exist permutation matrices P and Q such that either

 $T(A) = PAQ, all A \in \Omega_n,$

or

$$T(A) = PA'O, all A \in \Omega_n$$

References

- Marvin Marcus, Some properties and applications of doubly stochastic matrices, Amer. Math. Monthly, 67 (1960), 215-221.
- 2. Marvin Marcus and F. C. May, The permanent function, Can. J. Math., 14 (1962) 177-190.
- Marvin Marcus and Morris Newman, On the minimum of the permanent of a doubly stochastic matrix, Duke Math. J., 26 (1959), 61-72.

University of British Columbia

194