PERMANENT PRESERVERS ON THE SPACE OF DOUBLY STOCHASTIC MATRICES

B. N. MOYLS, MARVIN MARCUS, and HENRYK MINC

1. Introduction. Let M_{n} be the linear space of n-square matrices with real elements. For a matrix $X=\left(x_{i j}\right) \in M_{n}$ the permanent is defined by

$$
\operatorname{per} X=\sum_{\sigma} \prod_{i=1}^{n} x_{i \sigma(i)},
$$

where σ runs over all permutations of $1,2, \ldots, n$. In (2) Marcus and May determine the nature of all linear transformations T of M_{n} into itself such that per $T(X)=$ per X for all $X \in M_{n}$. For such a permanent preserver T, and for $n \geqslant 3$, there exist permutation matrices P, Q, and diagonal matrices D, L in M_{n}, such that per $D L=1$ and either

$$
T(X)=D P X Q L \text { for all } X \in M_{n}
$$

or

$$
T(X)=D P X^{\prime} Q L \text { for all } X \in M_{n} .
$$

Here X^{\prime} denotes the transpose of X. In the case $n=2$, a different type of transformation is also possible.

In the present paper we consider those linear mappings which preserve the permanents of doubly stochastic matrices. A matrix is doubly stochastic (d.s.) if its elements are non-negative real numbers and its row and column sums are all 1 . The set of d.s. matrices in M_{n} forms a convex polyhedron Ω_{n} in which the vertices are permutation matrices. By a permanent preserver on Ω_{n} we mean a mapping T of Ω_{n} into itself such that, for $A, B \in \Omega_{n}$ and for real numbers $\alpha, \beta, 0 \leqslant \alpha \leqslant 1,0 \leqslant \beta \leqslant 1, \alpha+\beta=1$,

$$
\begin{align*}
T(\alpha A+\beta B) & =\alpha T(A)+\beta T(B) . \tag{1.1}\\
\operatorname{per} T(A) & =\operatorname{per} A . \tag{1.2}
\end{align*}
$$

We shall show that for such T there exist fixed permutation matrices P, Q such that either

$$
T(A)=P A Q \text { for all } A \in \Omega_{n}
$$

or

$$
T(A)=P A^{\prime} Q \text { for all } A \in \Omega_{n}
$$

[^0]2. Results. Let T be a mapping of Ω_{n} into itself satisfying (1.1) and (1.2). In (3, Lemma 1) it is shown that for $A \in \Omega_{n}$, per $A=1$ if and only if A is a permutation matrix. It follows that T maps permutation matrices into permutation matrices. Suppose that $T(I)=P_{I}$, where I is the identity matrix. Define the mapping ϕ on Ω_{n} by
$$
\phi(A)=P_{I}^{\prime} T(A)
$$

Then ϕ has properties (1.1), (1.2), and

$$
\begin{equation*}
\phi(I)=I \tag{2.1}
\end{equation*}
$$

If $A \in \Omega_{n}$, then A is in the convex hull of at most $(n-1)^{2}+1$ permutation matrices (1); i.e.,

$$
\begin{equation*}
A=\sum_{j=1}^{k} \theta_{j} P_{j}, \quad k \leqslant(n-1)^{2}+1 \tag{2.2}
\end{equation*}
$$

where $\theta_{j}>0, j=1, \ldots, k$, and $\sum^{k}{ }_{j=1} \theta_{j}=1$. Then

$$
\begin{equation*}
\phi(A)=\sum_{j=1}^{k} \theta_{j} \phi\left(P_{j}\right) \tag{2.3}
\end{equation*}
$$

It is thus sufficient to discuss the action of ϕ on permutation matrices.
We shall say that two permutation matrices P_{1} and P_{2} coincide in the position (i, j) if the elements of P_{1} and P_{2} in this position are both 1 ; and we shall denote by $c\left[P_{1}, P_{2}\right]$ the number of positions in which P_{1} and P_{2} coincide.

Lemma 1. If $c\left[P_{1}, P_{2}\right]=\alpha$ and

$$
A=\theta P_{1}+(1-\theta) P_{2}, \quad 0<\theta<1
$$

then there exist integers

$$
e_{j}>0, j=1, \ldots, r, \sum_{j=1}^{\tau} e_{j}=n-\alpha,
$$

such that

$$
\operatorname{per} A=\prod_{j=1}^{\tau}\left[\theta^{e_{j}}+(1-\theta)^{e_{j}}\right] .
$$

Proof. There exists a permutation matrix P such that

$$
P^{\prime}\left(P_{1}^{\prime} P_{2}\right) P=I_{\alpha}+\sum_{j=1}^{r} R_{e j}, \sum_{j=1}^{r} e_{j}=n-\alpha,
$$

where I_{α} is the identity in Ω_{α} and

$$
R_{t}=\left(\begin{array}{lllll}
0 & 1 & & & \tag{2.4}\\
& 0 & 1 & & \\
& & & \ddots & \\
& & & \ddots & 1 \\
1 & 0 & & & 0
\end{array}\right)
$$

is t-square. (All elements not shown as 1 's are zero.) Here $\dot{+}$ and \sum ' indicate direct sums. Note that $P^{\prime}\left(P_{1}^{\prime} P_{1}\right) P=I$. Hence we have

$$
\begin{aligned}
\operatorname{per} A & =\operatorname{per}\left[P^{\prime}\left(P_{1}^{\prime} A\right) P\right] \\
& =\operatorname{per}\left[\theta I+(1-\theta) P^{\prime} P_{1}^{\prime} P_{2} P\right] \\
& =\operatorname{per}\left[I_{\alpha}+\sum_{j=1}^{r} \cdot\left(\theta I_{e_{j}}+(1-\theta) R_{e_{j}}\right)\right] \\
& =\prod_{j=1}^{r} \operatorname{per}\left[\theta I_{e_{j}}+(1-\theta) R_{e_{j}}\right] \\
& =\prod_{j=1}^{r}\left[\theta^{e_{j}}+(1-\theta)^{e_{j}}\right] .
\end{aligned}
$$

Lemma 2. For two permutation matrices P_{1}, P_{2},

$$
c\left[\phi\left(P_{1}\right), \phi\left(P_{2}\right)\right]=c\left[P_{1}, P_{2}\right] .
$$

Proof. Let $c\left[P_{1}, P_{2}\right]=\alpha$ and $c\left[\phi\left(P_{1}\right), \phi\left(P_{2}\right)\right]=\beta$. For $A(\theta)=\theta P_{1}+(1-\theta) P_{2}$ $0<\theta<1, \phi(A(\theta))=\theta \phi\left(P_{1}\right)+(1-\theta) \phi\left(P_{1}\right)$. By Lemma 1,

$$
\operatorname{per} A(\theta)=\prod_{j=1}^{\tau}\left[\theta^{e_{j}}+(1-\theta)^{e_{j}}\right]
$$

where

$$
\sum_{j=1}^{r} e_{j}=n-\alpha
$$

and

$$
\operatorname{per} \phi(A(\theta))=\prod_{j=1}^{s}\left[\theta^{f_{j}}+(1-\theta)^{f_{j}}\right]
$$

where

$$
\sum_{j=1}^{s} f_{j}=n-\beta
$$

Since ϕ preserves permanents,

$$
\begin{equation*}
\prod_{j=1}^{\tau}\left[\theta^{e_{j}}+(1-\theta)^{e_{j}}\right]=\prod_{j=1}^{s}\left[\theta^{f_{j}}+(1-\theta)^{f_{j}}\right] \tag{2.5}
\end{equation*}
$$

for all $\theta, 0<\theta<1$, and hence for all real θ. We may assume that $e_{1} \leqslant \ldots \leqslant e_{r}$, $f_{1} \leqslant \ldots \leqslant f_{s}$, and $e_{r} \leqslant f_{s}$. Now the polynomial $\theta^{f_{s}}+(1-\theta)^{f_{s}}$ in θ has at least one root which is not a root of $\theta^{t}+(1-\theta)^{t}$ for any $t, 0<t<f_{s}$. Since this root must occur in both sides of (2.5), $e_{r}=f_{s}$. By induction, $e_{j}=f_{j}$ for $j=1, \ldots, s$, and $r=s$. Hence $\alpha=\beta$.

Let $\mathscr{A}_{i}{ }^{(t)}$ be the set of those permutation matrices in Ω_{t} which have 1 in position (i, i). Since we shall be dealing mainly with the case $t=n$, we shall write \mathfrak{U}_{i} for $\mathfrak{A}_{i}{ }^{(n)}$.

Lemma 3. There exists a permutation σ of $1,2, \ldots, n$ such that $P \in \mathfrak{A}_{i}$ implies $\phi(P) \in \mathfrak{H}_{\sigma(i)}, i=1, \ldots, n$.

Proof. If $n=2, \sigma$ is the identity. For $n \geqq 3$, set $R=I_{1} \dot{+} R_{n-1}$ (see (2.4)). Since $c[I, R]=1, c[I, \phi(R)]=1$ by Lemma $2, \phi(R) \in \mathfrak{H}_{\sigma_{1}}$ for a unique positive integer $\sigma_{1} \leqslant n$. Similarly, for any $P \in \mathfrak{H}_{1}, \phi(P) \in \mathfrak{U}_{\tau}$ for at least one τ. We shall show that $\phi(P) \in \mathfrak{N}_{\sigma_{1}}$.

Case (i): $c[I, P]=1$. Let $P_{i j}$ be the permutation matrix which coincides with I except in rows i and $j, i \neq j$. By Lemma $2, c\left[\phi(R), \phi\left(P_{1 j}\right)\right]=0$; hence $\phi\left(P_{1 j}\right) \notin \mathfrak{H}_{\sigma_{1}} . \quad$ Similarly, $\quad c\left[\phi(P), \phi\left(P_{1 j}\right)\right]=0 ; \quad$ hence $\quad \phi\left(P_{1 j}\right) \notin \mathfrak{H}_{\tau} . \quad$ Now $c\left[I, \phi\left(P_{1 j}\right)\right]=n-2$; thus, if $\tau \neq \sigma_{1}, \phi\left(P_{1_{j}}\right)=P_{\tau \sigma_{1}}$, valid for $j=2, \ldots, n$. This contradicts Lemma 2; hence $\tau=\sigma_{1}$.

Case (ii): $c[I, P]=k>1$. If $k \geqslant n-1, P=I$, which is in all \mathfrak{A}_{i}. If $k<n-1$, we can choose a matrix Q such that $c[R, Q]=c[P, Q]=0$, while $c[I, Q]=n-k$. In fact there is no loss in generality in assuming that $P=I_{k}+P_{1}$ for some permutation matrix $P_{1} \in \Omega_{n-k}$; in which case $Q=R_{k}{ }^{\prime} \dot{+} I_{n-k}$ will do. By Lemma $2, c[\phi(R), \phi(Q)]=c[\phi(P), \phi(Q)]=0$, while $c[I, \phi(P)]=k$ and $c[I, \phi(Q)]=n-k$. This forces $\phi(P)$ into $\mathfrak{H}_{\sigma_{1}}$.

We have shown that for any $P \in \mathfrak{U}_{1}, \phi(P) \in \mathfrak{H}_{\sigma_{1}}$, for some particular integer $\sigma_{1}, 1 \leqslant \sigma_{1} \leqslant n$. Similarly, we can find for each $i, 1 \leqslant i \leqslant n$, an integer σ_{i}, such that $P \in \mathfrak{A}_{i}$ implies $\phi(P) \in \mathfrak{A}_{\sigma_{1}}$. Clearly $\sigma_{i} \neq \sigma_{j}$ if $i \neq j$; thus $\sigma(i)=\sigma_{i}$ gives the desired permutation.

Let P_{σ} be the permutation matrix whose $\sigma(i)$ th column is the i th column of $I ; \sigma$ is the permutation given by Lemma 3. Define the linear transformation ψ on Ω_{n} :

$$
\begin{equation*}
\psi(A)=P_{\sigma} \phi(A) P_{\sigma}^{\prime}, \quad A \in \Omega_{n} \tag{2.6}
\end{equation*}
$$

Denote by $\mathfrak{G H}_{t}$ the set of permanent preservers on Ω_{t} which map $\mathfrak{H}_{i}{ }^{(t)}$ into $\mathfrak{N}_{i}{ }_{i}{ }^{(t)}$, $i=1,2, \ldots, t$. It follows at once that $\psi \in \mathfrak{J}_{n}$. Let E be the identity mapping on Ω_{n}, and let F be the transpose mapping on Ω_{n}; that is, $F(A)=A^{\prime}$ for all $A \in \Omega_{n}$.

Lemma 4. If $G \in \mathfrak{G}_{n}$ then $G=E$ or $G=F$.
Proof. The proof is by induction on n. For $n=1,2$ it is immediate that $G=E$. For $n=3$ it is easily checked that G must be E or F.

For $n \geqslant 4$, each permutation matrix $P \in \mathfrak{A}_{1}$ can be written: $P=I_{1} \dot{+} \widetilde{P}$, where \widetilde{P} is a permutation matrix in Ω_{n-1}. Thus G induces a linear mapping \widetilde{G} on Ω_{n-1} defined by: $G(P)=I_{1}+\widetilde{G}(\widetilde{P})$ and (2.3); moreover, $\widetilde{G} \in\left(\mathfrak{H}_{n-1}\right.$. By the induction hypothesis \widetilde{G} is the identity or transpose mapping, and hence $G=E$ or F on \mathfrak{U}_{1}. Similarly $G=E$ or F on \mathfrak{A}_{2}. To see that $G=E$ or F uniformly on $\mathfrak{H}_{1} \cup \mathfrak{U}_{2}$, consider the matrices:

$$
P_{1}=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & 1 & \ldots & 0 \\
\ldots & 0 & & & & \\
0 & 0 & 0 & 0 & 0 & \ldots & 1 \\
0 & 1 & 0 & 0 & \ldots & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & \ldots
\end{array}\right)
$$

Since $c\left[P_{1}, P_{2}\right]=n-3$ while $c\left[P_{1}, P_{2}{ }^{\prime}\right]=0$, it follows from Lemma 2 that $G\left(P_{2}\right)=P_{2}$ if $G\left(P_{1}\right)=P_{1}$ and $G\left(P_{2}\right)=P_{2}{ }^{\prime}$, if $G\left(P_{1}\right)=P_{1}{ }^{\prime}$. Similarly $G=E$ or F uniformly on all $\mathfrak{U}_{i}, i=1, \ldots, n$.

There remains to show that, for $P \notin \mathfrak{A}_{i}, i=1, \ldots, n, G(P)=P$ or P^{\prime} according as $G=E$ or F on the \mathfrak{H}_{i}. We shall discuss the case where $G=E$ on \mathfrak{N}_{i}; the argument for transposition is the same. Let $P_{\alpha \beta}$ be the matrix obtained from I by permuting columns α and β. For each $\alpha, 1 \leqslant \alpha \leqslant n$, $\exists \gamma \neq \alpha \ni P P_{\alpha \gamma} \in \mathfrak{H}_{\alpha}$. Then $G\left(P P_{\alpha \gamma}\right)=P P_{\alpha \gamma}$. Since $c\left[G(P), G\left(P P_{\alpha \gamma}\right)\right]=n-2$ and $G(P) \notin \mathfrak{H}_{\alpha}, G(P)=P P_{\alpha \gamma} P_{\alpha \delta}$ for some δ. When $n \geqslant 4$, this cannot hold for all α unless $\delta=\gamma$. Thus $G(P)=P$, and the proof of the lemma is complete.

Since $T(A)=P_{I} P_{\sigma}{ }^{\prime} \psi(A) P_{\sigma}$, we have immediately our main result:
Theorem: Let T be a linear mapping of Ω_{n} into Ω_{n} such that per $T(A)=\operatorname{per} A$ or all $A \in \Omega_{n}$. Then there exist permutation matrices P and Q such that either

$$
T(A)=P A Q, \text { all } A \in \Omega_{n}
$$

or

$$
T(A)=P A^{\prime} Q, \text { all } A \in \Omega_{n}
$$

References

1. Marvin Marcus, Some properties and applications of doubly stochastic matrices, Amer. Math. Monthly, 67 (1960), 215-221.
2. Marvin Marcus and F. C. May, The permanent function, Can. J. Math., 14 (1962) 177-190.
3. Marvin Marcus and Morris Newman, On the minimum of the permanent of a doubly stochastic matrix, Duke Math. J., 26 (1959), 61-72.

University of British Columbia

[^0]: Received February 9, 1961. Research supported by the United States Air Force Office of Scientific Research under Contract AF 49(638)-776.

