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Abstract

The equivalence between contact and Pansu differentiable maps on Carnot groups is established within
the class of maps that are C1 with respect to the ambient Euclidean structure.
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1. Introduction

A Carnot group G is a connected, simply connected, stratified nilpotent Lie group,
equipped with a left-invariant sub-Riemannian metric, defined on a left-invariant sub-
bundle of the tangent bundle. The sub-bundle is called the horizontal bundle and the
metric is called the Carnot–Carathéodory metric. Diffeomorphisms which preserve
the horizontal bundle are called contact maps.

In [5], Pansu introduced his notion of the derivative for mappings between Carnot
groups and in a weak sense and showed that Pansu differentiable maps are contact
maps almost everywhere. Pansu stopped short of proving the converse statement that
contact maps are Pansu differentiable which appears to be considerably more difficult.
In a forthcoming paper [3], Magnani establishes the converse without assumptions
of smoothness.

The assumption that the maps in question are C1 with respect to the ambient
Euclidean structure facilitates an elementary approach, which in some sense is the
familiar proof that a map defined on an open set � is C1(�) if and only if the
partial derivatives exist and are continuous on �. Reading this familiar theorem in
an analogous way in the Carnot group setting, we replace partial derivatives with
horizontal partial derivatives and total derivative with Pansu derivative.

A Carnot group G can always be modelled on its Lie algebra g using the
multiplication ? arising from the Baker–Campbell–Hausdorff formula. We denote this
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model by (g, ?) and note that it shows that G carries an ambient Euclidean structure
imparted from g by the exponential map. In this setting the main result of this article
reads as the following result.

THEOREM 1. Let �⊆ (g, ?) be an open set and let f :�→ (g, ?) be C1(�) with
respect to the ambient Euclidean structure of g. Then f is a contact map if and only if
it is Pansu differentiable at every X ∈�.

2. Carnot groups

A nilpotent Lie algebra g is said to admit an n-step stratification if

g = g1 ⊕ · · · ⊕ gn,

such that g j+1 = [g1, g j ], where j = 1, . . . , n − 1, and gn is contained in the centre
Z(g). A connected, simply connected nilpotent Lie group G, with stratified Lie
algebra g, equipped with an inner product 〈 , 〉g, such that gi ⊥ g j when i 6= j , is
called a Carnot group.

A left-invariant vector field X ∈ 0(T G) has the form g 7→ (τg)∗(V ), where
V ∈ g ≡ TeG, and it follows that the left-invariant vector fields inherit the stratification
of g. In particular, if L i is the sub-bundle of T G defined by L i (g)= (τg)∗(gi ), then
L i+1(g)= [L1, L i ] (g) where i = 1, . . . , n − 1. The inner product of g induces an
inner product on TgG by setting

〈V, W 〉g = 〈(τg−1)∗(V ), (τg−1)∗(W )〉g,

and it follows that L i (g)⊥ L j (g) when i 6= j . The horizontal tangent space at g ∈ G
is the subspace L1(g)⊆ TgG, and a curve γ : I → G is said to be horizontal if
γ̇ (t) ∈ L1(γ (t)) for all t ∈ I . If H(g1, g2) denotes the set of horizontal curves joining
g1 to g2, then the Carnot–Carathéodory distance is

d(g1, g2)= inf
γ∈H(g1,g2)

∫
‖γ̇ (t)‖ dt,

where ‖γ̇ (t)‖ =
√

〈γ̇ (t), γ̇ (t)〉γ (t) . The theorem of Chow, see [1], implies that G is
path connected via horizontal curves, and that d is a metric. By definition d is left-
invariant, that is, d(τg(g1), τg(g2))= d(g1, g2).

For simply connected nilpotent Lie groups, the exponential map exp : g → G is a
diffeomorphism. Moreover, the exponential map is an isomorphism (g, ?)→ G when
we define X ? Y = exp−1(exp(X) exp(Y )). The dilation δt ∈ Aut(g) is defined by
δt (X)=

∑n
j=1 t j X j , where X =

∑n
j=1 X j and X j ∈ g j . Dilation of g ∈ G is defined

by g 7→ exp ◦ δt ◦ exp−1(g), and where no confusion arises, we denote dilation on
G by δt (g). By definition, the Carnot–Carathéodory distance is homogeneous with
respect to dilation, that is, d(δt (g1), δt (g2))= t d(g1, g2).
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The Baker–Campbell–Hausdorff formula, see [7], is the explicit expression

X ? Y =

∑
n>0

(−1)n+1

n

∑
0<pi +qi

1≤i≤n

1
C p,q

T (X p1, Y q1, . . . , X pn , Y qn ),

where

C p,q = p1! q1! · · · pn! qn!

n∑
i=1

pi + qi

and

T (X p1, Y q1, . . . , X pn , Y qn )

=

{
(ad X)p1(ad Y )q1 · · · (ad X)pn (ad Y )qn−1Y if qn ≥ 1,

(ad X)p1(ad Y )q1 · · · (ad X)pn−1 X if qn = 0.
(2.1)

The expansion to order 4 takes the form

X ? Y = X + Y +
1
2
[X, Y ] +

1
12
([X, [X, Y ]] + [Y, [Y, X ]])

+
1

48
([Y, [X, [Y, X ]]] − [X, [Y, [X, Y ]]])+ · · · .

By construction, the pair (g, ?) is a Lie group with Lie algebra g such that
Aut(g, ?)= Aut(g). Furthermore, any Carnot group G with Lie algebra g is group
isomorphic to (g, ?) via a stratification-preserving isomorphism, and when an inner
product 〈 , 〉g is given, the isomorphism becomes an isometry when we define

〈V, W 〉X = 〈(τ
X−1 )∗(V ), (τX−1 )∗(W )〉g.

It follows from these observations that the theory of Carnot groups can be developed
in the context of the model (g, ?).

Choosing an orthonormal basis, say B, identifies g with Rdimg and X ? Y becomes
polynomial in the coordinates X and Y of degree up to n − 1. The triple (g, ?, B) is
said to be a normal model of the first kind.

Let

{ei,α | i = 1, . . . , n, α = 1, . . . di = dim gi },

denote a basis of g such that

gi = span{ei,α | α = 1, . . . , di = dim gi },

and let
{λi,β | i = 1, . . . , n, β = 1, . . . , di = dim gi } ⊂ g∗
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denote the corresponding dual basis such that

λi,β(e j,α)=

{
1 if i = j and β = α,

0 otherwise.

The vector fields X i,α , defined by X i,α(X)= (τX )∗(ei,α), form a basis for the
left-invariant vector fields of (g, ?), and the corresponding dual forms on g are
θi,α|X = (τX

−1)∗λi,α .
If f :�1 →�2 is a diffeomorphism between open sets �1, �2 ⊆ g, and V ∈ TX g,

where X ∈�1, then

f∗(VX ) =

∑
i

∑
α

∑
j

∑
β

λi,α( f∗(e j,β))λ j,β(VX )ei,α

=

∑
i

∑
α

∑
j

∑
β

(θi,α) f (X)( f∗(X j,β(X)))θ j,β(VX )X i,α( f (X))

=

∑
i

∑
α

∑
j

∑
β

θi,α( f∗X j,β)θ j,β(VX )X i,α( f (X)).

We use the notation J f and D f to denote the matrices with block form

J fi, j = (λi,α( f∗e j,β))α,β and D fi, j = (θi,α( f∗X j,β))α,β .

Note that the substitutions
(X i,α) (X)= τX ∗

(ei,α)

and

(θi,α)X = (τ−1
X
)∗λi,α

show that

D f (X)= J (τ−1
f (X)

◦ f ◦ τX ) (0).

3. Contact maps

A local C1 diffeomorphism f : G → G that preserves horizontal curves is called a
contact map. If f is a contact map, then f∗(L1(g))= L1( f (g)); moreover, the contact
maps of G correspond with contact maps of (g, ?) via the exponential map. The trivial
examples are left translations and dilations.

Let f be a contact map of �⊆ (g, ?); then θi,1( f∗X1,β)= 0 when i > 1 and
1 ≤ β ≤ d1. However, more is true – in fact θi,α( f∗X j,β)= 0 when 1 ≤ j < i , and
D f (X) is block upper triangular. If f is C2, this fact follows from the invariance of
the Lie bracket, that is,

( f∗[V, W ]) f (p) = [ f∗V, f∗W ] f (p),

where V and W are vector fields. If f is C1, the Pansu differentiability of f will force
D f (X) to block upper triangular, which demonstrates some of the significance of the
Pansu derivative.
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4. Pansu differentiability

Let f be a map of some open set �⊆ (g, ?) into (g, ?), and let

ψX = τ−1
f (X) ◦ f ◦ τX .

Then f is said to be Pansu differentiable at X ∈�, if the limit

lim
t→0

δ1/t ◦ ψX ◦ δt (Z)

converges locally uniformly with respect to Z ∈ (g, ?), and the map

φX (Z)= lim
t→0

δ1/t ◦ ψX ◦ δt (Z),

called the Pansu derivative of f at X , is an element of Aut(g, ?). We say that f is
Pansu differentiable on � if it is Pansu differentiable at every X ∈�. The topology
of the convergence is the metric topology induced by the Euclidean norm, the Carnot–
Carathéodory distance, or the gauge metric of Nagel et al. [4].

5. Proof of Theorem 1

First we show that Pansu differentiability of f implies that f is a contact map.
Suppose that f is Pansu differentiable at X ∈�. Since

1
t i λi,α ◦ ψX (t

j e j,β)= λi,α ◦ δ1/t ◦ ψX ◦ δt (e j,β),

it follows that

lim
t→0

1
t i λi,α ◦ ψX (t

j e j,β)= λi,α ◦ φX (e j,β).

In particular, if f is C1 in a neighbourhood of X , then D f (X)= JψX (0) is block
upper triangular, and φX is given by the diagonal part of D f (X). Moreover, f is a
contact map since D f (X)i,1 = 0 when i > 1, that is, f preserves horizontal curves.

In the rest of this section we first outline the proof that a C1 contact map

f :�→ (g, ?)

is Pansu differentiable at every X ∈�, and then provide the details. The proof uses [2,
Lemma 1.40], which states that there exist a constant C > 0, an integer m, and a map
g : {1, . . . , m} → {1, . . . , d1}, such that every W ∈ (g, ?) has the form

W = w1e1,g(1) ? · · · ? wme1,g(m), (5.1)

where |wi | ≤ C |W |
1/n .
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The proof proceeds first by observing that for every C1 horizontal curve γ such that
γ (0)= 0,

lim
t→0

δ1/t ◦ γ (t)= γ ′

1(0).

Next we observe that since f preserves horizontal curves, the curve γ (t)= ψX (t Z) is
horizontal when Z ∈ g1, and γ (0)= 0. It follows that

lim
t→0

δ1/t ◦ ψX ◦ δt (Z)= γ ′

1(0),

and the smoothness of f implies that the convergence is uniform when

Z ∈ DR = {Z ∈ g1 : |Z | ≤ R}.

Next we use Pansu’s decomposition [5], that is, if Y , Z ∈ g then

δ1/t ◦ ψX ◦ δt (Y ? Z)= δ1/t ( f (X)−1 ? f (X ? δt (Y ) ? δt (Z)))

= δ1/t ( f (X)−1 ? f (X ? δt (Y )) ? f (X ? δt (Y ))
−1 ? f (X ? δt (Y ) ? δt (Z)))

= (δ1/t ◦ τ−1
f (X)

◦ f ◦ τX ◦ δt (Y )) ? (δ1/t ◦ τ−1
f (X?δt (Y ))

◦ f ◦ τX?δt (Y )
◦ δt (Z)).

Now assume that the limit

lim
t→0

δ1/t ◦ τ−1
f (X)

◦ f ◦ τX ◦ δt (Y )

converges uniformly when Y is an element of the ( j − 1)-fold product

D j−1
R = DR ? · · · ? DR .

Assume further that Z ∈ DR , and that

lim
t→0

δ1/t ◦ τ−1
f (X?δt (Y ))

◦ f ◦ τX?δt (Y )
◦ δt (Z)= lim

t→0
δ1/t ◦ ψX ◦ δt (Z),

and the convergence is uniform when Y ∈ D j−1
R and Z ∈ DR . Then Pansu’s

decomposition shows that

lim
t→0

δ1/t ◦ ψX ◦ δt (Y ? Z)= φX (Y ) ? φX (Z),

and the limit converges uniformly when Y ∈ D j−1
R and Z ∈ DR . By induction on j

and (5.1), it then follows that

lim
t→0

δ1/t ◦ ψX ◦ δt (W )= w1φX (e1,g(1)) ? · · · ? wmφX (e1,g(m)),

uniformly when |W | ≤ R, and consequently φX ∈ Aut (g, ?).
Now we come to the details.
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LEMMA 2. If γ is a C1 horizontal curve such that γ (0)= 0, then

lim
s→0

δ1/s ◦ γ (s)= γ ′

1(0).

PROOF. By definition, γ is horizontal if and only if

γ ′(s)= (τγ (s))∗|0(v(s)), (5.2)

for some v(s) ∈ g1. If V ∈ g = T0g, then (2.1) shows that there are constants Ck
such that

(τX )∗
∣∣
0(V )=

n−1∑
k=0

Ck(ad X)k(V ). (5.3)

For example, C0 = 1, C1 = 1/2, C2 = 1/12, and C3 = 0. Together, (5.2) and (5.3)
show that

γ ′(s) =

n−1∑
k=0

Ck(ad γ (s))k(v(s))

= v(s)+

n−1∑
k=1

Ck(ad γ (s))k(v(s)),

which implies that v(s)= γ ′

1(s). It follows that

γ ′(s)=

n−1∑
k=0

Ck(ad γ (s))k(γ ′

1(s)).

Since (ad γ (s))k(γ ′

1(s)) is a weighted sum of terms

[γ`k (s), [. . . [γ`1(s), γ
′

1(s)] . . . ]],

and

λ j ([γ`k (s), [. . . [γ`1(s), γ
′

1(s)] . . . ]])= 0,

unless `k + · · · + `1 = j − 1, it follows that

1

s j−1λ j ((ad γ (s))k(γ ′

1(s)))=

{
λ j ((ad δ1/s ◦ γ (s))k(γ ′

1(s))) if 1 ≤ k ≤ j − 1,

0 otherwise.

In particular,

γ ′

j (s)=

j−1∑
k=1

C jλ j ((ad (γ1(s)+ · · · + γ j−1(s)))
k(γ ′

1(s))). (5.4)

When j = 2, (5.4) implies that

γ ′

2(s)= C1[γ1(s), γ
′

1(s)],
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and it follows that

lim
t→0

γ ′

2(t)

t
= lim

t→0
C1

[
γ1(t)

t
, γ ′

1(t)

]
= 0.

Furthermore, ∣∣∣∣γ2(s)

s2

∣∣∣∣ =

∣∣∣∣C1

s2

∫ s

0
[γ1(t), γ

′

1(t)] dt

∣∣∣∣
≤

|C1|

s

∫ s

0

∣∣∣∣[γ1(t)

t
, γ ′

1(t)

]∣∣∣∣ dt

= |C1|

∣∣∣∣[γ1(c)

c
, γ ′

1(c)

]∣∣∣∣ , (5.5)

where the existence of c ∈ (0, s) in the the last line is guaranteed by the mean value
theorem. It follows that

lim
s→0

γ2(s)

s2 = 0.

If we assume that limt→0(γ`(t)/t`)= 0 when `= 2, . . . , j − 1, then (5.4)
implies that

lim
t→0

γ ′

j (t)

t j−1 = 0.

Furthermore, ∣∣∣∣γ j (s)

s j

∣∣∣∣ =

∣∣∣∣ 1
s j

∫ s

0
γ ′

j (t) dt

∣∣∣∣
≤

1
s

∫ s

0

∣∣∣∣γ ′

j (t)

t j−1

∣∣∣∣ dt

=

∣∣∣∣γ ′

j (c)

c j−1

∣∣∣∣, (5.6)

where the existence of c ∈ (0, s) in the the last line is guaranteed by the mean value
theorem. It follows that

lim
s→0

γ j (s)

s j = 0,

and we conclude that

lim
s→0

δ1/s ◦ γ (s)= γ ′

1(0),

as required. 2
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For Z ∈ g1, let ζ(t)= t Z ; then

(τζ(t))∗
∣∣
0(ζ

′

1(t))=

n−1∑
k=0

Ck(ad t Z)k(Z)= Z = ζ ′(t),

hence ζ is horizontal. It follows that γ (t)= ψX (t Z) is a C1 horizontal curve such that
γ (0)= 0, since ψX is a C1 contact map which fixes 0. Moreover, the previous lemma
shows that

lim
s→0

δ1/s ◦ ψX ◦ δs(Z)= JψX (0)λ(Z)= D f (X)λ(Z),

where λ(Z) is the coordinate expression of Z relative to the basis {ei,α}.
Since f ∈ C1, it follows that

(V, X) 7→ ‖JψX (V )− D f (X)‖∞

and

(V, X) 7→ ‖JψX (V )‖∞

are both continuous functions of g × g into R+, see [6, p. 188]. For a compact subset
U ⊂ g, we define

N1(R,U )= max{‖JψX (V )− D f (X)‖∞ |V | ≤ R, X ∈ U }

and

N2(R,U )= max{‖JψX (V )‖∞ |V | ≤ R, X ∈ U }.

LEMMA 3. Let Z ∈ DR , X ∈ U, and γ (t)= ψX (t Z). Then

|γ ′

1(s)− γ ′

1(0)| ≤ P(R)N1(s R,U )

and ∣∣∣∣γ1(s)

s
− γ ′

1(0)

∣∣∣∣ ≤ P(R)N1(s R,U ),

where P(R)= R
∑d1
µ=1 ‖λ1,µ‖∞.

PROOF. For the first inequality,

|γ ′

1(s)− γ ′

1(0)| =

∣∣∣∣ d1∑
µ=1

λ1,µ(JψX (s Z)λ(Z)− D f (X)λ(Z))e1,µ

∣∣∣∣
≤

d1∑
µ=1

‖λ1,µ‖∞g|JψX (s Z)λ(Z)− D f (X)λ(Z)|

≤ R
d1∑
µ=1

‖λ1,µ‖∞‖JψX (s Z)− D f (X)‖∞.
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For the second inequality we apply the mean value theorem, that is, there exists
0< t1,µ < s such that∣∣∣∣γ1,µ(s)

s
− γ ′

1,µ(0)

∣∣∣∣ = |γ ′

1,µ(t1,µ)− γ ′

1,µ(0)|

= |λ1,µ(JψX (t1,µZ)λ(Z)− D f (X)λ(Z))|

≤ ‖λ1,µ‖∞ R ‖JψX (t1,µZ)− D f (X)‖∞,

and it follows that∣∣∣∣γ1(s)

s
− γ ′

1(0)

∣∣∣∣ ≤ R
d1∑
µ=1

‖λ1,µ‖∞‖JψX (t1,µZ)− D f (X)‖∞,

as claimed. 2

LEMMA 4. Let Z ∈ DR , X ∈ U, and γ (t)= ψX (t Z). Then for each k ≥ 2 there is a
positive constant Qk(R,U ) such that∣∣∣∣γk(s)

sk

∣∣∣∣ ≤ Qk(R,U )N1(s R,U ).

PROOF. From (5.5), there is c ∈ (0, s) such that∣∣∣∣γ2(s)

s2

∣∣∣∣ ≤ |C1|

∣∣∣∣[γ1(c)

c
, γ ′

1(c)

]∣∣∣∣ .
Since there is a constant M > 0 such that |[X, Y ]| ≤ M |X | |Y |,∣∣∣∣[γ1(c)

c
, γ ′

1(c)

]∣∣∣∣ ≤

∣∣∣∣[γ1(c)

c
− γ ′

1(0), γ
′

1(c)

]∣∣∣∣ + |[γ ′

1(0), γ
′

1(c)− γ ′

1(0)]|

≤ M

(∣∣∣∣γ1(c)

c
− γ ′

1(0)

∣∣∣∣ |γ ′

1(c)| + |γ ′

1(0)| |γ ′

1(c)− γ ′

1(0)|
)
. (5.7)

Furthermore, since c < s ≤ 1,

|γ ′

1(c)| = |λ1(JψX (cZ)Z)|

≤ P(R)‖JψX (cZ)‖∞

≤ P(R)N2(R,U ). (5.8)

From (5.8), (5.7), and Lemma 4,∣∣∣∣[γ1(c)

c
, γ ′

1(c)

]∣∣∣∣ ≤ 2 M P(R)2 N2(R,U )N1(cR,U ),

and N1(cR,U )≤ N1(s R,U ), so∣∣∣∣γ2(s)

s2

∣∣∣∣ ≤ 2|C1| M P(R)2 N2(R,U )N1(s R,U ),
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[11] Contact and Pansu differentiable maps 505

thus

Q2(R,U )= 2|C1| M P(R)2 N2(R,U ).

Similarly, by (5.6) there is c ∈ (0, s) such that∣∣∣∣γ j (s)

s j

∣∣∣∣ ≤

∣∣∣∣γ ′

j (c)

c j−1

∣∣∣∣, (5.9)

and by (5.4)∣∣∣∣γ ′

j (c)

c j−1

∣∣∣∣ ≤

j−1∑
k=1

|C j |‖λ j‖∞

∣∣∣∣∣
(

ad
γ1(c)

c
+ · · · +

γ j−1(c)

c j−1

)k

(γ ′

1(c))

∣∣∣∣∣ . (5.10)

We write

γ1(c)

c
+ · · · +

γ j−1(c)

c j−1 =

(
γ1(c)

c
− γ ′

1(0)
)

+

(
γ ′

1(0)+
γ2(c)

c
· · · +

γ j−1(c)

c j−1

)
= A + B j ,

say, and use the inequality |[X, Y ]| ≤ M |X | |Y | to obtain

|(ad A + B j )
k(γ ′

1(c))| ≤ |γ ′

1(c)|M
k

k−1∑
`=0

(
k

`

)
|A|

k−`
|B j |

`

+ |B j |
k−1

|[B j , γ
′

1(c)]|M
k−1.

Furthermore, if we write B j = γ ′

1(0)+ B̃ j , then

|[B j , γ
′

1(c)]| = |[γ ′

1(0), γ
′

1(c)] + [B̃ j , γ
′

1(c)]|

≤ |[γ ′

1(0), γ
′

1(c)]| + M |B̃ j | |γ ′

1(c)|

=

∣∣∣∣[γ ′

1(0)−
γ ′

1(c)

c
, γ ′

1(c)

]∣∣∣∣ + M |B̃ j | |γ ′

1(c)|

≤ M |A| |γ ′

1(c)| + M |B̃ j | |γ ′

1(c)|,

hence

|(ad A + B j )
k(γ ′

1(c))| ≤ P(R)N2(R,U )Mk
k−1∑
`=0

(
k

`

)
|A|

k−`
|B j |

`

+ P(R)N2(R,U )Mk
|B j |

k−1(|A| + |B̃ j |). (5.11)

From Lemma 3,

|A| ≤ P(R)N1(s R,U ),

and assuming inductively that∣∣∣∣γ`(s)s`

∣∣∣∣ ≤ Q`(R,U )N1(s R,U ),
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for `= 2, . . . , j − 1, we deduce that

|B j | ≤ RN2(R,U )+ N1(R,U )
j−1∑
`=1

Q`(R,U ),

and

|B̃ j | ≤ N1(s R,U )
j−1∑
`=1

Q`(R,U ).

These estimates, together with (5.11), (5.10), and (5.9), show that there is a constant
Q j (R,U ) such that ∣∣∣∣γ j (s)

s j

∣∣∣∣ ≤ Q j (R,U )N1(s R,U ),

as stated. 2

By Lemmas 3 and 4, the following result holds.

COROLLARY 5. If Z ∈ DR , then for each X ∈ g, the limit

lim
s→0

δ1/s ◦ ψX ◦ δs(Z)= D f (X)λ(Z),

converges uniformly with respect to Z.

LEMMA 6. Let X0, Y ∈ g and Z ∈ g1. Assume that Y, Z ∈ BR(0). Then

lim
s→0

δ1/s ◦ ψX0?δs (Y )
◦ δs(Z)= lim

s→0
δ1/s ◦ ψX0

◦ δs(Z)= D f (X0)λ(Z),

and the convergence is uniform with respect to Z.

PROOF. Let U be the compact set given by

U = {X | X = X0 ? W, W ∈ BR(0)}.

For X ∈ U let γ X,Z (t)= ψX (t Z); then

|δ1/s ◦ γ X0,Z (s)− δ1/s ◦ γ X,Z (s)| ≤ |δ1/s ◦ γ X0,Z (s)− (γ X0,Z )′(0)|

+ |δ1/s ◦ γ X,Z (s)− (γ X,Z )′(0)|

+ |(γ X0,Z )′(0)− (γ X,Z )′(0)|. (5.12)

By Lemmas 3 and 4,

|δ1/s ◦ γ X,Z (s)− (γ X,Z )′(0)| ≤

∣∣∣∣γ X,Z
1 (s)

s
− (γ

X,Z
1 )′(0)

∣∣∣∣ +

n∑
k=2

∣∣∣∣γ X,Z
k (s)

sk

∣∣∣∣
≤

(
P(R)+

n∑
k=2

Qk(R,U )

)
N1(s R,U ),
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and (5.12) gives

|δ1/s ◦ γ X0,Z (s)− δ1/s ◦ γ X,Z (s)| ≤ 2H(R,U )N1(s R,U )

+ R ‖D f (X0)− D f (X)‖∞,

where H(R,U )= P(R)+
∑n

k=2 Qk(R,U ).
Letting X = X0 ? δs(Y ) in the previous estimate shows that

lim
s→0

δ1/s ◦ γ X0?δs (Y ),Z (s)= γ X0,Z ′(0)= D f (X0)λ(Z),

and the convergence is uniform with respect to Y and Z . 2

The proof of Theorem 1 is now complete.
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