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The point of these observations
is not the reduction of the

familiar to the unfamiliar[ . . . ]
but the extension of the familiar

to cover many more cases.
Saunders MacLane

Categories for the Working Mathematician [14]
Page 226.

Abstract. Following F. William Lawvere, we show that many self-referential paradoxes,
incompleteness theorems and fixed point theorems fall out of the same simple scheme. We
demonstrate these similarities by showing how this simple scheme encompasses the semantic
paradoxes, and how they arise as diagonal arguments and fixed point theorems in logic,
computability theory, complexity theory and formal language theory.

§1. Introduction. In 1969, F.WilliamLawvere wrote a paper [11] in which
he showed how to describe many of the classical paradoxes and incomplete-
ness theorems in a categorical fashion. He used the language of category
theory (and of cartesian closed categories in particular) to describe the set-
ting. In that paper he showed that in a cartesian closed category satisfying
certain conditions, paradoxical phenomena can occur. Lawvere then went
on to demonstrate this scheme by showing the following examples

1. Cantor’s theorem that N � ℘(N)
2. Russell’s paradox
3. The non-definability of satisfiability
4. Tarski’s non-definability of truth and
5. Gödel’s first incompleteness theorem.

Further work along these lines were done in several papers e.g., [8], [17],
[19], [20]. Unfortunately, Lawvere’s paper has been overlooked by many
people both inside and outside of the category theory community. Lawvere
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and Schanuel revisited these ideas in Session 29 of their book [13]. Recently,
Lawvere and Robert Rosebrugh came out with a book Sets for Mathematics
[12] which also has a few pages on this scheme.
It is our goal to make these amazing results available to a larger audience.
Towards this aim we restate Lawvere’s theorems without using the language
of category theory. Instead, we use sets and functions. The main theorems
and their proofs are done at tutorial speed. Wegeneralize one of the theorems
and then we go on to show different instances of this result. In order to
demonstrate the ubiquity of the theorems, we have tried to bring examples
from many diverse areas of logic and theoretical computer science.
Classically, Cantor proved that there is no onto (surjection) function

N −→ 2N ∼= ℘(N)
where 2N is the set of functions from N to 2 = {0, 1}. 2N is the set of
characteristic functions on the set N and is equivalent to the powerset of N.
We can generalize Cantor’s theorem to show that for any set T there is no
onto function

T −→ 2T ∼= ℘(T ).
The same theorem is also true for other sets besides 2, e.g., 3 = {0, 1, 2} or
23 = {0, 1, 2, . . . 21, 22}. The theorem is not true for the set 1 = {0}. In
general we can replace 2 with an arbitrary “non-degenerate” set Y . From
this generalization, the basic statement of Cantor’s theorem roughly says
that if Y is “non-degenerate” then there is no onto function

T −→ YT

where YT is the set of functions from T to Y . Y can be thought of as the
set of possible “truth-values” or “properties” of elements of T . By “non-
degenerate” we mean that the objects of Y can be interchanged or that there
exists a function α from Y to Y without any fixed points (y ∈ Y where
α(y) = y.)
Rather than looking at functions f̂: T −→ YT , we shall look at equivalent
functions of the form f : T × T −→ Y . Every f̂ can be converted to a
function f where f(t, t′) = f̂(t′)(t) ∈ Y . Saying that f̂ is not onto is the
same thing as saying that there exists a g(−) ∈ YT such that for all t′ ∈ T
the function f̂(t′) = f(−, t′) : T −→ Y is not the same as the function
g(−) : T −→ Y . In other words there exists a t ∈ T such that

g(t) �= f(t, t′).
Weshall call a functiong : T −→ Y “representable by t0” ifg(−) = f(−, t0).
So if f̂ is not onto, then there exists a g(−) ∈ YT that is not representable
by any t ∈ T .
On a philosophical level, this generalized Cantor’s theorem says that as
long as the truth-values or properties of T are non-trivial, there is no way
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that a set T of things can “talk about” or “describe” their own truthfulness
or their own properties. In other words, there must be a limitation in the way
that T deals with its own properties. The Liar paradox is the three thou-
sand year-old primary example that shows that natural languages should
not talk about their own truthfulness. Russell’s paradox shows that naive
set theory is inherently flawed because sets can talk about their own prop-
erties (membership.) Gödel’s incompleteness results shows that arithmetic
cannot completely talk about its own provability. Turing’s Halting problem
shows that computers cannot completely deal with the property of whether
a computer will halt or go into an infinite loop. All these different examples
are really saying the same thing: there will be trouble when things deal with
their own properties. It is with this in mind that we try to make a single
formalism that describes all these diverse—yet similar—ideas.
The best part of this unified scheme is that it shows that there really are no
paradoxes. There are limitations. Paradoxes are ways of showing that if you
permit one to violate a limitation, then you will get an inconsistent system.
The Liar paradox shows that if you permit natural language to talk about its
own truthfulness (as it—of course—does) then we will have inconsistencies
in natural languages. Russell’s paradox shows that if we permit one to
talk about any set without limitations, we will get an inconsistency in set
theory. This is exactly what is said by Tarski’s theorem about truth in
formal systems. Our scheme exhibits the inherent limitations of all these
systems. The constructed g, in some sense is the limitation that your system
(f) cannot deal with. If the system does deal with the g, there will be an
inconsistency (fixed point).
The contrapositive of Cantor’s theorem says that if there is a onto T −→
YT then Y must be “degenerate” i.e., every map from Y to Y must have a
fixed point. In other words, ifT can talk about or describe its own properties
then Y must be faulty in some sense. This “degenerate”-ness is a way of
producing fixed point theorems.
For pedagogical reasons, we have elected not to use the powerful language
of category theory. This might be an error. Without using category theory
we might be skipping over an important step or even worse: wave our hands
at a potential error. It is our hope that this paper will make you go out
and look at Lawvere’s original paper and his subsequent books. Only the
language of category theory can give an exact formulation of the theory
and truly encompass all the diverse areas that are discussed in this paper.
Although we have chosen not to employ category theory here, its spirit is
nevertheless pervasive throughout.
This paper is intended to be extremely easy to read. We have tried to
make use of the same proof pattern over and over again. Whenever possible
we use the same notation. The examples are mostly disjoint. If the reader
is unfamiliar with or cannot follow one of them, he or she can move on
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to the next one without losing anything. Section 2 states Lawvere’s main
theorem and some of our generalizations. Section 3 has many worked out
examples. We start the sectionwith the classical paradoxes and thenmove on
to some of the semantic paradoxes. From there we go on to other examples
from theoretical computer science. Section 4 states the contrapositive of
the main theorem and some of its generalizations. The example of this
contrapositive is in Section 5. We finish off the paper by looking at some
future directions for this work to continue. We also list some other examples
of limitations and fixed point theorems that might be expressible in our
scheme.
We close this introduction with a translation of Cantor’s original proof of
his diagonalization theorem. His language is remarkably reminiscent of our
language. This translation was taken from Shaughan Lavine’s book [10].

The proof seems remarkable not only because of its simplicity, but
especially also because the principle that is employed in it can be
extended to the general theorem, that the powers of well-defined sets
have no maximum or, what is the same, that for any given set L
anotherM can be placed beside it that is of greater power than L.
For example Let L be a linear continuum, perhaps the domain of
all real numerical quantities that are ≥ 0 and ≤ 1.
LetM be understood as the domain of all single-valued functions
f(x) that take on only the two values 0 or 1, while x runs through
all real values that are ≥ 0 and ≤ 1. [M = 2L . . . ]
ButM does not have the same power as L either. For otherwise
M can be put into one-to-one correspondence to the variable z [of
L], and thus M could be thought of in the form of a single valued
function

φ(x, z)

of the two variables x and z, in such a way that through every
specification of z one would obtain an element f(x) = φ(x, z) of
M and also conversely each element f(x) ofM could be generated
fromφ(x, z) througha single definite specificationof z. This however
leads to a contradiction. For if we understand by g(x) that single
valued function of x which takes only values 0 or 1 and which every
value of x is different from φ(x, x), then on the one hand g(x) is an
element ofM , and on the other it cannot be generated from φ(x, z)
by any specification z = z0, because φ(z0, z0) is different from g(z0).

Acknowledgments. The author is grateful to Rohit Parikh for suggesting
that this paper be written and for his warm encouragement. The author also
had many helpful conversations with Eva Cogan, Scott Dexter, Mel Fitting,
Alex Heller, Roman Kossak, Mirco Mannucci, and Paula Whitlock.
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§2. Cantor’s theorems and its generalizations. It is pedagogically sound to
skip this section for a moment and read the beginning of the next section
where you can remind yourself of the proof of the more familiar version of
Cantor’s theorem (about N � ℘(N)) and Russell’s set theory paradox. Our
theorem here might seem slightly abstract at first.
Theorem 1 (Cantor’s Theorem). If Y is a set and there exists a function
α : Y −→ Y without a fixed point ( for all y ∈ Y , α(y) �= y), then for all sets
T and for all functions f : T × T −→ Y there exists a function g : T −→ Y
that is not representable by f i.e., such that for all t ∈ T

g(−) �= f(−, t).
Proof. LetY be a set and assume α : Y −→ Y is a function without fixed
points. There is a function � : T −→ T × T that sends every t ∈ T to
(t, t) ∈ T ×T . Then construct g : T −→ Y as the following composition of
three functions.

T × T
f �� Y

α

��
T

�

��

g
�� Y.

In other words,

g(t) = α(f(t, t)).

We claim that for all t ∈ T , g(−) �= f(−, t) as functions of one variable. If
g(−) = f(−, t0) then by evaluation at t0 we have

f(t0, t0) = g(t0) = α(f(t0, t0))

where the first equality is the fact that g is representable and the second
equality is the definition of g. But this means that α does have a fixed
point. �

Remark 1. Obviously, every setY with two or more elements has a function
to itself that does not have a fixed point. It is here that we get in trouble
for talking about sets and functions as opposed to objects in a category and
morphisms between those objects. Perhaps Y and T are sets with extra (alge-
braic) structure and functions between them are intended to preserve that extra
structure. For example Y might be a partial order and α must preserve the
order structure. There are few partial order maps from the partial order Y to
the partial order Y . In contrast, there are many functions from the set Y to
the set Y . Similar statements can be made about any structure that one puts
on Y (e.g., topological space, group, complete lattice etc.) There are fewer
endomaps of Y if you insist that the endomaps preserve the extra structure.
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The above theorem has more content if you take notice of the fact that we might
not be dealing with functions between sets.

Remark 2. The � map is called the “diagonal” and many of the proofs
are called “diagonalization arguments.” f is some type of evaluation function
and f(t, t) is an evaluation of itself, hence “self-reference” or “self-referential
arguments.”

Remark 3. We follow Lawvere and Schanuel [13] in calling this theorem
“Cantor’s Theorem” and its contrapositive the “Diagonal Theorem” which is
stated in Section 4.

We generalize the above theorem so that instead of � = 〈Id, Id 〉 we use
〈Id, �〉 for an arbitrary onto (right invertible) function� : T −→ S. Whereas
� = 〈Id, Id 〉 : T −→ T × T takes every t to (t, t), 〈Id, �〉 : T −→ T × S
takes every t to (t, �(t)).
The way to think about this theorem is to say that if there is an onto
� : T −→ S then in a sense |S| � |T | and Cantor’s theorem says |T | � |YT |
and so we conclude that |S| � |YT |.
Theorem 2. Let Y be a set, α : Y −→ Y a function without a fixed point,
T and S sets and � : T −→ S a function that is onto (i.e., has a right inverse
�̄ : S −→ T ,) then for all functionsf : T×S −→ Y the functiong� : T −→ Y
constructed as follows

T × S
f �� Y

α

��
T

〈Id,�〉

��

g�
�� Y.

is not representable by f.

Proof. Let Y,α, T and � be given. Let �̄ : S −→ T be the right inverse
of � . By definition

g�(t) = α(f(t, �(t))).

We claim that for all s ∈ S g�(−) �= f(−, s). If g�(−) = f(−, s0) then
evaluation at �̄(s0) gives

f(�̄(s0), s0) = g�(�̄(s0)) by representability of g�

= α(f(�̄(s0), �(�̄(t0)))) by definition of g�

= α(f(�̄(s0), s0)) by definition of right inverse.

Which means that α does have a fixed point. �
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We can think of this theorem in another way. Set S = T and lets consider
a � different than IdT . The usual way to visualize Cantor’s Theorem is

f t1 t2 t3 t4 t5 · · ·
t1 [y3] y7 y21 y2 y4 · · ·
t2 y1 [y17] y2 y7 y41 · · ·
t3 y0 y3 [y7] y2 y24 · · ·
t4 y9 y7 y64 [y2] y4 · · ·
t5 y4 y73 y31 y2 [y4] · · ·
...
...

...
...

. . .

Everything that is in square brackets gets changed. For example y3 gets
changed to α(y3). However a little thought shows that we do not need to go
along the diagonal. The diagonal is just the simplest way. What is needed is
that every row of the table gets at least one element changed. So we might
have a picture that looks like this:

f t1 t2 t3 t4 t5 · · ·
t1 y3 y7 y21 [y2] y4 · · ·
t2 [y1] y17 [y2] y7 y41 · · ·
t3 y0 y3 y7 y2 [y24] · · ·
t4 y9 [y7] y64 [y2] y4 · · ·
t5 y4 y73 y31 [y2] y4 · · ·
...
...

...
...

. . .

The fact that every row has something changed is in essence the fact that �
is onto. As long as � is onto, Cantor’s theorem still holds.
With this in mind we may pose—but do not answer—the following ques-
tions. Should these theorems really be called “diagonalization theorems”?
Does self-reference really play a role here? Since we can generate the same
paradoxes without self-reference, does this destroy Russell’s vicious-circle
principle?

§3. Instances of Cantor’s theorems. We shall begin with the familiar ver-
sion of Cantor’s theorem about the power set of the natural numbers. From
there we move on to Russell’s set theory paradox and other paradoxes and
limitations. We shall do the first two instances slowly and use the same
notation and ideas as the theorems in the last section. The other instances
we shall do more quickly.

Instance: Cantor’s N � ℘(N) theorem. The theorem says that there cannot
be an onto function from N to ℘(N). Let S0, S1, S2, . . . be a proposed
enumeration of all subsets of N. Let 2 = {0, 1} be a set and consider
the “negation” function α : 2 −→ 2 where α(0) = 1 and α(1) = 0. Let
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f : N × N −→ 2 be defined as

f(n,m) =

{
1: if n ∈ Sm
0: if n �∈ Sm.

For each m, f(−, m) is the characteristic function of Sm:

f(−, m) = �Sm .

Construct g as follows:

N × N
f �� 2

α

��
N

�

��

g
�� 2.

g is the characteristic function of the set

G = {n ∈ N | n �∈ Sn}.

For all m, �G = g(−) �= f(−, m) = �Sm . Because if there was an m0 such
that g(−) = f(−, m0) then by evaluation at m0 we have

f(m0, m0) = g(m0) = α(f(m0, m0))

where the first equality is from the fact that g is representable by m0 and
the second equality is by the definition of g. This means that the negation
operator has a fixed point which is clearly false. In other words G ⊆ N is
not in the proposed enumeration of all subsets of N. �

Instance: Russell’s paradox. This paradox says that the set of all sets that
are notmembers of themselves is both amember of itself andnot amember of
itself. Let Sets be some universe of sets (we are being deliberately ambiguous
here.) Again consider the “negation” function α : 2 −→ 2 where α(0) = 1
and α(1) = 0. Let f : Sets×Sets −→ 2 be defined as follows on sets s
and t.

f(s, t) =

{
1: if s ∈ t
0: if s �∈ t.
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We construct g as follows

Sets×Sets
f �� 2

α

��
Sets

�

��

g
�� 2.

g is the characteristic function of those sets that are not a member of them-
selves. For all sets t, g(−) �= f(−, t). Because if there was a set t0 such that
g(−) = f(−, t0) then from evaluation at t0 we get

f(t0, t0) = g(t0) = α(f(t0, t0))

where the first equality is because g is representable and the second equality
is from the definition of g. This is plainly false. To summarize, in order to
make sure that there are no paradoxes we must say that g is the characteristic
function of a “collection” of Sets but this “collection” does not form a set.
We mention in passing that the Barber paradox and other simple self-
referential paradoxes can be done exactly like this. The Barber paradox has
a simple solution, namely that the village described by the phrase “there
is a village where everyone who does not shave themselves is shaved by
the barber” does not really exist. We are in a sense saying the same thing
about Russell’s paradox. Namely, the collection of sets that do not contain
themselves does not form an existent set. �

Instance: Grelling’s paradox. We now move on to some of the semantic
paradoxes. There are some adjectives that describe themselves and there are
some that do not. “English” is an English word. ”French” is not a French
word. “Polysyllabic” is polysyllabic but “monosyllabic” is not monosyllabic.
Call all words that do not describe themselves “heterological.” Now ask
yourself if “heterological” is heterological. It is if and only if it is not.
Consider the set Adj of all (English) adjectives. We have the following
function f : Adj×Adj −→ 2 defined for all adjectives a1 and a2,

f(a1, a2) =

{
1: if a2 describes a1
0: if a2 does not decribe a1.

And so we have the following construction of g
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Adj ×Adj f �� 2

α

��
Adj

�

��

g
�� 2.

g is the characteristic function of a subset ( = property) of adjectives that
cannot be described by any adjectives. This is exactly what is meant by
g(−) �= f(−, a) for all adjectives a. “Heterological” is not the only adjec-
tive that is in this subset. Some authors (e.g., Kleene) have also used the
word “impredicable”. Our formulation includes all such paradoxical adjec-
tives. �

Instance: Liar paradox. The oldest example of a self-referential paradox
is the (Cretans) liar paradox. Epimenides of Crete said “All Cretans are
liars.” There are many such examples: “This sentence is false.”, “I am
lying.” The Liar paradox is very similar to Grelling’s paradox. Whereas
with Grelling’s paradox we dealt with adjectives, here we deal with complete
English sentences. Quine’s paradox is the primary example:

‘yields falsehood when appended to its own quotation’
yields falsehood when appended to its own quotation.

The philosophical literature is full of such examples. Since the formalism is
similar to Grelling’s paradox, we leave it to the reader. �

Instance: The strong Liar paradox. A common “solution” to the Liar’s
paradox is to say that that there are certain sentences that are neither true
nor false but are meaningless. “I am lying” would be such a sentence. This
is a type of three-valued logic. This is, however, not a “solution.” Consider
the sentence

‘yields falsehood or meaninglessness
when appended to its own quotation’
yields falsehood or meaninglessness
when appended to its own quotation.

If this sentence is true, then it is false or meaningless. If it is false, then
it is true and not meaningless. If it is meaningless, then it is true and not
meaningless.
This paradox can also be formulated with our scheme. Consider the set of
English sentencesSent and the set 3 = {T (rue),M (eaningless), F (alse)}. We
have the following function f : Sent×Sent −→ 3 defined for all sentences
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s1 and s2,

f(s1, s2) =

⎧⎪⎨⎪⎩
T : if a2 describes a1
M : if it is meaningless for a2 to describe a1
F : if a2 does not decribe a1.

Now consider the function α : 3 −→ 3 defined as α(T ) = F and α(M ) =
α(F ) = T . Construct g as follows

Sent×Sent
f �� 3

α

��
Sent

�

��

g
�� 3.

g is the characteristic function of sentences that are neither false nor mean-
ingless when describing themselves. By characteristic function we mean
those sentences that g takes to T as opposed toM or F . �

Instance: Richard’s paradox. There are many sentences in the English lan-
guage that describe real numbers between 0 and 1. Let us lexicographically
order all English sentences. Using this order, we can select all those English
sentences that describe real numbers between 0 and 1. For example “x is the
ratio between the circumference and the diameter of a circle divided by ten.”
describes the number 0.314159 . . . . There are many similar English sen-
tences. Call such a sentence a “Richard Sentence.” So we have the concept
of the “m-th Richard Sentence.”
Consider the set 10 = {0, 1, 2, . . . 9} and the functionα : 10 −→ 10 defined
as α(i) = 9 − i . This function does not have a fixed point. Now consider
the function f : N × N −→ 10 defined as

f(n,m) = The n-th decimal number of the m-th Richard Sentence.

For example, if the sentence in the above paragraph is the 15th Richard
sentence then f(4, 15) = 1 because of the 1 in 0.314159 . . . . Now consider
g : N −→ 10 constructed as

N × N
f �� 10

α

��
N

�

��

g
�� 10.
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This g describes a real number between 0 and 1 and yet for all m ∈ N

g(−) �= f(−, m)

i.e., this number is different than all Richard Sentences. Yet here is a Richard
Sentence that describes this number:

x is the real number between 0 and 1 whose n-th digit is nine
minus the n-th digit of the number described by the n-th Richard
sentence.

Why does this paradox remain? Our scheme is supposed to give a lim-
itation of “Richard-sentenceness” and yet, for some reason, the paradox
remains. Jay Kangel (in an e-mail correspondence) has suggested that the
problem is that “Richard-sentenceness” is not a well defined or a computable
concept. Consider the following sentence: “Let x be a red cow if the Gold-
bach Conjecture is true and let x be 3/4 if the Goldbach Conjecture is false.”
Does this sentence describe a real number? Is this sentence a Richard sen-
tence? Even if we know that a sentence is a Richard sentence, we might
not be able to determine what number the sentence describes. It is not clear
what number is described by the following Richard sentence: “Let x be 1/4
if the Riemann Hypothesis is true and let x be 3/4 if it is false.” Since the set
of Richard sentences is not well defined and the function f is also not well
defined, it is not surprising that the paradox remains. �

Instance: Turing’s Halting problem. The following formulation was in-
spired by Heller’s fascinating work on recursion categories [6] and Manin’s
intriguing paper on classical and quantum computations [15].
For this instance we leave the comfortable world of sets and functions. We
must talk about computable universes. A computable universe is a category
U with the following two properties

1. N and 2 are objects in U
2. For every object C in U there is some type of enumeration of the
elements of C . An enumeration is a total isomorphism eC : N −→ C .
One should think of C as a set of computable things, e.g., trees, graphs,
numbers, stacks, strings etc.

3. For every (not necessarily total) function f : C −→ C ′ there is a
corresponding number �f� ∈ N. Think of this as the Gödel number
of the program that computes the computation.

4. For every (not necessarily total) function f : C −→ C ′ there is a
corresponding recursively enumerable (r.e.) set W〈f〉 ⊆ N. For every
c ∈ C , f has a value at c if and only if e−1C (c) ∈ W〈f〉. Again one
should think of a partial function from one computable domain to
another.
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Halt in a computable universe should be a total functionHalt : N×N −→ 2
in U such that for all f : C −→ C ′

Halt(−, �f�) = �W〈f〉 .

This says thatHalt should be able to tell forwhat values inC the computation
halts. Formally

Halt(n,m) =

{
1: if n ∈Wm
0: if n �∈Wm.

Consider α : 2 −→ 2 defined as follows: α(0) = 1 and α(1) ↑, i.e., the
computation is undefined. Construct g as follows:

N × N
Halt �� 2

�

��
N

�

��

g
�� 2.

We conclude by showing that Halt is not total because it is not defined at
�g�. IfHalt was defined at �g� then we would have the following contradic-
tion:

Halt(�g�, �g�) = 1 iff �g� ∈W〈g〉 by definition ofHalt

iff g(�g�) = 1 by the halting of g

iff Halt(�g�, �g�) = 0 by the definition of g.

Hence no total Halt can exist. �

Instance: A non-r.e. language. There is a language that is not recognized
by any Turing machine. LetM0,M1,M2, . . . be an enumeration of all Tur-
ing machines on the input language Σ = {0, 1}. Let w0, w1, w2, . . . be an
enumeration of all the words in Σ∗. If wi is a word in Σ we let (wi ) denote
the numerical value of the binary word. Consider the following function
f : Σ∗ × Σ∗ −→ 2 defined as follows:

f(wi , wj) =

{
1: if wi is accepted byM(wj)
0 : if wi is not accepted byM(wj).

https://doi.org/10.2178/bsl/1058448677 Published online by Cambridge University Press

https://doi.org/10.2178/bsl/1058448677


PARADOXES, INCOMPLETENESS, FIXED POINTS 375

Then the constructed g

Σ∗ × Σ∗
f �� 2

α

��
Σ∗

�

��

g
�� 2.

is the characteristic function of a language that is not accepted by any Turing
machine. Of course, the fact that there are non-r.e. languages also follows
from a simple counting argument. Namely the number of Turing machines
is countable and the number of languages (℘(Σ∗)) is uncountable. �

Instance: An oracle B such that PB �= NPB . One of the major open ques-
tions in computer science is whether or notP, the set of all problems that can
be solved by deterministic Turing machines (TMs) in polynomial time, is
equal to the set NP, of all problems that can be solved by non-deterministic
TMs in polynomial time. Alas, this question will not be answered in this pa-
per. However there is a related question that can be answered. Consider the
same question for oracle TMs. An oracle TM is a TMwith an associated set
S, such that the TM can determine if a word is actually an element of S. For
a given set S there are analogous sets PS and NPS . Baker, Gil and Solovay
[1] have proven that there exists a setA such that PA = NPA and there exists
a set B such that PB �= NPB . Here we shall prove the second result. Since
every deterministic machine is by definition also nondeterministic, we have
for every B , PB ⊆ NPB . What remains is to show that there is a set B and a
language LB such that LB ∈ NPB but LB �∈ PB i.e.,NPB � PB . Our proof
was adopted from [7].
LetM ?0 ,M

?
1 ,M

?
2 , . . . be some enumeration of all the oracle deterministic

polynomial Turing machines in the alphabet Σ = {0, 1}. There is a cor-
responding sequence of polynomials p0(x), p1(x), p2(x), . . . expressing the
worst execution time for each machine.
For any function f : Σ∗ × N −→ 2 and for each i ∈ N, f(−, i) : Σ∗ −→ 2
is a characteristic function on the set Σ∗. We will often confuse a set and its
characteristic function. Letf(−, i) denote the characteristic function of the
complement of f(−, i), i.e., f(−, i) is the set that f(−, i) takes to 0. Let
F (−, i) denote the cumulative characteristic function

F (−, i) =
⋃
j≤i
f(−, j).

We shall define f(−,−) inductively. (∀w ∈ Σ∗)f(w, 0) = 1. For w ∈ Σ∗
and i ∈ N, f(w, i) = 0 if and only if the following three conditions are
satisfied
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1. (∀w′ < w)f(w′, i) = 1 where the < is a lexicographical order on the
words of Σ∗. This insures that there is only one word accepted to B for
each i .

2. MF (−,i)i rejects 0|w| within i log i steps.

3. (∀j < i)MF (−,j)j on input 0|w| does not to query w within j log j steps.
Once this f is defined, we construct g as follows

Σ∗ × N
f �� 2

α

��
Σ∗

〈Id,�〉

��

g�
�� 2

where �(w) = |w|, α(0) = 1 and α(1) = 0. g(w) = 1 if and only if
f(w, |w|) = 0 if and only if the above three requirements are satisfied.
g is the characteristic function of the set B ⊆ Σ∗. Now construct the
language

LB = {0i | B contains a word of length i}.

This language can easily be recognized by a linear time nondeterministic
TM. On input 0i , the NTM simply has to guess a string w of length i
and see if it is in B . Hence LB ∈ NPB . In contrast, because of condition
2 above, LB cannot be recognized by any DTM in polynomial time, i.e.,
(∀m)g(−) �= f(−, m). �

Instance: Time travel paradoxes. If time travel (whatever thatmightmean)
was possible, a time traveller might go back in time and shoot his bachelor
grandfather thus insuring that the time traveller was never born. If he was
never born, then he could not have shot his grandfather. There is no reason
to be so homicidal in order to get such paradoxical results. The time traveller
might just insure that his parents never meet or he might simply go back in
time and make sure that he does not get into the time machine.
These self-referential paradoxes can be put into our scheme. The following
key point is of central importance. The time traveller should not shoot his
own grandfather (besides for moral reasons, of course) not because he will
not be born, rather because if he shoots his own grandfather he will not be
able to goback in time to shoot his owngrandfather. This is the self-reference.
The time traveller is not self-referential, rather the event is self-referential.
With this in mind, we define the set Events of all possible events in 4-
dimensional space-time. Events has a lot of structure. In fact, the en-
tire enterprize of physics is to discover this extra structure. We, how-
ever, are considering it only as a set. We have the following function
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f : Events×Events −→ 2 defined for all events e1 and e2,

f(e1, e2) =

{
1: if e2 is compatable with e1
0: if e2 is incomaptable with e1.

For example f( the sun shining at a particular time in a particular place,
the sun not shining at a particular time in a particular place) = 0. f( Jack
playing ball in New York now, Jill skating in California now) = 1. In fact,
any two events where the first event is outside of the light-cone of the second
event is compatible. f(Jack killing his bachelor grandfather, Jack being
born) = 0.
We now have the following construction of g

Events×Events
f �� 2

α

��
Events

�

��

g
�� 2.

g is the characteristic function of those events that would be incompatible
with themselves. These events cannot exist with any other event in our
universe.
In 1949, KurtGödel wrote a paper on relativity theory. In this paperGödel
constructed a mathematical model in which time travel would be possible.
On page 168 of [21], Rudy Rucker describes an interview with Gödel in
which Rucker asks about the time traveller paradoxes. Gödel answers that
the universe simply will not let you kill your grandfather. Just like P and ¬P
cannot both be true, so too the universe will not let you do something that
will cause a contradiction. Gödel’s words are worth quoting:

“ . . . time-travel is possible, but no person will ever manage to kill
his past self.” Gödel laughed his laugh then, and concluded, “The
a priori is greatly neglected. Logic is very powerful.” �

§4. Diagonal Theoremandgeneralizations. The contrapositive ofCantor’s
Theorem is of equal importance.

Theorem 3 (Diagonal Theorem). If Y is a set and there exists a set T
and a function f : T × T −→ Y such that all functions g : T −→ Y are
representable by f (there exists a t ∈ T such that g(−) = f(−, t)), then all
functions α : Y −→ Y have a fixed point.
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Proof. The proof is constructive. Let Y , T , f and α be given. Then we
construct g as follows:

T × T
f �� Y

α

��
T

�

��

g
�� Y.

g is defined as

g(m) = α(f(m,m)).

Since we have assumed that g is representable by some t ∈ T , we have that
g(m) = f(m, t).

And so we have a fixed point of α at y0 = g(t). Explicitly we have

α(g(t)) = α(f(t, t)) by representation of g

= g(t) by definition of g. �

Remark 4. Obviously, any set Y with two or more elements has functions
Y −→ Y that do not have fixed points. It is here that we get in trouble by
ignoring the category theory that is necessary. In the examples that we will
do, the objects we will be dealing with have more structure then just sets and
the functions between the objects are required to preserve that structure. We
are only talking about these restricted classes of functions. See Remark 1 for
more explanations.
Remark 5. It is important to note that the theorem uses a stronger hypoth-
esis than the proof actually uses. The theorem asks that all g : T −→ Y be
representable, but the proof only uses the fact that any g constructed in such a
manner is representable. In the future, we shall use this fact and only require
that constructed g be representable.

§5. Instances of diagonal theorems. We use Mendelson’s [16] notation
and language. In particular �B(x)� is the Gödel number of B(x). We shall
assume that we are working in a theory where there is a recursiveD : N −→ N
that is defined as follows: For all B(x) where B is a logical statement with x
its only free variable then

D(�B(x)�) = �B(�B(x)�)�.
Theorem 4 (Diagonalization lemma). For any well-formed formula (wf )

E(x) with x as its only free variable, there exists a closed formula C such that
� C ←→ E(�C�).
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Proof. Let Lind i be the set of Lindenbaum classes (algebra) of well-
formed formulas with i free variables. Two wfs are equivalent iff they are
provably logically equivalent. Let f : Lind 1×Lind 1 −→ Lind 0 be defined
for two wfs with a free variable B(x) andH(y) as follows:

f(B(x),H(y)) = H(�B(x)�).

Let the operator on Lind 0 ΦE : Lind 0 −→ Lind 0 be defined as P �→
ΦE (P) = E(�P�). Using these functions, we combine them to create g
as follows:

Lind 1×Lind 1
f �� Lind 0

ΦE

��
Lind 1

�

��

g
�� Lind 0 .

By definition

g(B(x)) = ΦE (f(B(x),B(x))) = E(�B(�B(x)�)�).
We claim that g is representable by G(x) = E(D(x)). This is true because

g(B(x)) = E(�B(�B(x)�)�) = E(D(�B(x)�))
= G(�B(x)�) = f(B(x),G(y)).

So there is a fixed point of ΦE at C = G(�G(x)�). Explicitly we have
E(�G(�G(x)�)�) = ΦE(�G(�G(x)�)�) by definition of ΦE

= ΦE(f(G(x),G(x))) by definition of f
= g(G(x)) by definition of g
= f(G(x),G(x)) by representability of g
= G(�G(x)�) by definition of f. �

Application: Gödel’s first incompleteness theorem. LetProv(y, x) stand for
“y is the Gödel number of a proof of a statement whose Gödel number is x.”
Then let

E(x) ≡ (∀y)¬Prov(y, x).

A fixed point for this E(x) in a consistent and �-consistent theory is a
sentence that is equivalent to its own statement of unprovability. �

Application: Gödel-Rosser’s incompleteness theorem. Let Neg : N −→ N
be defined for Gödel numbers as follows

Neg(�B(x)�) = �¬B(x)�
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Let

E(x) ≡ (∀y)(Prov(y, x)→ (∃w)(w < y) ∧ Prov(w,Neg(x))).
A fixed point for this E(x) in a consistent theory is a sentence that is equiv-
alent to its own statement of unprovability. �

Application: Tarski’s theorem. Let us assume that there exists awell-formed
formula T (x) that expresses the fact that x is the Gödel number of a (true)
theorem in the theory. Set

E(x) ≡ ¬T (x).
A fixed point of E(x) shows that T (x) does not do what it is supposed to do.
We conclude that a theory in which the diagonalization lemma holds cannot
express its own theoremhood. �

Application: Parikh sentences. There are true sentences that have very long
proofs, but there are relatively short proofs of the fact that the sentences are
provable. This amazing result about lengths of proofs can be found on page
496 of R. Parikh’s famous paper Existence and Feasibility in Arithmetic [18].
Consider a consistent theory that contains Peano Arithmetic. We shall deal
with the following predicates:

• Prflen(m, x) ≡ m is the length (in symbols) of a proof of a statement
whose Gödel number is x. This is decidable because there are only a
finite number of proofs of length m.

• P(x) ≡ ∃y Prov(y, x) i.e., there exists a proof of a statement whose
Gödel number is x.

• En(x) ≡ ¬(∃m < n Prflen(m, x)).
Applying the diagonalization lemma to En(x) gives us a fixed point Cn such
that

� Cn ←→ En(�Cn�) ≡ ¬(∃m < n Prflen(m, �Cn�)).
In other words Cn says

“I do not have a proof of myself shorter than n.”
If Cn is false, then there is a proof shorter than n of Cn and the system is not
consistent.
Consider the following short proof of P(Cn)
1. If Cn does not have any proof, then Cn is true.
2. If Cn is true, we can check all proofs of length less than n and prove Cn.
3. From 1 and 2 we have that if Cn does not have a proof, then we can
prove Cn. i.e., ¬P(Cn) −→ P(Cn).

4. ∴ P(Cn).
This proof can be formulated in Peano Arithmetic in a fairly short proof.
In contrast n can be chosen to be fairly large. So we have a statement Cn
which has a very long proof, but a short proof of the fact that it has a
proof. �
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Application: Löb’s paradox. We prove that every logical sentence is true.
The standard notation for the Gödel number of a wff C is �C�. In contrast,
if n is an integer then we shall write �n� for the wff that corresponds to that
number. Obviously ��C�� = C
Let A be any sentence. We shall prove that it is always true. Use the
diagonalization lemma on

E(x) ≡ �x� ⇒ A.
A fixed point for this E(x) is a C such that

� C ←→ E(�C�) ≡ (��C�� ⇒ A) = (C ⇒ A).
So C is equivalent to C ⇒ A. Assume, for a second that C is true. Then
C ⇒ A is also true. By modus ponens A is also true. So by assuming C we
have proven A. This is exactly what C ⇒ A says and hence it is true as is its
equivalent C and so A is true.
This looks like a real paradox. It seems to me that the paradox arises
because we did not put a restriction on the wffs E(x) for which we are
permitted to use the diagonalization lemma. The Löb’s paradox is related
to Curry’s paradox which shows that we must restrict the comprehension
scheme in axiomatic set theory. In a similar way, here we must restrict the
diagonalization lemma. Restricting the diagonalization lemma might seem
strange because its constructive proof seems applicable to all E(x). But
restrict we must as we restrict the seemingly obvious comprehension scheme
in set theory.
The reviewer has suggested that the real reason why this paradox remains
is that the �x� operation is not defined within the system and hence we are
not permitted to use it in E(x). �

Let us move from logic to computability theory. We shall use the language
and notation of [4].
Theorem 5 (The Recursion Theorem). Let h : N −→ N be a total com-
putable function. There exists an n0 ∈ N such that

φh(n0) = φn0 .

Proof. LetF be the set of unary computable functions. Consider f : N×
N −→ F be defined as f(m, n) ∼= φφn(m). If φn(m) is undefined, then
f(m, n) is also undefined. Letting the operator Φh : F −→ F be defined as
Φh(φn) = φh(n). We have the following square:

N × N
f �� F

Φh

��
N

�

��

g
�� F .
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g is defined as g(m) = φh(φm(m)). By the S-M-N theorem there is a total
computable function s(m) such the φh(φm(m)) = φs(m). Since s is total and
computable, there exists a number t such that s(m) = φt(m) and so g is
representable because g(m) = φh(φm(m)) = φs(m) = φφt(m) = f(m, t). So
there is a fixed point of Φh at n0 = φφt(t). Explicitly we have

φh(φt(t)) = Φh(φφt (t)) by definition of Φh
= Φh(f(t, t)) by definition of f

= g(t) by definition of g

= f(t, t) by representability of g

= φφt(t) by definition of f. �

Application: Rice’s theorem. Everynontrivial property of computable func-
tions is not decidable: Let A be a nonempty proper subset of F , the set of
all unary computable functions. Let A = {x | φx ∈ A}. Then A is not
recursive. We prove this by assuming (wrongly) that A is recursive. Let
a ∈ A and b �∈ A. Define the function h as follows.

h(x) =

{
a : if x �∈ A
b : if x ∈ A.

By definition x ∈ A iff h(x) �∈ A. From our assumption, we have that h
is computable (and total). Hence by the recursion theorem, there is an n0
such that φh(n0) = φn0 . Now we have the following contradiction:

n0 ∈ A⇐⇒ h(n0) �∈ A by definition of h

⇐⇒ φh(n0) �∈ A by the definition of A

⇐⇒ φn0 �∈ A by the recursion theorem

⇐⇒ n0 �∈ A by definition of A. �

Application: Von Neumann’s self-reproducing machines. A self-reproduc-
ingmachine is a computable function that always outputs its owndescription.
It might seem impossible to construct such a self-reproducing machine since
in order to construct such a machine, we would need to know its description
and hence know the machine in advance. However, by a simple application
of the recursion theorem, we get such a machine.
By a description of a machine, we could mean the number of the com-
putable function i.e., a self-reproducing machine is a function φn(x) = n.
for all input x.
Let f : N × N −→ N be the computable projection function f(y, x) = y.
By the S-M-N theorem there exists a total computable function s such that
φs(y)(x) = f(y, x) = y. From the recursion theorem, there exists an n such
that φn(x) = φs(n)(x) = f(n, x) = n. �
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§6. Future directions. There are many possible ways that we can go on
with this work. We shall list a few.
The general Cantor’s theorem can be generalized further so that evenmore
phenomena can be encompassed by this one theorem. For example what
if we have two sets Y and Y ′ and there is a onto function from Y to Y ′.
What does this say about the relationship between f : T × T −→ Y and
f′ : T × T −→ Y ′? We should get the concept of a paradox “reduction”
from one paradox to another.
Rather than simply talking about sets and functions, perhaps we should
be talking about partial orders and order preserving maps. With this gener-
alization, we might be able to not only get fixed point theorems but also least
fixed point theorems. There are many simple least fixed point theorems such
as ones for continuous maps of cpo’s and Scott domains; Kripke’s definition
of truth [5] and the Knaster-Tarski theorem.
Some more thought must go into Richards and Löb’s paradoxes. Al-
though we have stated their limitations, the paradoxes remain. Perhaps we
are not formulating them correctly or perhaps there is something intrinsically
problematic about these paradoxes.
There are many fixed point theorems throughout logic and mathematics
that are not of the type described in Sections 3 and 4. Can we in some sense
characterize those fixed point theorems that are self-referential?
It seems that the key component of the diagonalization lemma is the
existence of a recursive D : N −→ N that is defined for all B(x) as

D(�B(x)�) = �B(�B(x)�)�.

Similarly, in order to have the recursion theorem we needed the S-M-N
theorem. These two properties of systems are the key to the fact that the
systems can talk about themselves. Are these two properties related to each
other? More importantly, can we find other key properties in systems that
make self-reference possible?
In the introduction of this paper we talked of the lack of an onto function
T −→ YT andwe said thatY maybe thought of as truth-values or properties
of objects in T . Can we find a better word for Y ? In Section 5 where we

talked about an onto function Lind 1 −→ Lind 0
Lind 1

where Lind i is the
Lindenbaum classes of formula with i variables. In what sense is Lind 0 the
truth-values or properties of Lind 1? We then went on to talk about an onto
function N −→ FN where F is the set of unary computable functions. We
used this onto function to prove The Recursion Theorem. In what sense is
F the truth-values or the properties of N?
As for more instances of our theorems, the field is wide open. There are
many paradoxical phenomena and fixed point theorems that we have not
talked about. Some of them might be amenable to our scheme and some
might not be.
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• There are many of the semantic paradoxes that we did not discuss. The
Berry paradox asks one to consider the sentence “Let x be the first
number that cannot be described by any sentence with less than 200
characters.” We just described such a number.

• The Crocodile’s Dilemma is an ancient paradox that is a deviously cute
self-referential paradox. A crocodile steals a child and themother of the
child begs for the return of her beloved baby. The crocodile responds
”I will return the child if and only if you correctly guess whether or not
I will return your child.” The mother cleverly responds that he will keep
the child. What is an honest crocodile to do?!?

• There is a belief that all paradoxes wouldmelt away if there were no self-
referential statements. Yablo’s Non-self-referential Liar’s Paradox was
formulated to counteract that thesis. There is a sequence of statements
such that none of them ever refer to themselves and yet they are all both
true and false. Consider the sequence

(Si ) : For all k > i, Sk is false.

Suppose Sn is true for some n. Then Sn+1 is false as are all subsequent
statements. Since all subsequent statements are false, Sn+1 is true which
is a contradiction. So in contrast, Sn is false for all n. That means that
S1 is true and S2 is true etc etc. Again we have a contradiction.

• Brandenburger’s Epistemic Paradox [3] considers the situation where
Ann believes that Bob believes that Ann believes that Bob has a
false belief about Ann.

Now ask yourself the following question: Does Ann believe that Bob
has a false belief about Ann? With much thought, you can see that this
is a paradoxical situation.

• Curry’s paradox is a paradox about logic and set theory that is very
similar to Löb’s paradox.

• The Ackermann function is not a primitive recursive function. One
hears the phrase thatAckermann’s function “diagonalizes-out”of prim-
itive recursive functions.

• There is a famous Paris-Harrington result which says that certain
generalized Ramsey theorems cannot be proven in Peano Arithmatic.
Kanamori and McAloon [9] make the connection to the Ackermann
function. Just as the Ackermann function “diagonalized-out” of prim-
itive recursiveness, so too, generalized Ramsey theory is “diagonalized-
out” of Peano Arithmetic. Both of these are really stating limitations
of the systems.

There are many instances of fixed point theorems that might be put into
the form of our scheme.

• Borodin’s Gap Theorem is a type of fixed point theorem in complexity
theory that might be right for our scheme.
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• We again mention the Knaster-Tarski theorem about monotonic func-
tions between preorders. There is also amuch used theorem about fixed
points of continuous functions between cpo’s.

• As the ultimate in self-reference, we would like to mention Kripke’s
theory of truth that he used to banish self-referential paradoxes. It is,
in essence, a type of fixed point theorem. It would really be nice to
formulate that way of dealing with paradoxes in our language.

• Brouwer’s fixed point theorem, or the far simpler intermediate value
theorem.

• Nash’s equilibria theorem and its many generalizations from game the-
ory.

There are several theorems from “real” mathematics that are proved via
diagonalization proofs. We might be able to put them into our language.

• Baire’s category theory about metric spaces.
• Montel’s theorem from complex function theory.
• Ascoli theorem from topology.
• Helly’s theorem about limits of distributions.
The following ideas are a little more “spacey.”

• Gödel’s second incompleteness theorem about the unprovability within
arithmetic of the consistency of arithmetic. This theorem is a usually
proved as a consequence of the first incompleteness theorem. However
Kreisal has a direct model theoretic proofs that uses a diagonal method
(see, e.g., page 860 of Smoryński’s article in [2].) This proof seems
amenable to our scheme.

• Many of Chaitin’s algorithmic information theory arguments seem to
fit our scheme.

• We worked out Gödel’s first incompleteness theorem which showed
that (using the language of the introduction) arithmetic cannot com-
pletely talk about its ownprovability. What aboutGödel’s completeness
theorem? Certain weak systems can completely talk about their own
provability. Can this be stated as some type of fixed point theorem?
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