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ON THE AUTOMORPHISMS OF THE NONSPLIT
CARTAN MODULAR CURVES OF PRIME LEVEL

VALERIO DOSE

Abstract. We study the automorphisms of the nonsplit Cartan modular

curves Xns(p) of prime level p. We prove that if p> 29 all the automorphisms

preserve the cusps. Furthermore, if p≡ 1 mod 12 and p 6= 13, the automorphism

group is generated by the modular involution given by the normalizer of a

nonsplit Cartan subgroup of GL2(Fp). We also prove that for every p> 29

the existence of an exceptional rational automorphism would give rise to an

exceptional rational point on the modular curve X+
ns(p) associated to the

normalizer of a nonsplit Cartan subgroup of GL2(Fp).

Introduction

Modular curves can be constructed as compactifications of certain quo-

tients of the upper half complex plane. When the genus exceeds 1, it is

a classical question to ask if all of their automorphisms are induced by an

automorphism of the upper half complex plane. Here we make some progress

toward answering this question for nonsplit Cartan modular curves.

Let N be a positive integer and let H be a subgroup of GL2(Z/NZ)

with the property that the determinant homomorphism from H to Z/NZ∗
is surjective. We write XH for the modular curve over Q associated to

the subgroup H. Let ΓH be the subgroup of SL2(Z) made up of the

elements which reduce modulo N to an element in H. The complex points

of XH can be identified with the orbit space H ∪Q ∪ {∞}/ΓH , where H
is the upper half complex plane on which any element of SL2(R) acts as

a Möbius transformation
(
a b
c d

)
τ = aτ+b

cτ+d , for every τ ∈H. Let Norm(ΓH)

be the normalizer of ΓH in SL2(R). An element of Norm(ΓH) induces

naturally an automorphism of the curve XH ; hence the group B(XH)
def
=

Norm(ΓH)/ΓH can be considered as a subgroup of the automorphism group

Received February 28, 2015. Revised September 18, 2015. Accepted September 18,
2015.

2010 Mathematics subject classification. 14G35, 11G05.
L’Autore ha svolto parte di questo lavoro come titolare di un Assegno “Ing. Giorgio

Schirillo” dell’Istituto Nazionale di Alta Matematica.

c© 2016 by The Editorial Board of the Nagoya Mathematical Journal

https://doi.org/10.1017/nmj.2016.32 Published online by Cambridge University Press

http://dx.doi.org/10.1017/nmj.2016.32
https://doi.org/10.1017/nmj.2016.32


ON THE AUTOMORPHISMS OF XNS(P ) 75

Aut(XH) of XH . We call an element of B(XH) a modular automorphism of

XH . A nonmodular automorphism is also called exceptional.

If H is a Borel subgroup of GL2(Z/NZ), the curve XH is the classical

modular curve X0(N) and ΓH is the classical congruence subgroup Γ0(N).

For every positive integer N , the automorphism group of X0(N) has been

determined in [Ogg77, KM88, Elk90, Har11], and if the genus of X0(N)

is at least 2 and N 6= 37, 63, 108, we have Aut(X0(N)) =B(X0(N)). If we

take N = p a prime number, the group B(X0(p)) is generated by the Atkin–

Lehner involution wp. The automorphism group of X∗0 (p)
def
= X0(p)/〈wp〉 has

been determined in [BH03] and it is trivial when the genus exceeds 2. When

X∗0 (p) has genus 2, the curve X∗0 (p) is hyperelliptic, so it must admit an

involution.

In this paper, we concentrate on the case of H being a nonsplit Cartan

subgroup of GL2(Fp), and we write Xns(p) for the modular curve associated

to H. This curve always has a modular involution w, because of the fact

that a nonsplit Cartan subgroup of GL2(Fp) has index 2 in its normalizer.

We have B(Xns(p)) = 〈w〉 (see Section 3). Let X+
ns(p)

def
= Xns(p)/〈w〉 be the

modular curve associated to the normalizer of a nonsplit Cartan subgroup

of GL2(Fp). The curve Xns(p) has genus smaller than 2 when p6 7. The

same happens for X+
ns(p) when p6 11. It is not true that Aut(Xns(p)) = 〈w〉

whenever the genus is at least 2. For example, the automorphism group of

Xns(11), determined in [DFGS14], is the Klein four group generated by w

and an exceptional involution.

Here, extending techniques of [Ogg74, KM88, BH03], we prove the

following

Theorem 1.1. If p> 11 the modular curve Xns(p) is not hyperelliptic.

If p> 13 the modular curve X+
ns(p) is not hyperelliptic.

We remark that this result already follows directly from [Abr96, Theo-

rem 0.1] for Xns(p) when p> 23 and for X+
ns(p) when p> 29.

Theorem 5.2. If p> 29, all the automorphisms of Xns(p) preserve the

cusps. If p≡ 1 mod 12 and p 6= 13, the automorphism group of Xns(p) is

generated by the modular involution w.

Some of the techniques used in this paper also apply to X+
ns(p), but the

main result does not seem to be reachable right away. In general, one can

expect the automorphism group of Xns(p) to be generated by the modular

involution w and the automorphism group of X+
ns(p) to be trivial for p> 13.
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The interest in nonsplit Cartan modular curves comes mainly from Serre’s

uniformity conjecture, which is an important statement regarding Galois

representations attached to elliptic curves. It is equivalent to assert that for

almost all p and for every maximal subgroup H of GL2(Fp), the modular

curve XH has no rational points except the cusps and the points associated

to elliptic curves with complex multiplication, usually called CM points. The

only case left to prove, concerns modular curves associated to the normalizer

of a nonsplit Cartan subgroup of GL2(Fp).
We prove the following statement relating the existence of exceptional

automorphisms of Xns(p) with the existence of non-CM rational points on

X+
ns(p).

Theorem 5.3. Let p> 29. If there exists an exceptional automorphism

of Xns(p) defined over Q, then X+
ns(p) has a non-CM rational point.

Therefore, Serre’s uniformity conjecture implies the nonexistence of

rational exceptional automorphisms of Xns(p) for almost all p.

§1. Hyperelliptic modular curves of type Xns(p) and X+
ns(p)

Let p be a prime number. We recall that the modular curve Xns(p) has

genus 0 for p6 5 and is elliptic only for p= 7. The modular curve X+
ns(p)

has genus 0 for p6 7 and is elliptic only for p= 11 [Bar10].

Theorem 1.1. If p> 11 the modular curve Xns(p) is not hyperelliptic.

If p> 13 the modular curve X+
ns(p) is not hyperelliptic.

Proof. (Following [Ogg74, p. 455, Theorem 3]). Let q 6= p be a prime

number, let Fq be the finite field with q elements and let Fq be an algebraic

closure. The points of Xns(p)(Fq) parametrize pairs (E, ϕ), where E is an

elliptic curve over Fq and ϕ is an isomorphism from the p-torsion points of

E to Z/pZ× Z/pZ. Moreover, two pairs (E, ϕ), (E′, ϕ′) are parametrized

by the same point of Xns(p)(Fq) if and only if there exist an isomorphism

f from E to E′ such that, on the p-torsion of E, we have ϕ′ ◦ f =M ◦ ϕ,

where M is a generator of a nonsplit Cartan subgroup C of GL2(Fp). The

Frobenius automorphism σ generating Gal(Fq/Fq2) acts on Xns(p)(Fq) as

σ(E, ϕ) = (Eσ, ϕ ◦ σ−1), so that every elliptic curve E over Fq2 gives a point

(E, ϕ) in Xns(p)(Fq2) if and only if ϕ ◦ σ−1 ◦ ϕ−1 is contained in C.

Take a supersingular elliptic curve E over Fq. This means that the

q-torsion of E is trivial, that the endomorphism algebra End(E) is an

order in a quaternion algebra, and implies that E can be defined over
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Fq2 [Sil09, p. 144, Theorem 3.1, (a)]. The fact that multiplication by q

is purely inseparable implies that the q2th power Frobenius endomorphism

ϕq2 and multiplication by q differ by an automorphism of E, which means

that ϕq2 = ζq in End(E) and ζ is a root of unity. If j 6= 0, 1728, we have

ϕq2 =±q. If j = 0, 1728, the elliptic curve E is isomorphic over Fq to a

curve E′ defined over Fq with equation y2 + y = x3 or y2 = x3 − x. We have

#E′(Fq) = q + 1 ([Sil09, p. 154, Exercise 5.10, (b)] when q > 5, a direct

count when q = 2, 3). Hence the qth power Frobenius endomorphism of

E′ has characteristic polynomial x2 + q = 0 which implies that ϕq2 =−q
in End(E).

This shows that every supersingular elliptic curve over Fq is isomorphic to

a supersingular elliptic curve E defined over Fq2 , with the property that ϕq2

acts on the p-torsion points as multiplication by q or −q. Which says that

ϕq2 acts on the p-torsion of E as a scalar matrix of GL2(Fp) and therefore

as an element contained in every conjugate of the nonsplit Cartan subgroup

C in GL2(Fp). Hence, E gives a point in Xns(p)(Fq2) for each conjugate of

C in GL2(Fp), up to automorphisms of E, in the sense that a pair (E, ϕ)

gives the same point on Xns(p) as (E, ϕ ◦ f) for any automorphism f of

E. Among the automorphisms of any supersingular elliptic curve, we have

multiplication by −1, which acts on torsion points as an element contained

in C. Thus, since the index of a nonsplit Cartan subgroup in GL2(Fp) is

equal to p(p− 1), we have the following inequality

#Xns(p)(Fq2) > p(p− 1) · 2 ·
∑

E over Fq

supersingular

1

#Aut(E)
=
p(p− 1)(q − 1)

12
,

where in the last equality we used the Deuring–Eichler formula [Sil09, p. 154,

Exercise 5.9] ∑
E over Fq

supersingular

1

#Aut(E)
=
q − 1

24
.

Note that this lower bound on the number of supersingular points can also

easily be deduced from [BGJGP05, Lemmas 3.20 and 3.21].

Suppose now that Xns(p) is hyperelliptic. Then we have

p(p− 1)(q − 1)

12
6 #Xns(p)(Fq2) 6 2(q2 + 1),
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where the second inequality holds because Xns(p) is hyperelliptic and

because the projective line over Fq2 has exactly q2 + 1 points. Now, putting

q = 2 we have
p(p− 1)

12
6 #Xns(p)(F4) 6 10

and we obtain p6 11 which ends the proof for Xns(p) in the case p> 13.

With an analogous reasoning, taking into account that the index of the

normalizer of a nonsplit Cartan subgroup in GL2(Fp) is equal to p(p−1)
2 , we

obtain the statement for X+
ns(p) in the case p> 17.

The case p= 11 for Xns(p) and the case p= 13 for X+
ns(p) can be worked

out by explicitly counting the points over F4 of the respective curves. Recall

that the Jacobian of Xns(p) is isogenous to the new part of the Jacobian

of X0(p
2) and the Jacobian of X+

ns(p) is isogenous to the new part of

the Jacobian of X∗0 (p2)
def
= X0(p

2)/〈wp2〉, where wp2 is the Atkin–Lehner

involution [Che98, dSE00]. Then we can count the points over F4 by looking

at the roots of the characteristic polynomial of a Frobenius at 2 on the

Jacobian of X0(p
2), and using the well- known formula

#C(Fqr) = qr + 1−
2g∑
i=1

αri

where C is a nonsingular projective curve of genus g over the finite field Fq
with q prime, and the αi’s are the roots of the characteristic polynomial of

the Frobenius automorphism at q, acting on the Jacobian variety of C.

Looking at the tables in [Ste12] of weight-2 newforms for Γ0(121), we

see that the Jacobian of Xns(11) is isogenous to the product of four

elliptic curves for which the traces of a Frobenius automorphism at 2 are

respectively −1, 0, 1, 2, so that the roots of the characteristic polynomial

of a Frobenius at 2 acting on the Jacobian of Xns(11) are −1±
√
−7

2 , ±
√
−2,

1±
√
−7

2 , 1± i. Hence #Xns(11)(F4) = 15> 10.

Now, in the same tables, we look at the weight-2 newforms for Γ0(169).

We see that the Jacobian of X+
ns(13) is isogenous to a simple abelian variety

A over Q of dimension 3. The eigenvalues of the Hecke operator T2 acting

on A are the roots ai, with i= 1, 2, 3, of the polynomial x3 + 2x2 − x− 1.

Then the characteristic polynomial of a Frobenius at 2 is the product

3∏
i=1

(x2 − aix+ 2).

It allows us to compute #X+
ns(13)(F4) = 11> 10.
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§2. Endomorphisms of the Jacobian variety of Xns(p)

In this section, for any abelian variety A over a field K, an endomorphism

of A is an endomorphism defined over an algebraic closure K of K, and we

write End(A) for the ring of endomorphisms of A defined over K. The

endomorphism algebra End(A)⊗Q is an invariant of the isogeny class of

A over K. The minimal field where every endomorphism of A is defined is

an invariant of the isogeny class over K of A. We say that A is of CM-type

if End(A)⊗Q contains a commutative semisimple Q-algebra of dimension

equal to 2 · dimA.

Proposition 2.1. Let A be a semistable abelian variety over a field K,

complete with respect to a discrete valuation. Then every endomorphism of

A is defined over an unramified extension of K.

Proof. [Rib75, p. 556, Theorem 1.1].

Proposition 2.2. Let A be an abelian variety over a field K. Let E be

a subalgebra of EndK(A)⊗Q such that [E : Q] = dimA and suppose that E

is a product E1 × · · · × Et of totally real number fields. This gives rise to a

decomposition A∼A1 × · · · ×At of abelian varieties up to isogeny over K.

Suppose that no factor Ai is of CM-type. Then E is its own commutant in

End(A)⊗Q and every endomorphism of A is defined over a compositum of

quadratic extensions of K.

Proof. [Rib75, p. 557, Theorem 2.3]

Let J0(N) be the Jacobian variety of the modular curve X0(N). It is an

abelian variety over Q.

Proposition 2.3. The abelian variety J0(N) is semistable at each

prime p such that p2 does not divide N .

Proof. [DR73, p. 286, Theorem 6.9].

For every integer N > 0, there exists a set of representatives f1, . . . , ft of

Gal(Q/Q)-conjugacy classes of normalized weight-2 cuspforms for Γ0(N),

such that every fi is a newform at some level Mi dividing N , and

{fi(nτ), n|N/Mi, i= 1 . . . t} with their Gal(Q/Q)-conjugates form a basis

of the complex vector space of weight-2 cuspforms for Γ0(N). There is a

decomposition of abelian varieties up to isogeny over Q

(2.1) J0(N)∼Ami
1 × · · · ×A

mt
t
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where Ai
def
= Afi is the abelian variety up to isogeny over Q associated to the

Gal(Q/Q)-conjugacy class of fi, and mi is the number of divisors of N/Mi

(see [DS05, §6.6]). Every Ai is a simple abelian variety over Q.

Let JC0 (N) be the abelian variety up to isogeny over Q which is a product

of the factors Ami
i such that Ai is of CM-type and let JH0 (N) be the product

of the remaining factors of the decomposition above. We recall here that if

Ai is of CM-type, then it is isogenous (over Q) to a product of copies of an

elliptic curve with complex multiplication by an imaginary quadratic field

K of discriminant −D and fi is a weight-2 cuspform for Γ0(D ·N(c)), where

c is the conductor of a primitive Hecke character of K (see [Shi72, p. 138,

Proposition 1.6], [Shi71]). Any factor Ai of JH0 (N) cannot be isogenous to

any factor Aj of JC0 (N) because Ai and Aj have different endomorphism

algebras. Hence, we have J0(N)∼ JH0 (N)× JC0 (N) and End(J0(N))⊗Q∼=
(End(JH0 (N))⊗Q)× (End(JC0 (N))⊗Q).

Let p be an odd prime number. We call K(p) = Q(
√
p) if p≡ 1 mod 4

and K(p) = Q(
√
−p) if p≡ 3 mod 4.

Proposition 2.4. Every endomorphism of JH0 (p2) is defined over K(p).

Proof. Proposition 2.2 tells us that endomorphisms of JH0 (p2) can be

defined over a field K which is a compositum of quadratic extensions of Q.

Furthermore, Propositions 2.1 and 2.3 imply that K can be taken unramified

outside p. Thus, we can take K = Q(
√
p) if p≡ 1 mod 4 and K = Q(

√
−p)

if p≡ 3 mod 4.

Let g0(N), gH0 (N), gC0 (N) be respectively the dimensions of J0(N),

JH0 (N), JC0 (N).

Let Jns(p) be the Jacobian of the modular curve Xns(p). The abelian

variety Jns(p) is isogenous over Q to the new part of J0(p
2) (see [Che98,

dSE00]). Let Jnew
0 (p2) and Jold

0 (p2) be respectively the new and the old

part of J0(p
2) and let us fix an isomorphism ϕ from End(Jns(p))⊗Q to

End(Jnew
0 (p2))⊗Q. We say, with abuse of notation, that an automorphism

v of Xns(p), induces the invertible element v
def
= ϕ(v) of

End(Jnew
0 (p2))⊗Q ⊂ (End(Jnew

0 (p2))⊗Q)× (End(Jold
0 (p2))⊗Q)

⊂ End(J0(p
2))⊗Q

where the first inclusion is given by sending v to the invertible element that

acts like v on the new part and as the identity on the old part.
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We can then define in an analogous way JHns(p), J
C
ns(p), as factors of

the new part of the decomposition (2.1). We also define the dimensions

gns(p), g
H
ns(p), g

C
ns(p). We have Jns(p)∼ JHns(p)× JCns(p) and End(Jns(p))⊗

Q∼= (End(JHns(p))⊗Q)× (End(JCns(p))⊗Q).

Theorem 2.5. If gns(p)> p every automorphism of Xns(p) is defined

over K(p).

Proof. (Following [KM88, p. 55, Lemma 1.4]) Let u be an automorphism

of Xns(p) and σ a element of Gal(Q/K(p)). We define v = uσu−1 and let d be

the order of v in the automorphism group of Xns(p). We call Y the quotient

of Xns(p) by the automorphism v. Let gY be the genus of Y . We have that

v induces an automorphism of the Jacobian Jns(p)∼ JHns(p)× JCns(p) which

acts trivially on JHns(p) by Proposition 2.4, because JHns(p) is a factor of

JH0 (p2). Thus we have the following morphisms of abelian varieties with

finite kernel

JHns(p) → JHns(p)× JCns(p)→ Jns(p)

x 7→ (x, 0)

where the image of the composition is contained in Jns(p)
v def

= {D ∈ Jns(p) :

vD =D}. Hence there are morphisms of group varieties

JHns(p)−→ Jns(p)
v −→ Jac(Y )

where the second map is the push-forward of divisors, and the composition is

a morphism of abelian varieties. Furthermore, both maps have finite kernel,

hence gY > gHns(p) and we have by the Riemann–Hurwitz formula

gns(p)− 1 > d(gY − 1) > 2gHns(p)− 2,

where in the second inequality we supposed d > 1. Now using gns(p) =

gHns(p) + gCns(p) we obtain gns(p) 6 2gCns(p) + 1. Since Jns(p) is isogenous over

Q to the new part of J0(p
2) we have gCns(p) = gC0 (p2). Indeed, the old part

of J0(p
2) is isogenous to the product of two copies of the Jacobian of J0(p)

and these cannot have abelian subvarieties of CM-type (see [Shi72, p. 140,

Remark 1.7]). Furthermore, gC0 (p2) = 0 if p≡ 1 mod 4 and gC0 (p2) = h(−p)
if p≡ 3 mod 4, where h(−p) is the class number of Q(

√
−p). Indeed, in

the decomposition (2.1) with N = p2, if a factor is of CM-type, then it is

the product of copies of an elliptic curve with complex multiplication by an
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imaginary quadratic field K of discriminant −p. This leaves no possibilities

if p≡ 1 mod 4 and it implies K = Q(
√
−p) when p≡ 3 mod 4. In the latter

case the dimension is h(−p) because by the theory of complex multiplication,

the elliptic curves with complex multiplication by Q(
√
−p) are all isogenous,

Gal(Q/Q)-conjugate and their cardinality is h(−p).
Then we can estimate h(−p) using Dirichlet’s class number formula:

h(−p) =−1

p

p−1∑
m=1

m

(
m

p

)
6

1

p

p−1∑
m=1

m=
p− 1

2

where the first equality is [Dav80, p. 51, (19)] (we are assuming p≡ 3 mod 4

and p 6= 3), and in the inequality we used that the Legendre symbol
(
m
p

)
takes values in {±1}. This implies gns(p) 6 p. Contradiction.

Corollary 2.6. If p> 11 every automorphism of Xns(p) is defined over

K(p).

Proof. By [Bar10, Theorem 7.2], we have that gns(p)> p for p> 19.

Regarding p= 13, 17, they are both congruent to 1 modulo 4, so in

these cases gCns(p) = gC0 (p2) = 0 and we can use Proposition 2.4 together

with the isogeny over Q between Jns(p) and the new part of J0(p
2). The

automorphisms of Xns(11) are explicitly computed in [DFGS14] and they

are all defined over Q.

The modular curve Xns(7) has genus 1, and it has the automorphisms

defined as translation by points. Thus, in this case there are automorphisms

defined over larger number fields.

Proposition 2.7. If an automorphism of Xns(p) is defined over Q, then

it induces an element of End(JH0 (p2))⊗Q contained in the Hecke algebra.

Proof. Since Jns(p) is isogenous over Q to the new part of J0(p
2), an auto-

morphism u of Xns(p) defined over Q induces an element of EndQ(J0(p
2))⊗

Q∼= (EndQ(JHns(p))⊗Q)× (EndQ(JCns(p))⊗Q), as explained above. Since

J0(p
2) has good reduction outside p, the reduction modulo l map is injective

on the endomorphism ring of J0(p
2) for every prime number l 6= p. Hence,

by the Eichler–Shimura relations, u commutes with every Hecke operator Tl
with l 6= p, because u is defined over Q. Moreover, the Hecke algebra acting

on the new part is generated by the operators Tl with l 6= p, thus u commutes

with the whole Hecke algebra. Then, to prove the Proposition, we note that
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every factor of JH0 (p2) is without complex multiplication and so the Hecke

algebra is its own commutant in End(JH0 (p2))⊗Q (Proposition 2.2).

Lemma 2.8. If gns(p)> p every automorphism of Xns(p) defined over Q
commutes with the modular involution w.

Proof. Let u be an automorphism of Xns(p) defined over Q. Then, by

the previous Proposition, u and w induce elements in the Hecke algebra of

JH0 (p2), which is a commutative algebra. Hence, if we define v = uwu−1w−1

we have that v induces an invertible element of End(J0(p
2))⊗Q which acts

trivially on JH0 (p2) and JHns(p). Then we can use the same proof as for

Theorem 2.5 to see that v is trivial if gns(p)> p.

Corollary 2.9. If p> 11 every automorphism of Xns(p) defined over

Q commutes with the modular involution w.

Proof. As for Corollary 2.6, we have that gns(p)> p for p> 19. Regarding

p= 13, 17, in these cases gCns(p) = gC0 (p2) = 0. Moreover, gns(p) > 2, so the

natural map from the automorphism group of Xns(p) to the automorphism

group of Jns(p) is injective [BH03, Lemma 2.1], and we can use Proposition

2.7 together with the fact that the Hecke algebra is commutative. The

automorphism group of Xns(11) is the Klein four group (see [DFGS14]).

Corollary 2.10. If p> 11 every automorphism of Xns(p) defined over

Q induces an automorphism of X+
ns(p) defined over Q.

§3. Automorphisms of Xns(p) preserving the cusps

Let XH be a modular curve. Then the orbit space H ∪Q ∪ {∞}/ΓH can

be identified with XH(C). Let E ⊂H be the set of ramification points of

the natural quotient map π :H→H/ΓH . This is a discrete set in H and

it is the counter image of the set of elliptic points in XH(C). For every

z ∈H \ E there exists a neighborhood U 3 z such that γi(U) ∩ γj(U) = ∅
for every γi 6=±γj in ΓH . This means that H \ E is a proper covering space

of XH(C) without the cusps and the elliptic points.

Proposition 3.1. Let u be an automorphism of XH . If u preserves the

set of cusps and preserves the set of elliptic points of XH , then u is induced

by an automorphism of the Riemann surface H preserving E.

Proof. Let C be the set of cusps on XH . Note that an automorphism

u of XH preserving the cusps and the elliptic points, defines naturally an

automorphism of the open Riemann surface XH(C) \ (C ∪ π(E)). If XH

https://doi.org/10.1017/nmj.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.32


84 V. DOSE

has no elliptic points (E = ∅), then the quotient H→H/ΓH ∼=XH(C) \ C
is the universal cover of XH(C) \ C. Then u automatically lifts to an

automorphism of H. If instead E 6= ∅, to lift u to H \ E, we need the

push-forward by u ◦ π of the fundamental group of H \ E to be contained

in its push-forward by π. But this is true because u actually extends to

an automorphism of XH(C) preserving C and π(E). Hence u lifts to an

automorphism of H \ E, which extends uniquely to H.

Let p be a prime number.

Proposition 3.2. Suppose that the genus of Xns(p) is at least 2. Let

Γns(p) be the subgroup of SL2(Z) made up of the elements which reduce

modulo p to an element in a nonsplit Cartan subgroup of GL2(Fp). Then

the subgroup

B(Xns(p)) = Norm(Γns(p))/Γns(p)⊂Aut(Xns(p))

is generated by the modular involution w.

Proof. Since the genus of Xns(p) is at least 2, the group B(Xns(p)) must

be finite. This means that Norm(Γns(p)) is commensurable with SL2(Z) in

the sense that Norm(Γns(p)) ∩ SL2(Z) has finite index in both Norm(Γns(p))

and SL2(Z). Hence Norm(Γns(p)) is a group acting on lattices of R2 that are

commensurable with Z× Z, with the action given by right multiplication of

row vectors in the lattice. Lattices commensurable with Z× Z are the ones

generated by two vectors (a, b), (c, d) with a, b, c, d ∈Q, and if we consider

them up to multiplication by a scalar (i.e., homothety), they all have a

basis of the form {(M, gh), (0, 1)} with M ∈Q+, g, h ∈ Z, gcd(g, h) = 1 and

0 6 g < h (see [Con96] for more details).

Since Γns(p)⊂ Γ(p) = {γ ∈ SL2(Z) s. t. γ ≡ Id mod p}, the lattices fixed

by Γns(p) are a subset of the lattices fixed by Γ(p). The lattices fixed by Γ(p)

are those who belong to one of the following type (see [Lan02, Lemma 4.1])

• M = 1
p , h= p, g = 0, . . . , p− 1, which gives a lattice homothetic to

〈(1, g), (0, p)〉;
• M = 1

p , h= 1, g = 0, which gives a lattice homothetic to 〈(1, 0), (0, p)〉;
• M = p, h= 1, g = 0, which gives the lattice 〈(p, 0), (0, 1)〉;
• M = 1, h= 1, g = 0, which gives the lattice 〈(1, 0), (0, 1)〉= Z× Z.
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Recall that Γns(p) is the subgroup of SL2(Z) made up of the elements γ

such that

γ ≡
(
x αy
y x

)
mod p

for some (x, y) ∈ F2
p and a nonsquare element α ∈ Fp. Then, a straightfor-

ward computation modulo p shows that γ fixes lattices of the first three

types, only if γ ∈ Γ(p), so that the only lattice up to homothety fixed by

Γns(p) is Z× Z.

The normalizer in SL2(R) of Γns(p) must preserve, by definition, the set of

lattices that are fixed by Γns(p). Thus, also Norm(Γns(p)) fixes Z× Z. The

stabilizer of Z× Z is SL2(Z), implying Norm(Γns(p))⊂ SL2(Z). Therefore,

Norm(Γns(p)) is made up of the elements of SL2(Z) which reduce modulo p

to an element in the normalizer of a nonsplit Cartan subgroup of GL2(Fp),
which proves the Proposition.

Corollary 3.3. Suppose that the genus of Xns(p) is at least 2. If

p≡ 1 mod 12, the only nontrivial automorphism of Xns(p) preserving the

cusps is the modular involution w. If p 6≡ 1 mod 12, the only nontrivial

automorphism of Xns(p) preserving the cusps and the elliptic points, is

the modular involution w. The only automorphism of X+
ns(p) preserving the

cusps and the elliptic points is the identity.

Proof. Let Γns(p) be the subgroup of SL2(Z) made up of the elements

which reduce modulo p to an element in a nonsplit Cartan subgroup

of GL2(Fp), so that Xns(p)(C)∼=H ∪Q ∪ {∞}/Γns(p). Thus, Xns(p) has

elliptic points if and only if Γns(p) contains an element with characteristic

polynomial equal to x2 + 1 or x2 + x+ 1. Recall that the elements of a

nonsplit Cartan subgroup of GL2(Fp) (not belonging to the center) have

irreducible characteristic polynomials. If p≡ 1 mod 4 and p≡ 1 mod 3, the

two polynomials above have both roots over Fp. Hence, when p≡ 1 mod 12

there are no elliptic points on Xns(p). The Corollary then follows from the

two previous Propositions.

§4. Automorphisms of Xns(p) not preserving the cusps

Let p be a prime number and l be another prime number different from

p. Let Tl be the lth Hecke operator for the modular curve Xns(p), defined

as a modular correspondence (see [Shi58, §2]). Let E be an elliptic curve

over C and let ϕ be an isomorphism from the p-torsion E[p] of E to Z/pZ×
Z/pZ. Then the pair (E, ϕ) gives a point on Xns(p). Let A be a subgroup

of E of order l. Since l 6= p, taking the quotient by A on E induces an
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isomorphism from the p-torsion of E to the p-torsion of E/A so that ϕ

induces an isomorphism ϕA from the p-torsion of E/A to Z/pZ× Z/pZ.

The operator Tl acts on a noncuspidal point of Xns(p) in the following way

Tl(E, ϕ) =
∑

A⊂E(C)
#A=l

(E/A, ϕA)

and it induces an element in the endomorphism algebra of Jns(p).

For every pair (E, ϕ) with E defined over Q let Ẽ be the reduction of E

modulo a prime ideal containing l, and ϕ̃ : Ẽ[p]→ Z/pZ× Z/pZ be the map

naturally induced by ϕ, since l 6= p. Then the pair (Ẽ, ϕ̃) gives a point on

Xns(p) over Fl. Let Frobl be the generator of the Galois group Gal(Fl/Fl)
and let [l−1] be the inverse of the multiplication by l map on E[p]. We have∑
A⊂Ẽ(Fl)
#A=l

(Ẽ/A, ϕ̃A) = (ẼFrobl , ϕ̃ ◦ Frobl
−1) + l · (ẼFrobl

−1

, ϕ̃ ◦ [l−1] ◦ Frobl)

as divisors of Xns(p) reduced modulo l (see, for example, the proofs in [DS05,

§8.7] regarding the modular curveX1(N)). This implies the Eichler–Shimura

relation:

Tl = Frobl + l · Frob−1l

where both terms of the equation are homomorphisms on the divisor group

of Xns(p) reduced modulo l. Note that the Eichler–Shimura relation acquires

this form in this case because a nonsplit Cartan subgroup of GL2(Fp) always

contains the scalar matrix associated to [l−1]; hence, the pairs (ẼFrobl
−1
, ϕ̃ ◦

[l−1] ◦ Frobl) and (ẼFrobl
−1
, ϕ̃ ◦ Frobl) give the same point on Xns(p).

Since Tl induces an endomorphism of Jns(p), we will also write, with abuse

of notation, the relation Tl = Frobl + l · Frob−1l as endomorphisms of Jns(p)

reduced modulo l.

Lemma 4.1. Let u be an automorphism of Xns(p) defined over the

quadratic field K(p) contained in the pth cyclotomic field. Let σl ∈Gal(Q/Q)

be a Frobenius element at l. Then if l 6= p we have

uσlTl = Tlu

as endomorphisms of Jns(p), that is,

Tlu=

{
uTl if l is a square modulo p

uTl if l is not a square modulo p

where u is the Gal(K(p)/Q)-conjugate of u.
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Proof. (Following [KM88, p. 64, Lemma 2.6]) Since Jns(p) has good

reduction outside p, the reduction modulo l map is injective on the

endomorphism ring of Jns(p). Hence, the Lemma follows from the Eichler–

Shimura relations and the fact that K(p) is a quadratic field.

Let ζp be a primitive pth root of unity. The modular curve Xns(p) has

exactly p− 1 cusps, all defined over Q(ζp) and all conjugate under the action

of Gal(Q(ζp)/Q) (see [Ser89, p. 194–195]).

Proposition 4.2. Let σl ∈Gal(Q/Q) be a Frobenius element at l. Then

we have

TlC = Cσl + l · Cσl−1

as divisors on Xns(p), for every cusp C of Xns(p).

Proof. The equality must hold modulo any prime ideal l of Q(ζp) over l

because of the Eichler–Shimura relations. Moreover, since l 6= p, the modular

curve Xns(p) and its reduction modulo l have the same number of cusps.

Therefore, reduction modulo l is injective on the set of cusps of Xns(p), and

the equality holds also over Q(ζp).

Lemma 4.3. Let p> 11 and let u be an automorphism of Xns(p) defined

over K(p). Let σl ∈Gal(Q/Q) be a Frobenius element at l and let C be a

cusp of Xns(p). If for every cusp C ′ of Xns(p) the divisor

Dl
def
= (uσlTl − Tlu)(C − C ′)

= uσlTlC + TluC
′ − TluC − uσlTlC ′

is the zero divisor, then uC is a cusp, that is:

If uσlTl − Tlu is the zero operator on the group of divisors of Xns(p) of

degree zero and supported in the cusps, then u preserves the cusps.

Proof. By the previous Proposition, for every cusp C, we have TlC =

Cσl + l · Cσl−1
. Thus, we can choose a cusp C ′ such that the supports of

TlC and TlC
′ are completely disjoint. For Dl to be the zero divisor, we

must have

uσlCσl + l · uσlCσl−1
+ TluC

′ = TluC + uσlC ′σl + l · uσlC ′σl−1
.

Since we chose C ′ such that the supports of TlC and TlC
′ are completely

disjoint, we have

(4.2) TluC = uσlCσl + l · uσlCσl−1
.
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If uC is not a cusp, it corresponds to an elliptic curve E defined over

Q(uC)⊂Q(ζp).

Let A and B be two different cyclic groups of order l in E. Then the

natural map E/A→ E→ E/B has a cyclic kernel of order l2. Therefore,

recalling the interpretation of the action of Tl on noncuspidal points, we have

that equation (4.2) can hold only if E admits an endomorphism of degree l2

with cyclic kernel. An elliptic curve without complex multiplication cannot

have such an endomorphism, hence we obtain the Lemma as a consequence

of the following Proposition.

Proposition 4.4. Let p> 11 and let E be an elliptic curve over C
with complex multiplication by an imaginary quadratic field K. No point

of Xns(p) associated to E is defined over Q(ζp).

Proof. Let P be a point of Xns(p) associated to E and defined over Q(ζp).

There are three cases: p is inert, p splits or p ramifies in K.

If p is inert in K, we consider the point Q of X+
ns(p) given by {P, wP}.

This point Q is defined over L⊂Q(ζp) and lifts to points of Xns(p) defined

over LK (and no smaller fields) as explained in [Ser89, p. 194–195]. But this

is impossible since P, wP are defined over Q(ζp) where p ramifies completely.

If p splits or ramifies in K, this means that the image of the

Gal(Q/K(ζp))-representation modulo p attached to E is contained in

respectively a split Cartan or a Borel subgroup of GL2(Fp) (see loc. cit.).

But since P is defined over Q(ζp), the image of such representation is

also contained in a nonsplit Cartan subgroup. Therefore, in both cases,

it is contained in the subgroup of scalar matrixes. Then, the properties

of the Weil pairing imply that Gal(Q/K(ζp)) acts on the p-torsion of E

as a subgroup of {±1}. After choosing a suitable Weierstrass equation for

E, this means that the x-coordinates of the p-torsion points of E are in

K(ζp). The theory of complex multiplication tells us that the ray class

field K(p) modulo (p) of K is generated over K by the j-invariant of E

and by some rational function of the x-coordinates of the p-torsion points

of E [Sil94, p. 135, Theorem 5.6]. Thus we obtain K(p) ⊂K(ζp). It is

always true that K(ζp)⊂K(p), so the opposite inclusion holds if and only

if [K(p) :K] 6 [K(ζp) :K]. We have

[K(p) :K] = hK
#(OK/pOK)∗

wK

where hK is the class number of K, OK is the ring of integers of K and wK is

the number of roots of unity in K taken modulo (p). The group (OK/pOK)∗
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is isomorphic to F∗p2 , F∗p × F∗p or F∗p × 〈a〉 with a an element of order p. Thus

to have the inequality [K(p) :K] 6 [K(ζp) :K] we must have

(p− 1)2

wK
6 (p− 1)

and hence p6 wK + 1. Since the roots of unity in an imaginary quadratic

field are at most 6, we get p6 7.

Corollary 4.5. Let p> 11 and let u be an automorphism of Xns(p)

defined over K(p). If u does not preserve the cusps, then there exists a

nonconstant morphism f from Xns(p) to P1, defined over the field Q(ζp)

and with degree less or equal to 6, such that f ◦ w 6= f .

Proof. Since u is defined over K(p) and does not preserve the cusps, we

can apply Lemma 4.3 to obtain, for every prime l 6= p, a nonzero divisor

Dl on Xns(p), of degree zero, defined over Q(ζp), which is the difference of

two effective divisors of degree at most 2(l + 1). Moreover, we have Dl =

(uσlTl − Tlu)(C − C ′) for two cusps C, C ′ of Xns(p). Hence, by Lemma 4.1

we deduce that Dl must be zero in Jns(p) when p> 11, which is to say

that Dl is a principal divisor. This gives us the existence of a nonconstant

morphism f from Xns(p) to P1, defined over Q(ζp) and with degree at most

2(l + 1).

Now we apply w to Dl. If Dl were invariant under the action of w, we

would have

(4.3) wTluC + wuσlC ′σl + l · wuσlC ′σl−1
= TluC + uσlC ′σl + l · uσlC ′σl−1

,

where we used the computation in the proof of Lemma 4.3. In that proof,

we also showed that the divisor TluC is the sum of l + 1 different points.

Hence since l > 2, to satisfy equation (4.3), the supports of TluC and wTluC

must have a nonempty intersection. This means that the support of TluC

has either two different points exchanged by w or a point fixed by w. The

first case is impossible because the modular automorphism w preserves the

isomorphism class over C of the elliptic curve associated to noncuspidal

points, and we can apply the same argument at the end of the proof of

Lemma 4.3. The second case is also impossible by the previous Proposition,

because the points fixed by w are all associated with the elliptic curve with

j-invariant equal to 1728 (see [Bar10, Proposition 7.10]), which is an elliptic

curve with complex multiplication.

Thus, for l > 2, we have wDl 6=Dl which implies f ◦ w 6= f . The degree

of f is 2(l + 1), so by choosing l = 2 we get the Corollary.
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§5. Proof of main results

We first introduce a general Lemma.

Lemma 5.1. Let X be a smooth projective curve over an algebraically

closed field, and let w be a nontrivial automorphism of X having r fixed

points. If there exists a morphism f from X to P1 of degree k such that

f ◦ w 6= f , then r 6 2k.

Proof. [BH03, Lemma 3.5] Consider the rational function g = f ◦ w − f
on X. If g is constant, then the fixed points of w must be poles of f , implying

r 6 k. If g is not constant then the degree of g is at most 2k − h, where h is

the number of poles that are also points fixed by w. On the other hand, the

other r − h points fixed by w are zeros of g, hence there are at most deg g

of them. So we have r − h6 2k − h which implies r 6 2k.

Let p be an odd prime number.

Theorem 5.2. If p> 29, all the automorphisms of Xns(p) preserve the

cusps. If p≡ 1 mod 12 and p 6= 13, the automorphism group of Xns(p) is

generated by the modular involution w.

Proof. Let u be an automorphism of Xns(p) not preserving the cusps.

By Corollary 2.6 we have that u is defined over K(p). Then Corollary 4.5

tells us that there exists a nonconstant morphism from Xns(p) to P1, defined

over Q(ζp), with degree less or equal to 6 and such that f ◦ w 6= f . Then by

the previous Lemma we have

#{fixed points of w}6 12.

Recall that the number of fixed points of w is p−1
2 if p≡ 1 mod 4 and it is

p+1
2 if p≡ 3 mod 4 (see [Bar10, Proposition 7.10]). This implies p6 23 and

proves the first part of the Theorem. The second part is now a consequence

of Corollary 3.3.

We remark that the first part of the Theorem above can also be achieved

avoiding the discussion about the invariance of f under the action of w, by

using [Abr96, Theorem 0.1].

Now we prove that Serre’s uniformity conjecture, implies the absence of

rational exceptional automorphisms of Xns(p) for almost all p.

Theorem 5.3. Let p> 29. If there exists an exceptional automorphism

of Xns(p) defined over Q, then X+
ns(p) has a non-CM rational point.
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Proof. Let u be an automorphism of Xns(p) defined over Q. By Corol-

lary 2.9 we have that u commutes with w and it induces an automorphism

of X+
ns(p) defined over Q. Then it is enough to prove that u preserves the

rational CM points of X+
ns(p) only if u is modular. Let π :Xns(p)→X+

ns(p)

be the degree-2 modular morphism given by the inclusion of a nonsplit

Cartan subgroup in its normalizer, and let Q be a rational CM point of

X+
ns(p). Note that the two points in π−1(Q) are defined over the CM field

of the elliptic curve associated to Q (see [Ser89, p. 194–195]). Hence uQ

cannot be a rational CM point different from Q because the two points

in π−1(uQ) are defined over the same field as the points in π−1(Q). Now

we observe that the elliptic points of Xns(p) are the inverse images by π

of the rational CM points associated to the elliptic curves with j-invariant

equal to 0 or 1728 (see [Bar10, Proposition 7.10]). Thus, if u preserves the

rational CM points of X+
ns(p), then it preserves the elliptic points of Xns(p).

Furthermore, u also preserves the cusps by Theorem 5.2, hence it is modular

by Corollary 3.3.
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