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Abstract Let G(n) be equal to either PO(n,1),PU(n,1) or PSp(n,1) and let Γ ≤ G(n) be a uniform
lattice. Denote by Hn

K the hyperbolic space associated to G(n), where K is a division algebra over the
reals of dimension d. Assume d(n−1)≥ 2.

In this article we generalise natural maps to measurable cocycles. Given a standard Borel probability
Γ-space (X,μX), we assume that a measurable cocycle σ : Γ×X → G(m) admits an essentially unique
boundary map φ : ∂∞Hn

K×X → ∂∞Hm
K whose slices φx :Hn

K →Hm
K are atomless for almost every x ∈X.

Then there exists a σ-equivariant measurable map F : Hn
K×X → Hm

K whose slices Fx : Hn
K → Hm

K are
differentiable for almost every x ∈X and such that JacaFx ≤ 1 for every a ∈Hn

K and almost every x∈X.
This allows us to define the natural volume NV(σ) of the cocycle σ. This number satisfies the inequality
NV(σ) ≤ Vol(Γ\Hn

K). Additionally, the equality holds if and only if σ is cohomologous to the cocycle
induced by the standard lattice embedding i : Γ → G(n) ≤ G(m), modulo possibly a compact subgroup
of G(m) when m> n.

Given a continuous map f : M → N between compact hyperbolic manifolds, we also obtain an
adaptation of the mapping degree theorem to this context.

Key words and phrases: uniform lattice, Zimmer cocycle, boundary map, natural map, Jacobian, mapping

degree
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1. Introduction

Let (M,g) be a compact Riemannian n-manifold which admits a locally symmetric

Riemannian metric g0. The minimal entropy conjecture states that the functional given

by the volume entropy suitably rescaled by the volume of g – that is, (hvol(g))
nVol(M,g) –

is minimised uniquely by the locally symmetric structure(s) on M, up to a possible

homothety ([32]). A positive answer for surfaces is given by Besson, Curtois and Gallot [5],

but in this case one has to notice that there exist infinitely many inequivalent hyperbolic
structures. On the contrary, when n≥ 3, there exists a unique locally symmetric structure

on a compact manifold of rank 1. For those, a proof of the conjecture is given by Besson,
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Courtois and Gallot [6, 7, 8] with the introduction of the so-called natural maps, whereas

in the higher rank case the conjecture is still open.

Natural maps revealed a very powerful tool and, for this reason, they have been used
in the study of many other different problems. For instance Boland, Connell and Souto

[10] applied them to the study of volume rigidity of nonuniform real hyperbolic lattices.

Another example was given by Francaviglia and Klaff. In [25, 24] the authors exploited
the notion of natural map to study the rigidity of representations of real hyperbolic

lattices. Given a torsion-free lattice Γ≤ PO◦(n,1) and a representation ρ : Γ→ PO(m,1)

with m≥ n≥ 3, they showed the existence of a smooth ρ-equivariant map F :Hn
R
→H

m
R

which satisfies JacaF ≤ 1 for every a ∈ H
n
R
. Additionally, when Γ is nonuniform, they

introduced a family of differentiable maps F ε :Hn
R
→H

m
R

depending on ε > 0, which are

still ρ-equivariant, properly ending and satisfy JacaF
ε ≤ (1+ ε) for every a ∈ H

n
R
(the

properly ending property can be interpreted as a compatibility condition of the map on
the peripheral subgroups of Γ). The constructions described above allow the introduction

of the notion of volume Vol(ρ) of the representation ρ by considering the infimum over all

possible volumes Vol(D), where D is a smooth ρ-equivariant map (which properly ends
in the nonunifom case).

Volume of representations remains unchanged under the conjugation by an element

g ∈PO(m,1) and it satisfies a Milnor–Wood type inequality. Indeed, we have that Vol(ρ)≤
Vol(Γ\Hn

R
) and the equality is attained if and only if the representation is conjugated by

an element of PO(m,1) to the standard lattice embedding i : Γ → PO(n,1) ≤ PO(m,1),

modulo possibly a compact subgroup when m>n. Here PO(n,1) is realised as a subgroup

of PO(m,1) via the upper-left corner embedding.
Notice that when n = m = 3 the volume of a representation coincides with the

definition given independently by Dunfield [20] and by Francaviglia [23] in terms of

pseudo-developing maps (both definitions generalise the notion of volume of a hyperbolic
structure reported, for instance, in [40]). It is worth mentioning that similar rigidity

results have been obtained by Bucher, Burger and Iozzi [12] in the case n=m. However,

their approach to the problem is completely different and their definition of volume of
representations relies on the study of the bounded cohomology groups of PO(n,1).

In the context of rank-1 torsion-free lattices, similar questions have been studied for

complex and quaternionic lattices. Given a nonuniform torsion-free lattice Γ ≤ PU(n,1)

and a representation ρ : Γ→PU(m,1) with m≥ n≥ 2, Koziarz and Maubon [34] proved a
rigidity result analogous to the one described above but using the theory of harmonic

maps. In [13] Burger and Iozzi obtained the same statement for both uniform and

nonuniform lattices using jointly bounded cohomology and L2-cohomology. Regarding
the study of quaternionic lattices, it is worth mentioning the superrigidity result that

Corlette obtained in [17].

Recently the author has shown in [26, 44] a stronger rigidity phenomenon for the volume
function. Indeed, volume of representations of any rank-1 torsion-free nonuniform lattice

is rigid at the ideal points of the character variety. For instance, if Γ is a torsion-free

nonuniform real hyperbolic lattice, the character variety X(Γ,PO(m,1)) is an algebraic

set of positive dimension and a divergent sequence of representations cannot eventually
maximise the volume. The same result can be suitably adapted to the context of complex
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and quaternionic lattices. To sum up, one could say that for rank-1 torsion-free lattices
the volume of representations is asymptotically rigid.

As already noted, the minimal entropy conjecture is still open in the higher rank case.

However, it is worth mentioning some efforts which move towards the direction of a
proof. In [16] Connell and Farb succeeded in extending the construction of natural maps

to lattices in products of rank-1 Lie groups of noncompact type. The key point is that

they proved an estimate on the Jacobian of the natural map which is still sharp. Similarly,

they obtained a uniform, but not sharp, Jacobian estimate for more general higher rank
symmetric spaces ([15]).

Other interesting applications of natural maps have been found for foliations of

Riemannian manifolds with locally symmetric negatively curved leaves ([9]) and for
Finsler/Benoist manifolds ([11, 1, 46]).

In this article, we want to extend the notion of natural map to the setting of Zimmer’s

cocycles theory in order to study rigidity phenomena. Recently this kind of study has
been developed by the author and Moraschini using the theory of bounded cohomology

(see, for instance, [47, 45, 36, 37]). Here we want to give a differentiable approach to

this subject. More precisely, denote by G(n) either PO(n,1),PU(n,1) or PSp(n,1) and let

Γ ≤ G(n) be a torsion-free uniform lattice. Since it is well-known that the Riemannian
symmetric space associated to G(n) is a hyperbolic space on a suitable division algebra K,

we denote it by H
n
K. If we denote by d=dimRK the real dimension of the division algebra

K, we will need to assume d(n− 1) ≥ 2. Fix now a standard Borel probability Γ-space
(X,μX) without atoms. Supposem≥n and consider a Zimmer’s cocycle σ : Γ×X →G(m)

with an essentially unique σ-equivariant measurable map φ : ∂∞H
n
K×X → ∂∞H

m
K . The

boundary map φ allows us to define for almost every x∈X the slice φx : ∂∞H
n
K → ∂∞H

m
K

given by φx(ξ) := φ(ξ,x). Notice that for almost every x ∈X the slice φx is measurable

since X is standard Borel ([22, Lemma 2.6]). Supposing that for almost every slice φx the

push-forward of the Patterson–Sullivan measure is atom-free (hence the slice is atomless),

we can apply the barycenter construction to get the desired natural map. In this way we
obtain the following.

Theorem 1.1. Let G(n) be either PO(n,1),PU(n,1) or PSp(n,1) and denote by H
n
K the

associated hyperbolic space over the division algebra K of dimension d = dimRK. Let
Γ ≤ G(n) be a torsion-free uniform lattice and fix (X,μX) a standard Borel probability

Γ-space. Suppose d(n− 1) ≥ 2 and take m ≥ n. Given a measurable cocycle σ : Γ×X →
G(m), assume there exists an essentially unique boundary map φ : ∂∞H

n
K×X → ∂∞H

m
K

with atomless slices. Then there exists a measurable map F : Hn
K×X → H

m
K which is σ-

equivariant. Additionally, for almost every x ∈X the slice Fx :Hn
K →H

m
K is smooth and

we have

JacaFx ≤ 1

for every a∈H
n
K. The equality is attained if and only if the map DaFx : TaH

n
K → TFx(a)H

m
K

is an isometric embedding.

Since the map F :Hn
K×X →H

m
K is a clear generalisation of the natural map defined by

Besson, Courtois and Gallot to the context of Zimmer’s cocycles, we are going to say that
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F is the natural map associated to the cocycle σ. Even if the condition on the slices of
the boundary map may seem quite restrictive, natural maps exist for measurable cocycles

coming from couplings, as shown by Bader, Furman and Sauer [4, Lemma 3.6] and by

the author [48, Lemma 3.1].
We are also going to define the notion of volume associated to σ. Our definition will

differ from the one given by Francaviglia and Klaff for representations. Indeed, here we are

going to concentrate our attention only to the natural map associated to a fixed cocycle,

without taking any infimum over all possible volumes of equivariant maps.
Given any σ-equivariant measurable map Φ : Hn

K×X → H
m
K with differentiable slice

Φx : Hn
K → H

m
K for almost every x ∈ X, we can consider the volume form associated to

the pullback metric (ωx)a(u1, . . . ,up) :=
√

detgm(DaΦx(ui),DaΦx(uj)), where u1, . . . ,up ∈
TaH

n
K and gm is the standard Riemannian metric on H

m
K . When Φ satisfies the essential

boundedness condition, we obtain a measurable family of differential forms {ωx}x∈X on

H
n
K (see Section 4). Hence, by considering its integral over X, we obtain a differential form

on H
n
K which is Γ-invariant by the equivariance of the map Φ. Thus, we have a differential

form on Γ\Hn
K and we can take its integral. This number will be the volume associated to

the measurable map Φ. If we specialise to the case of the natural map, which is essentially

bounded, we call it the natural volume NV(σ) of σ.
Clearly, the natural volume of a cocycle will be invariant by the conjugation action of

G(m) on the space of cocycles. Moreover, this volume satisfies a Milnor–Wood inequality

type similar to the one obtained by Bucher, Burger and Iozzi [12] for representations, by
Bader, Furman and Sauer [4] for self-couplings and by the author and Moraschini [36, 37]

for cocycles. Notice that the result obtained in [36] is valid for n =m, whereas here we

can also consider the case m> n.
The Milnor–Wood inequality obtained here will be crucial to prove the following rigidity

result.

Theorem 1.2. Let G(n) be either PO(n,1),PU(n,1) or PSp(n,1) and denote by H
n
K the

associated hyperbolic space over the division algebra K of dimension d = dimRK. Let
Γ≤G(n) be a torsion-free uniform lattice and fix (X,μX) a standard Borel probability Γ-

space. Suppose d(n−1)≥ 2 and take m≥n. Given a measurable cocycle σ : Γ×X →G(m),

assume there exists an essentially unique boundary map φ : ∂∞H
n
K×X → ∂∞H

m
K with

atomless slices. Then

NV(σ)≤Vol(Γ\Hn
K)

and the equality holds if and only if σ is cohomologous to the cocycle induced by the

standard lattice embedding i : Γ→ G(n) ≤ G(m), modulo possibly a compact subgroup of

G(m) when m> n. Here G(n) is realised into G(m) via the upper-left corner embedding.

First notice that for both Theorem 1.1 and Theorem 1.2 the hypothesis of uniformity of

the lattice Γ is not crucial. Hence, the same results can also be generalised to nonuniform

lattices. A suitable variation of Theorem 1.2 has been exploited by the author [48] to
show that the group PU(n,1) is 1-taut in the sense of Bader, Furman and Sauer [4].

That problem was an open conjecture whose proof allows us to classify finitely generated

groups that are integrable measure equivalent to a complex hyperbolic lattice.
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The proof of Theorem 1.2 relies on the sharpness on the estimate of the Jacobian of
the slices of F. More precisely, one can see that if the volume of σ is maximal, then

for almost every x ∈X the Jacobian must satisfy JacaFx = 1 for almost every a ∈ H
n
K.

In particular, the slice Fx coincides essentially with a totally geodesic embedding and
hence it is essentially equal to an element Fx = f(x) ∈ G(m). In this way, we obtain a

map f :X →G(m) whose measurability is guaranteed by [22, Lemma 2.6]. We conclude

the proof applying the strategy exposed in [4, Proposition 3.2] and adding a measurable

function into a compact subgroup of G(m), when m> n.
The notion of volume is also useful to study the mapping degree of continuous maps

between closed hyperbolic manifolds of the same dimension. The mapping degree theorem,

first stated by Kneser [33] for surfaces and then extended by Thurston [50] in the higher
dimensional case, states that given a continuous map f : M → N between closed real

hyperbolic manifolds of the same dimension, it must hold that

|deg(f)| ≤ Vol(M)

Vol(N)
.

Additionally, the strict version [50, Theorem 6.4] of the theorem characterises local

isometries as those maps satisfying the equality.

Several proofs of the mapping degree theorem have been given so far. For instance,
Thurston [50] and Gromov [31] used 	1-homology and the notion of simplicial volume.

Besson, Courtois and Gallot [6, 7, 8] obtained a proof based on their concept of natural map

(generalised later by Connell and Farb [16, 15] to the higher rank case). For real hyperbolic
manifolds, it is worth mentioning the approach of Bucher, Burger and Iozzi [12] based on

the study of bounded cohomology groups of PO(n,1). Similarly, the author and Moraschini

[36] obtained an analogous proof by studying the notion of maximal Zimmer cocycles.
The interest in the relation between the mapping degree of continuous maps and the

volume of manifolds led to a rich and fruitful literature [35, 38, 39, 27]. Derbez et al. [18,

Proposition 3.1] were able to express the volume of the pullback of a representation ρ

along a continuous map f as the product of the mapping degree of f with the volume of ρ.
The same has been done in [36] in the case of maximal cocycles. Here we want to generalise

this result to the context of measurable maps with smooth slices which are equivariant

with respect to a fixed measurable cocycle. Given a continuous map f : M → N and
a measurable equivariant map Φ : Hn

K×X → H
m
K , one can suitably define the notion of

pullback map f∗Φ along the continuous map f (see Section 5). Then we have the following

version of the mapping degree theorem.

Proposition 1.3. Let Γ,Λ≤G(n) be two torsion-free uniform lattices. Set M = Γ\Hn
K,

N = Λ\Hn
K and let f : M → N be a continuous map with nonvanishing degree. Fix a

standard Borel probability Λ-space (X,μX) and consider a measurable cocycle σ : Λ×
X →G(m). Given any measurable σ-equivariant map Φ : Hn

K×X →H
m
K with essentially

bounded smooth slices, we have that

|deg(f)| ≤ Vol(f∗Φ)

Vol(Φ)
.

Additionally, if f is homotopic to a local isometry, then the equality is attained.
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The proof of the latter statement will rely essentially on both the co-area formula and
on Thurston’s strict version of mapping degree theorem. If in the previous proposition

we consider the particular case when Φ is the natural map associated to σ, then we get

an inequality which relates the volume of f∗Φ and the natural volume of σ; that is,

|deg(f)| ≤ Vol(f∗Φ)

NV(σ)
.

It is worth noticing that a priori we do not know if f∗Φ is the natural map associated

to f∗σ, so we cannot push any further our reasoning. Nevertheless, the above estimate
allows us to characterise maps homotopic to local isometries in terms of naturally

maximal cocycles; that is, cocycles with maximal natural volume (compare with [36,

Proposition 1.3]).

Plan of the article

Section 2 is devoted to recall the main definitions and results that we will need in the

article. More precisely, in Subsection 2.1 we briefly recall Zimmer’s cocycles theory.

We move then to the definition of barycenter for atom-free probability measures on
the boundary at infinity ∂∞H

n
K, described in Subsection 2.2. Then in Subsection 2.3

we expose the notion of the Patterson–Sullivan density associated to a lattice and the

construction of the Besson–Courtois–Gallot natural map. The crucial definition of natural

map associated to a Zimmer cocycle appears in Section 3, where we also discuss all of its
properties. We show that it can be suitably interpreted as a generalisation of the natural

map for representations (Proposition 3.3). Additionally, we show how natural maps vary

along the G(m)-cohomology class (Proposition 3.4).
We move to Section 4. Here we introduce the notion of volume of a measurable

equivariant map with essentially bounded differentiable slices and subsequently the notion

of natural volume of measurable cocycles (see Definitions 4.1 and 4.3). Then the main
rigidity result is proved.

We conclude with Section 5, where we prove our version of mapping degree theorem;

some comments about natural volume and naturally maximal cocycles follow.

2. Preliminary definitions and results

In this section we are going to recall briefly all of the notions we will need in the article
in order to define the natural map associated to a Zimmer cocycle. For this reason,

we first discuss the notion of measurable cocycle and we will see how representation

theory fits into this wider context. Then we focus our attention on some elements
of boundary theory, in particular on the notion of generalised boundary map. We

conclude this digression by talking about the Patterson–Sullivan measures and the

barycenter construction. We will need both to construct our natural map. Indeed,
we are going to apply the barycenter to the push-foward of the Patterson–Sullivan

measures with respect to the slices of the boundary map associated to a measurable

cocycle.
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2.1. Zimmer’s cocycle theory

For the material in the following section we mainly refer to the work of both Furstenberg

[29, 30] and Zimmer [52].

Let G,H be two locally compact second countable groups endowed both with their

natural Haar measure. Consider a standard Borel measure space (X,μ) on which G acts
via measure-preserving transformations. We are going to call the space (X,μ) satisfying

the hypothesis above a standard Borel measure G-space. If additionally (X,μ) is a

probability space without atoms, we are going to say that (X,μ) is a standard Borel
probability G-space.

Given another measure space (Y ,ν), we are going to denote by Meas(X,Y ) the space

of measurable functions from X to Y, endowed with the topology of the convergence in
measure.

Definition 2.1. Let σ : G×X →H be a measurable function. We call σ a measurable

cocycle (or Zimmer cocycle or simply cocycle) if the associated map

σ :G→Meas(X,H), g �→ σ(g,·),

is continuous and it holds that

σ(g1g2,x) = σ(g1,g2.x)σ(g2,x) (1)

for every g1,g2 ∈G and almost every x ∈X.

In the previous definition we preferred to stress the action of G on X using the dot,

but from now on we will omit this symbol.
At first sight the notion of measurable cocycle might seem quite mysterious to the

reader who is not familiar with this theory. One could interpret Equation (1) either as

a suitable generalisation of the chain rule for derivatives or as the classic Eilenberg–
MacLane condition for Borel 1-cocycle (see [21, 53]). The latter interpretation comes

from viewing the cocycle as an element σ ∈Meas(G,Meas(X,H)). Following the line of

this interpretation, it is natural to also define the notion of cohomologous cocycles.

Definition 2.2. Let σ1,σ2 :G×X →H be two measurable cocycles and let f :X →H
be a measurable function. Then the cocycle defined by

σf :G×X →H, σf (g,x) := f(gx)−1σ(g,x)f(x), (2)

is the twisted cocycle associated to σ and f. The two cocycles σ1 and σ2 are cohomologous

(or equivalent) if

σ2 = σf
1

for some measurable function f :X →H.

Measurable cocycles are quite ubiquitous in mathematics. Indeed, one can find them

in several different contexts, such as differential geometry (the differentiation cocycle; see
[52, Example 4.2.2]) or measure theory (the Radon–Nikodym cocycle; see [52, Example

4.2.3]). In our case, we are going to focus on a large family of cocycles coming from

representation theory.
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Definition 2.3. Let ρ : G → H be a continuous representation and let (X,μ) be any

standard Borel measure G-space. We define the cocycle associated to the representation

ρ as follows:

σρ :G×X →H, σρ(g,x) := ρ(g),

for every g ∈G and almost every x ∈X.

From the definition it should be clear that any continuous representation naturally
determines a measurable cocycle once we have fixed a suitable standard Borel measure

G-space. Notice that even if the variable x ∈X does not arise in the definition above, the

cocycle σρ actually depends on both the representation ρ and the space X. Nevertheless,

we prefer to omit the latter dependence to avoid a heavy notation. Notice also that when
G is a discrete group, any representation is continuous and hence we can always define

an associated measurable cocycle.

Another key tool we will need later is the concept of boundary map associated to
a measurable cocycle. Here we are going to introduce directly the notion of generalised

boundary map, even if we will not need it in its full generality. Assume first that G admits

a Furstenberg–Poisson boundary B(G) (see [28] for a precise definition). A well-known
example of this situation is when G is a center-free semisimple Lie group without compact

factors. In this case the Furstenberg–Poisson boundary B(G) can be identified with the

homogeneous space G/P , where P ≤G is any minimal parabolic subgroup. If we denote

by XG the Riemannian symmetric space associated to G, then usually the Furstenberg–
Poisson boundary B(G) is strictly contained in the boundary at infinity ∂∞XG. However,

when G has real rank 1, the two coincide since it holds that

codim∂∞XG
B(G) = rankR(G)−1.

Endow now B(G) with its natural Borel structure coming from the Haar sigma-algebra
on G and suppose that H acts measurably on a compact completely metrisable space Y.

Definition 2.4. Let σ : G×X → H be a measurable cocycle. A measurable map φ :
B(G)×X → Y is σ-equivariant if it holds that

φ(gξ,gx) = σ(g,x)φ(ξ,x)

for all g ∈ G and almost every ξ ∈ B(G) and x ∈ X. A generalised boundary map (or

simply boundary map) is the datum of a measurable map φ which is σ-equivariant.

The existence and the uniqueness of boundary maps for a measurable cocycle σ

usually rely on the properties of the cocycle. For instance, the proximality of the cocycle

guarantees the existence of such a map. We are not going to define proximality here and
we refer the reader to [30] for a detailed exposition.

Since we introduce the notion of cohomologous cocycles, it is natural to show how

boundary maps change along the H -cohomology class of a fixed cocycle.
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Definition 2.5. Let σ :G×X →H be a measurable cocycle with (generalised) boundary

map φ :B(G)×X→Y . Let f :X→H be a measurable map. The boundary map associated

to the twisted cocycle σf is given by

φf :B(G)×X → Y , φf (ξ,x) = f(x)−1φ(ξ,x),

for almost every ξ ∈B(G) and x ∈X.

We conclude this section by introducing the notion of slice associated to a boundary
map. We will need this definition since we are going to assume the atomless property of

the slices of a boundary map in order to construct our natural map.

Definition 2.6. Let σ :G×X →H be a measurable cocycle and let φ : B(G)×X → Y

be a (generalised) boundary map. For almost every x ∈X we define the slice associated

to the point x as follows:

φx :B(G)→ Y , φx(ξ) := φ(ξ,x),

for almost every ξ ∈B(G).

By the equivariance of the map φ the slices are related by the following equation:

φgx(g · ) = σ(g,x)φx(·) (3)

for every g ∈G and almost every x ∈X.

It is worth noticing that for almost every x ∈ X the slice φx is measurable. Indeed,
since we assumed that X is a standard Borel space, we know that the function φ̂ :X →
Meas(B(G),Y ), φ̂(x) := φx, is well-defined and measurable by [22, Lemma 2.6].

2.2. Barycenter of a probability measure

In this section we are going to recall the barycenter construction introduced by Douady

and Earle in their paper [19]. As in the classic case of Besson, Courtois and Gallot, this

machinery will be crucial to constructing our natural map.

Before giving the definition of the barycenter, we first need to recall the notion of
Busemann function. Let b ∈ H

n
K a fixed basepoint. The Busemann function pointed at b

is the function given by

βb :H
n
K×∂∞H

n
K → R, βb(a,ξ) := lim

t→∞
d(a,c(t))−d(b,c(t)),

where c : [0,∞)→H
n
K is a geodesic ray starting at c(0) = b and ending at ξ. The distance

d is the one induced by the standard Riemannian structure on the hyperbolic space H
n
K.

Fix now a basepoint o ∈ H
n
K. By an abuse of notation we will use the same symbol for

the basepoint o in hyperbolic spaces of different dimensions. We are going to denote by

βo(x,ξ) the Busemann function pointed at the basepoint o ∈H
n
K.

Given any topological space X, denote by M1(X) the space of positive probability
measures on X. Consider now any positive probability measure ν ∈M1(∂∞H

n
K) on the

boundary at infinity of the hyperbolic space. For our purposes, it will be sufficient to

consider the case when ν does not contain any atom. A crucial property of Busemann
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functions is given by their convexity (see [42, Chapter 8]). Using this property we get

immediately that the function

Λν :Hn
K → R, Λν(x) :=

∫
∂∞H

n
K

βo(x,ξ)dν(ξ)

is convex. Moreover, since the following condition holds,

lim
x→∂∞H

n
K

Λν(x) =∞,

the function Λν attains its minimum inside H
n
K. The uniqueness of such minimum is

guaranteed by the fact that ν does not have any atom. We refer the reader to either [6,

Appendix A] or [8, Proposition 3.7].

Definition 2.7. Let ν ∈M1(∂∞H
n
K) be a positive probability measure which does not

contain any atom. The barycenter of the measure ν is defined as

barB(ν) := argmin(Λν).

Notice that the subscript B we used in the definition emphasises the dependence of the

barycenter construction on the Busemann functions.

Under the assumptions we made on the probability measure ν, its barycenter barB(ν)
will be a point in H

n
K which satisfies the following properties:

(i): the barycenter is continuous with respect to the weak-∗ topology on the space

M1(∂∞H
n
K). More precisely, if νk → ν in the weak-∗ topology, it holds that

lim
k→∞

barB(νk) = barB(ν)

(ii): the barycenter is G(n)-equivariant. Recall first that G(n) is the isometry group of
the Riemannian symmetric space H

n
K. Then for every g ∈G(n) we have that

barB(g∗ν) = gbarB(ν)

for every ν ∈M1(∂∞H
n
K). The symbol g∗ν stands for the push-forward measure

of ν with respect to the isometry g ;

(iii): the barycenter satisfies an implicit equation given by∫
∂∞H

n
K

dβo|(barB(ν),ξ)(·)dν(ξ) = 0, (4)

where ν ∈M1(∂∞H
n
K) and dβo denotes the differential of the Busemann function

pointed at o ∈H
n
K. This property will be crucial to proving the smoothness of the

slices of our natural map and to obtaining the estimate on the Jacobian.

2.3. Family of Patterson–Sullivan measures and BCG natural map

In this section we are going to recall the definition of Patterson–Sullivan measures and the

notion of natural map associated to a representation. We refer the reader to [6, 7, 8, 25, 24]

for a more detailed exposition about these notions.

https://doi.org/10.1017/S1474748021000475 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000475


Natural maps for zimmer’s cocycles 431

Let G(n) be equal to either PO(n,1),PU(n,1) or PSp(n,1). It is well-known that the

Riemannian symmetric space associated to the rank 1 Lie group G(n) is the hyperbolic

space H
n
K on a suitable division algebra K. More precisely, we have that K =R if G(n) =

PO(n,1), K = C if G(n) = PU(n,1) and K = H if G(n) = PSp(n,1). In all of these cases,

we are going to normalise the Riemannian metric on H
n
K so that the sectional curvature

has maximum value equal to −1. Denote by d= dimRK and assume that d(n−1)≥ 2.
Fix now a torsion-free (uniform) lattice Γ≤G(n).

Definition 2.8. Let x∈H
n
K be any point and let s > 0 be a real number. The s-Poincaré

series pointed at x is given by the following sum:

P(s;x) :=
∑
γ∈Γ

e−sd(γx,x),

where d stands for the distance induced by the fixed Riemannian structure on the space

H
n
K. The critical exponent associated to the lattice Γ is defined as

δΓ := inf{s > 0|P(s;x)<∞}.

The definition of critical exponent does not depend on the choice of the particular point

x ∈H
n
K we fixed.

The critical exponent associated to a torsion-free (uniform) lattice in a rank-1 Lie group

is always finite and equal to

δΓ = d(n+1)−2,

as shown, for instance, in [2, Theorem 2]. We remind the reader that when s = δΓ the
Poincaré series P(s;x) diverges – that is, P(δΓ;x) =+∞ [49, 14, 51] – and for this reason

we call Γ a group of divergence type.

Now we are ready to give the definition of Patterson–Sullivan measures. This notion

fits into a more general concept of conformal density.

Definition 2.9. Let Γ ≤ G(n) be a torsion-free (uniform) lattice. Fix a positive real
number α > 0. An α-conformal density for the lattice Γ is a measurable map

ν :Hn
K →M1(∂∞H

n
K), ν(a) := νa,

which satisfies the following conditions:

(i): it is Γ-equivariant; that is, νγa = γ∗νa for every γ ∈Γ and every a∈H
n
K. The symbol

γ∗ stands for the push-forward measure with respect to γ.

(ii): given two different points a,b ∈H
n
K, the measure νa is absolutely continuous with

respect to νb and the Radon–Nikodym derivative is given by

dνa
dνb

(ξ) = e−αβb(a,ξ),

where ξ ∈ ∂∞H
n
K and βb(a,ξ) is the Busemann function pointed at b.

When α is equal to the critical exponent δΓ, the δΓ-conformal density associated to Γ is

called the Patterson–Sullivan density.
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Given a lattice Γ≤G(n), there always exists a Patterson–Sullivan density associated to

it. Moreover, it is essentially unique by the doubly ergodic action of Γ on the boundary

at infinity ∂∞H
n
K (see, for instance, [49, 41, 14, 43, 24]). It is worth mentioning that the

construction of the Patterson–Sullivan density has been extended by Albuquerque [2, 3]

to higher rank lattices in a semisimple Lie group G of noncompact type. In the higher

rank case the support of the measures is strictly smaller than the boundary at infinity
of symmetric space XG associated to G. Indeed, the support can be identified with the

Furstenberg–Poisson boundary B(G) (see Subsection 2.1 for the definition).

We conclude the section by recalling briefly the construction of the natural map
associated to a representation. This can help the reader to understand how we are going

to adapt the construction to the case of measurable cocycles. Let Γ≤G(n) be as above

and consider ρ : Γ→G(m) a non-elementary representation, with d(n−1)≥ 2 and m≥ n.

Denote by {νa}a∈H
n
K
the Patterson–Sullivan density of measure (actually its image).

Since the representation ρ is non-elementary, by [14, Corollary 3.2] there exists a

measurable ρ-equivariant map

ϕ : ∂∞H
n
K → ∂∞H

m
K .

Additionally, this map is essentially injective by both [26, Lemma 2.3] and [44, Lemma

2.5]. This implies that for almost every a ∈ H
n
K the push-forward measure ϕ∗(νa) has

no atom. This condition allows us to define the Besson–Courtois–Gallot natural map

associated to ρ.

Definition 2.10. Let Γ ≤ G(n) be a (uniform) lattice and let ρ : Γ→ G(m) be a non-

elementary representation, with d(n− 1) ≥ 2 and m ≥ n. If ϕ : ∂∞H
n
K → ∂∞H

m
K is the

associated measurable map, we define the natural map associated to ρ as follows:

F :Hn
K →H

m
K , F (a) := barB(ϕ∗(νa)).

The map defined above is smooth and ρ-equivariant; that is, F (γa) = ρ(γ)F (a) for every
a ∈H

n
K. For every positive integer p ∈ N, we define the p-Jacobian of F at a as

JacpaF := max
u1,...,up∈TaH

n
K

‖DaF (u1)∧·· ·∧DaF (up)‖m,

where {u1, . . . ,up} is an orthonormal p-frame on the tangent space TaH
n
K with respect

to the standard Riemannian metric gn and ‖ · ‖m stands for the norm induced by gm.

When p= n ·d – that is, it is equal to the real dimension of Hn
K – we are going to denote

the p-Jacobian simply by JacaF . For the natural map F :Hn
K →H

m
K it holds that

JacaF ≤ 1

for every a ∈ H
n
K and the equality is attained if and only if the map DaF : TaH

n
K →

TF (a)H
m
K is an isometric embedding (see [6, Lemma 7.2] for a proof of the inequality and

[6, Appendix B] for the study of the equality case).
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Since the natural map is defined using the barycenter and the latter satisfies Equation
(4), in this context one can verify that it holds that∫

∂∞H
n
K

dβo|(F (a),ϕ(ξ))( · )dνa(ξ) = 0. (5)

By differentiating the previous equation, for every a ∈ H
n
K ,u ∈ TaH

n
K ,v ∈ TF (a)H

m
K one

obtains that ∫
∂∞H

n
K

∇dβo|(F (a),ϕ(ξ))(DaF (u),v)dνa(ξ) =

= δΓ

∫
∂∞H

n
K

dβo|(F (a),ϕ(ξ))(v)dβo|(a,ξ)(u)dνa(ξ). (6)

Here ∇ is the Levi–Civita connection associated to the natural Riemannian metric on

H
m
K . We warn the reader that the Busemann functions that appear in the second line of

the equation above refer to hyperbolic spaces of different dimensions (the first is defined

on H
m
K and the second one on H

n
K).

3. Natural maps associated to Zimmer cocycles

In this section we are going to define the natural map associated to a measurable cocycle

of a uniform hyperbolic lattice. The key point in the construction will be to consider
measurable cocycles which admit a boundary map whose slices are atomless; that is, the

push-forward of the Patterson–Sullivan measure has no atom. This assumption will allow

us to mimic the techniques used for non-elementary representations.

Proof of Theorem 1.1. Given x ∈X, consider

φx : ∂∞H
n
K → ∂∞H

m
K ,

the slice of the boundary map φ. For any a∈H
n
K, let νa be the Patterson–Sullivan measure

pointed at a. If we consider the push-forward measure (φx)∗(νa), this has no atoms by

assumption. Hence, we can apply the barycenter to define our desired map. More precisely,

define

F :Hn
K×X →H

m
K , F (a,x) := barB((φx)∗(νa)), (7)

for every a ∈H
n
K and almost every x ∈X.

Clearly, the map F is well-defined by what we have said so far. Now we prove the

σ-equivariance. Notice first that for almost every x ∈ X we have a map Fx : Hn
K → H

m
K

given by Fx(a) := F (a,x). We call this map the x-slice of the map F. Additionally, we
can suppose that the full-measure subset of X on which the slices of F are defined is

Γ-invariant. Hence, given γ ∈ Γ, it holds that

F (γa,γx) =barB((φγx)∗(νγa)) =

=barB((φγx)∗(γ∗νa)) =

=barB(σ(γ,x)∗((φx)∗(νa))) =

=σ(γ,x)barB((φx)∗(νa)) = σ(γ,x)F (a,x),
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for every a ∈H
n
K and almost every x ∈X. To pass from the first line to the second one we

used the Γ-equivariance of the Patterson–Sullivan density and to move from the second

line to the third one we exploited Equation (3). To conclude we used the fact that the

barycenter is G(m)-equivariant. The previous computation shows the σ-equivariance of
the map F, as desired.

Since the barycenter is characterised by the implicit Equation (4), for almost every

x ∈X we have that the slice Fx satisfies the equation∫
∂∞H

n
K

dβo|(Fx(a),φx(ξ))(·)dνa(ξ) = 0 (8)

for every a ∈H
n
K. By differentiating with respect to the variable a the previous equation,

for almost every x ∈X and every a ∈H
n
K ,u ∈ TaH

n
K ,v ∈ TFx(a)H

m
K we obtain that∫

∂∞H
n
K

∇dβo|(Fx(a),φx(ξ))(DaFx(u),v)dνa(ξ) =

= δΓ

∫
∂∞H

n
K

dβo|(Fx(a),φx(ξ))(v)dβo|(a,ξ)(u)dνa(ξ), (9)

where ∇ is the Levi–Civita connection on H
m
K . Applying the same reasoning of Besson,

Courtois and Gallot exposed in [6, 7] to the equation above one gets that the slice Fx :

H
n
K →H

m
K is smooth for almost every x ∈X, as claimed.

We want to conclude by proving the estimate on the Jacobian of Fx. Fix an x for

which the slice Fx is smooth. Recall that, for every a∈H
n
K, we are allowed to define three

quadratic forms, one on the tangent space TaH
n
K and two on the tangent space TF (a)H

m
K .

More precisely, given u ∈ TaH
n
K and v ∈ TFx(a)H

m
K we define

h′
a,x(u,u) := 〈H ′

a,x(u),u〉n =

∫
∂∞H

n
K

(
dβo|(a,ξ)(u)

)2
dνa(ξ),

ha,x(v,v) := 〈Ha,x(v),v〉m =

∫
∂∞H

n
K

(
dβo|(Fx(a),φx(ξ))

)2
dνa(ξ),

ka,x(v,v) := 〈Ka,x(v),v〉m =

∫
∂∞H

n
K

∇dβo|(Fx(a),φx(ξ))(v,v)dνa(ξ).

Here H ′
a,x,Ha,x and Ka,x are the endomorphisms associated to the symmetric bilinear

forms with respect to the scalar product 〈·,·〉n (respectively 〈·,·〉m) associated to the

natural Riemannian metric on H
n
K (respectively H

m
K). It is worth noticing that both ha,x

and h′
a,x are positive semidefinite bilinear forms; thus, we are allowed to consider their

square roots. As a consequence, applying the Cauchy–Schwarz inequality as in [8, Section

2] to Equation (9), we get

ka,x(DaFx(u),v)≤ δΓ (ha,x(v,v))
1
2 (h′

a,x(u,u))
1
2 . (10)

Let Va,x :=DaFx(TaH
n
K) be the image of the tangent space through the derivative at a

of the slice Fx. Denote by hV
a,x,k

V
a,x the restrictions of the bilinears forms ha,x,ka,x to the
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subspace V. Let HV
a,x,K

V
a,x be the associated endomorphisms. Set p= d ·n. By taking the

determinant of Equation (10), one gets the following sequence of estimates:

det(KV
a,x)JacaFx ≤ (δΓ)

p
(
detHV

a,x

) 1
2
(
detH ′

a,x

) 1
2 ≤

≤ (δΓ)
p
(
detHV

a,x

) 1
2
(
trH ′

a,x/p
) p

2 ≤

≤ p−
p
2 · (δΓ)p

(
detHV

a,x

) 1
2 .

It is worth noticing that the estimate above depends on a suitable choice of basis of both
TaH

n
K and Va,x. We refer the reader to [8, Lemma 5.3] for more details.

Finally, by applying [6, Proposition B.1], we obtain that

JacaFx ≤ (δΓ)
p

p−
p
2

(
detHV

a,x

) 1
2

det(KV
a,x)

≤ 1,

and the desired estimate is proved. When the equality is attained, the proof that DaFx :

TaH
n
K → TFx(a)H

m
K is an isometric embedding is analogous to the one exposed in [6, 7, 8]

and hence we omit it.

Remark 3.1. Notice that in the proof of Theorem 1.1 we never use the uniformity of the

lattice Γ. This implies that the same construction can be suitably extended also to torsion-
free nonuniform lattices. In the latter case one would like to prove a property similar to

the properly ending condition defined in [25, 24]. However, we cannot understand a clear

way to do it in this context.

Remark 3.2. One could ask when a boundary map has atomless slices and how
restrictive this hypothesis is. When σ is the measurable cocycle associated to a self-

coupling of a uniform lattice Γ ≤ G(n), the slices of the boundary map are atomless by

either [4, Lemma 3.6] or [48, Lemma 3.1]. More generally, if (X,μX) is ergodic and the
cocycle is Zariski dense, this is sufficient to guarantee atomless slices.

Recall that in Subsection 2.1 we discussed how to construct a suitable measurable

cocycle starting from a representation ρ : Γ → G(m) once we fixed a standard Borel
probability Γ-space. One could naturally ask whether there exists a relation between

the natural map associated to ρ defined in [25, 24] and the natural map we defined in

Theorem 1.1. Their link is given by the following.

Proposition 3.3. Let Γ ≤ G(n) be a torsion-free uniform lattice and let ρ : Γ → G(m)
be a non-elementary representation, with m≥ n. Fix a standard Borel probability Γ-space

(X,μX). Denote by F̃ : Hn
K → H

m
K and by σρ : Γ×X → G(m) the natural map and the

measurable cocycle associated to ρ, respectively. Then the natural map associated to σρ is
given by

F :Hn
K×X →H

m
K , F (a,x) := F̃ (a),

for every a ∈H
n
K and almost every x ∈X.
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Proof. Since ρ is non-elementary, by [14, 24] there exists a measurable boundary map ϕ̃ :

∂∞H
n
K → ∂∞H

m
K which is ρ-equivariant. Additionally, since the Γ action on the boundary

∂∞H
n
K is doubly ergodic, the map is essentially unique ([49, 41, 14, 43, 24]) and essentially

injective ([26, Lemma 2.3],[44, Lemma 2.5]).

The previous map allows one to define an essentially unique boundary map associated

to σρ as follows:

φ : ∂∞H
n
K×X → ∂∞H

m
K , φ(ξ,x) := ϕ̃(ξ),

for almost every ξ ∈X and every x ∈X. Moreover, since every slice φx coincides with the

map ϕ̃, every slice is essentially injective. Hence, we are in the hypothesis of Theorem 1.1

and we are allowed to construct the natural map associated to σρ. By definition we have

that

F (a,x) = barB((φx)∗(νa)) = barB((ϕ̃)∗(νa)) = F̃ (a)

and the claim is proved.

We conclude the section by showing how natural maps change in the G(m)-cohomology

class of a given measurable cocycle.

Proposition 3.4. Let Γ ≤ G(n) be a torsion-free uniform lattice and fix (X,μX) a

standard Borel probability Γ-space. Let σ : Γ×X →G(m) be a measurable cocycle which

admits a natural map F : Hn
K×X → H

m
K . Given a measurable map f : X → G(m), the

natural map associated to the cocycle σf is given by

F f :Hn
K×X →H

m
K , F f (a,x) = f(x)−1F (a,x).

Proof. Denote by φ : ∂∞H
n
K×X → ∂∞H

m
K the boundary map associated to σ. Recall by

Definitions 2.2 and 2.5 that the twisted cocycle

σf : Γ×X →G(m), σf (γ,x) = f(γx)−1σ(γ,x)f(x),

admits as boundary map

φf : ∂∞H
n
K×X → ∂∞H

m
K , φf (ξ,x) = f(x)−1φ(ξ,x).

Notice that f takes values into G(m); hence, if almost every slice of φ is atomless, the
same holds for φf . By definition of the associated natural map we have

F f (a,x) = barB((φ
f
x)∗(νa)) = barB((f

−1(x)φx)∗(νa)).

Since the barycenter is G(m)-equivariant, we obtain

barB((f
−1(x)φx)∗(νa)) = f(x)−1barB((φx)∗(νa)) = f(x)−1F (a,x),

and the statement follows.

4. Natural volume of Zimmer cocycles

In this section we are going to introduce the notion of natural volume of a measurable

cocycle of a uniform hyperbolic lattice. As already discussed in the Introduction, even

https://doi.org/10.1017/S1474748021000475 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000475


Natural maps for zimmer’s cocycles 437

if we are going to focus our attention only on uniform lattices, the same results of the
section will hold also in the nonuniform case. Notice also that the definition we are going

to give differs from the one given in [36, 37] since ours relies on the differentiability of the

slices of essentially bounded equivariant maps (see Definition 4.1). Moreover, the rigidity
result we are going to obtain will refer to cocycles associated to lattices of G(n) with

image into G(m), with m possibly greater than or equal to n.

Let Γ ≤ G(n) be a torsion-free uniform lattice and fix (X,μX) a standard Borel

probability Γ-space. Denote by H
n
K the hyperbolic space over the division algebra K

associated to G(n). Set d = dimRK and assume d(n− 1) ≥ 2. Take m ≥ n and consider

a measurable cocycle σ : Γ×X → G(m) which admits a measurable σ-equivariant map

Φ :Hn
K×X →H

m
K whose slice Φx :H

n
K →H

m
K , Φx(a) := Φ(a,x) is differentiable, for almost

every x∈X. This implies that we can consider the determinant associated to the pullback

of the metric gm with respect to the slice Φx. More precisely, if we set p = d ·n, we can

define the p-form

(ωx)a(u1, . . . ,up) :=
√
det((Φ∗

x)gm)(u1, . . . ,up) =
√

det〈DaΦx(ui),DaΦx(uj)〉m,

for almost every x ∈X, every a ∈H
n
K and every u1, . . . ,up ∈ TaH

n
K. In this way, we get a

family {ωx}x∈X of differential forms on H
n
K. For almost every x ∈X and every a ∈ H

n
K,

we can exploit the Riemannian structure on H
n
K to define the norm

‖(ωx)a‖∞ := max
u1,...,up∈TaH

n
K

|(ωx)a(u1, . . . ,up)|,

where the set {u1, . . . ,up} varies on the set of all the possible orthonormal frames of TaH
n
K.

We are going to say that Φ is essentially bounded (or has essentially bounded slices) if

there exists a real number C > 0 such that

‖(ωx)a‖∞ <C

for almost every x ∈X and every a ∈H
n
K. Notice that this condition is not so restrictive,

since, for instance, the natural map associated to a measurable cocycle satisfies this
property (see Remark 4.2).

Assume now that Φ is essentially bounded. We are allowed to integrate with respect to

the x -variable and, in this way, we get a well-defined differential form on H
n
K; that is,

ω̃X :=

∫
X

ωxdμX(x) ∈ Ωp(Hn
K;R),

ω̃X(u1, . . . ,up) =

∫
X

ωx(u1, . . . ,up)dμX(x).

We claim that ω̃X is Γ-invariant – that is, ω̃X ∈ Ωp(Hn
K;R)

Γ – and hence it induces a
well-defined differential form ωX ∈ Ωp(Γ\Hn

K;R). More precisely, let γ ∈ Γ. We need to

show that

γ∗ω̃X = ω̃X
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or, equivalently,

ω̃X(Daγ(u1), . . . ,Daγ(up)) = ω̃X(u1, . . . ,up),

for every a ∈H
n
K and u1, . . . ,up ∈ TaH

n
K. It holds that

γ∗ω̃X(u1, . . . ,up) = ωX(Daγ(u1), . . . ,Daγ(up)) =

=

∫
X

ωx(Daγ(u1), . . . ,Daγ(up))dμX(x) =

=

∫
X

ωγy(Daγ(u1), . . . ,Daγ(up))dμX(y) = (•) ,

where we set x = γy and we used the fact that Γ acts on X via measure-preserving

transformations. From the formula above we can argue

(•) =
∫
X

√
det(〈DγaΦγy(Daγ(ui)),DγaΦγy(Daγ(uj))〉m)dμX(y) =

=

∫
X

√
det(〈Da(Φγy ◦γ)(ui)),Da(Φγy ◦γ)(uj))〉m)dμX(y) =

=

∫
X

√
det(〈Da(σ(γ,y)Φy)(ui)),Da(σ(γ,y)Φy)(uj))〉m)dμX(y) =

=

∫
X

√
det(〈Da(Φy)(ui)),Da(Φy)(uj))〉m)dμX(y) = ω̃X(u1, . . . ,up),

where we used the σ-equivariance of Φ to pass from the second line to the third one

and we exploited the fact that the cocycle σ takes value into the isometry group G(m) to
conclude. Hence, we get that ω̃X ∈Ωp(Hn

K;R)
Γ and so we obtain a well-defined differential

form ωX ∈ Ωp(Γ\Hn
K;R).

Definition 4.1. Let Γ≤G(n) and let (X,μX) be a standard Borel probability Γ-space.

Let σ : Γ×X → G(m) be a measurable cocycle, with m ≥ n. Denote by D(σ) the set

of essentially bounded σ-equivariant maps with differentiable slices. Given Φ ∈ D(σ), we
define the volume associated to the map Φ as

Vol(Φ) :=

∫
Γ\Hn

K

ωX =

∫
Γ\Hn

K

∫
X

ωxdμX(x) =

∫
Γ\Hn

K

∫
X

√
det(Φ∗

x)gmdμX(x).

Remark 4.2. Notice that when a measurable cocycle σ : Γ×X →G(m) admits a natural

map F : Hn
K×X → H

m
K , the latter is an essentially bounded σ-equivariant map with

differentiable slices. The essential boundedness comes from the estimate on that Jacobian
of the slices of F. Indeed, the family of differential forms associated to F can be written as

ωx :=
√
detF ∗

x gm = JacFx ·ωn,

where ωn is the standard volume form on H
n
K. In particular, if we fix an orthonormal

frame {u1, . . . ,up} of the tangent space TaH
n
K, we have that

|(ωx)a(u1, . . . ,up)|= JacaFx · |(ωn)a(u1, . . . ,up)| ≤ 1,
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and this implies that F is essentially bounded. Hence, the set D(σ) of essentially bounded

σ-equivariant map with differentiable slices is not empty, since it contains at least F.

The previous Remark allows us to define the notion of natural volume of a measurable

cocycle.

Definition 4.3. Let Γ≤G(n) and let (X,μX) be a standard Borel probability Γ-space.
Let σ : Γ×X → G(m) be a measurable cocycle, with m ≥ n. Assume that σ admits a

natural map F :Hn
K×X →H

m
K . The natural volume of the cocycle σ is defined as

NV(σ) := Vol(F ).

Remark 4.4. This definition might seem quite strange to the reader who is confident

with the work of Francaviglia and Klaff [25, 24]. If we wanted to follow their theoretical
line we should have considered the infimum of the volumes over all possible elements

of D(σ). However, in that case, we would not be able to prove that the volume of the

standard lattice embedding is maximal.

The first thing we want to show is that the notion of volume we gave is actually

invariant along the G(m)-cohomology class of a fixed measurable cocycle, analogous to
what happens to the volume defined in [36].

Proposition 4.5. Let Γ ≤ G(n) be a torsion-free uniform lattice and let (X,μX) be a

standard Borel probability Γ-space. Consider σ : Γ×X →G(m) a measurable cocycle which

admits a natural map. Given any measurable map f :X →G(m), it holds that

NV(σf ) = NV(σ),

and hence the natural volume in constant along the G(m)-cohomology class of σ.

Proof. Recall that D(σ) (respectively D(σf )) is the set of all possible essentially bounded

σ-equivariant (respectively σf -equivariant) maps with differentiable slices. It is easy to

verify that given Φ ∈ D(σ) we can define

Φf :Hn
K×X →H

m
K , Φf (a,x) := f(x)−1Φ(a,x),

and clearly Φf ∈ D(σf ). In this way, we obtain a bijection

f : D(σ)→ D(σf ), Φ �→ Φf .

We are going to prove that this bijection preserves the volume; that is, Vol(Φ)=Vol(Φf )

for every Φ ∈ D(σ). Indeed, we have that

Vol(Φf ) =

∫
Γ\Hn

K

∫
X

√
det(Φf

x)∗gmdμX(x) =

=

∫
Γ\Hn

K

∫
X

√
det(f(x)−1Φx)∗gmdμX(x) =

=

∫
Γ\Hn

K

∫
X

√
det(Φx)∗gmdμX(x) = Vol(Φ),
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where to pass from the second to the third line we used the fact that f(x) ∈G(m) is an

isometry for gm.

If we now restrict our attention to the case of natural maps, we already proved in
Proposition 3.4 that if F is the natural map associated to σ, then F f is the one associated

to σf . From this consideration it follows that

NV(σf ) = Vol(F f ) = Vol(F ) = NV(σ),

as desired.

After the study of the properties of the volume invariant of a given cocycle, we are now
ready to prove our rigidity theorem; that is, Theorem 1.2.

Proof of Theorem 1.2. We are going to show first the Milnor–Wood type inequality.

Define M = Γ\Hn
K. Consider σ : Γ×X → G(m) and the associated set D(σ). As a

consequence of Remark 4.2, we know that the natural map F :Hn
K×X →H

m
K associated

to σ is an element of D(σ).

By the estimate on the Jacobian of the slices of F, it follows that

NV(σ) = Vol(F ) =

=

∫
M

∫
X

√
detF ∗

x gmdμX(x) =

=

∫
M

(∫
X

JacaFxdμX(x)

)
ωM ≤

≤
∫
M

(∫
X

dμX(x)

)
ωM =Vol(M),

where ωM is the volume form associated to the standard Riemannian metric on M. In
this way, we get our desired inequality.

We now prove the rigidity statement. We first introduce some notation. Denote by

in,m : G(n)→G(m), g �→
(

g 0
0 Im−n

)
,

the upper-left corner embedding. Here Im−n stands for the identity matrix of order (m−
n). Let jn,m :Hn

K →H
m
K be the totally geodesic embedding of Hn

K into H
m
K which is in,m-

equivariant.

Assume now that NV(σ) = Vol(M). By definition it follows that

Vol(M) = NV(σ) = Vol(F ),

where F still denotes the natural map associated to σ. By writing explicitly the equality

above we get

Vol(M) =

∫
M

∫
X

√
detF ∗

x gmdμX(x) =

∫
M

(∫
X

JacaFxdμX(x)

)
ωM . (11)

Since JacaFx ≤ 1 for every a ∈H
n
K and almost every x ∈X, Equation (11) implies that

JacaFx = 1,
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for almost every point of the Γ-fundamental domain in H
n
K and for almost every x ∈X.

By the σ-equivariance of F, we have that

JacaFx = 1,

for almost every a ∈ H
n
K and almost every x ∈X. Now fix x ∈X and consider the slice

Fx :H
n
K →H

m
K for which it holds JacaFx = 1 for almost every a∈H

n
K. By [6, 25] it follows

that Fx coincides essentially with a totally geodesic embedding of Hn
K into H

m
K . More

precisely, there must exist f(x) ∈G(m) such that

Fx(a) = f(x)jn,m(a),

for almost every a∈H
n
K (actually every a∈H

n
K by the differentiability of the slices). In this

way, we obtain a map f :X →G(m). Since by assumption X is a standard Borel space,
the function F̂ :X →Meas(Hn

K ,Hm
K), F̂ (x) := Fx is measurable by [22, Lemma 2.6], and

this implies the measurability of f. In this way, we get a measurable map f :X →G(m)

which conjugates F to the totally geodesic embedding jn,m. Following the same strategy
exposed in [4, Proposition 3.2], we claim that σ is cohomologous to the restriction in,m|Γ
of the upper-left corner embedding to the lattice Γ, modulo possibly a compact subgroup.

Let

C := StabG(m)(jn,m)

be the subgroup of G(m) fixing pointwise the image of jn,m. This is the trivial group
when n=m and it is compact when m> n. Fix γ ∈ Γ. For almost every a ∈H

n
K ,x ∈X,

on one hand it holds that

F (γa,γx) = f(γx)jn,m(γa) = f(γx)in,m(γ)jn,m(a),

and on the other hand we have

F (γa,γx) = σ(γ,x)F (a,x) = σ(γ,x)f(x)jn,m(a).

Hence, it follows that

in,m(γ) = f(γx)−1σ(γ,x)f(x) mod C

and the claim is proved.

In contrast, consider the cocycle σin,m
: Γ×X →G(m) associated to the representation

in,m restricted to Γ. It is easy to verify that the natural map associated to this cocycle is

given by

F :Hn
K×X →H

m
K , F (a,x) := jn,m(a),
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for every a ∈H
n
K and almost every x ∈H

n
K. We have that

NV(σin,m
) = Vol(F ) =

=

∫
M

(∫
X

JacaFxdμX(x)

)
ωM =

=

∫
M

(∫
X

Jaca jn,mdμX(x)

)
ωM =

=

∫
M

Jaca jn,mωM =

∫
M

ωM =Vol(M),

and the statement follows. �
It is worth noticing that all of the results we have shown so far are still valid for

nonuniform lattice, since we did not exploit the property of being uniform for the lattice Γ.

We conclude the section by underling that importance of the previous theorem, since

in the particular case when n=m, it has been exploited by the author [48] to prove the
1-tautness of the group PU(n,1), when n≥ 2.

5. Volume of equivariant maps and mapping degree

In this section we are going to show a suitable adaptation of the mapping degree theorem

to the context of measurable cocycles associated to uniform lattices of rank-1 Lie groups

(see also [18, Proposition 3.1]). We will introduce the notion of pullback of a measurable
cocycle σ with respect to a continuous map between closed manifolds. Since the same can

be done for a measurable σ-equivariant map Φ with essentially bounded differentiable

slices, we are going to show that the volume of the pullback f∗Φ bounds from above the

volume of Φ multiplied by the mapping degree of the continuous map.
Let Γ,Λ ≤ G(n) be two torsion-free uniform lattices. Denote by M = Γ\Hn

K and N =

Λ\Hn
K the closed hyperbolic manifolds associated to Γ and Λ, respectively. Consider a

continuous map f :M →N and denote by π1(f) : Γ→ Λ the homomorphism induced on
the fundamental groups. Let (X,μX) be a standard Borel probability Λ-space. Following

[36, Section 6], given a measurable cocycle σ : Λ×X → G(m), we define the pullback

cocycle of σ with respect to f as follows:

f∗σ : Γ×X →G(m), f∗σ(γ,x) := σ(π1(f)(γ),x).

Here (X,μX) is viewed as a Γ-space with the action induced by the map π1(f). As shown

in [36, Lemma 6.1] the map f∗σ is a well-defined cocycle.
Given a continuous map f :M →N with nonzero degree, it is well-known by [14, 24] that

there exists an essentially unique measurable map ϕ : ∂∞H
n
K → ∂∞H

n
K which is π1(f)-

equivariant. Hence, by following the approach of [6, 7, 8] there exists a natural map
F̃ : Hn

K → H
n
K which is smooth and π1(f)-equivariant. This map descends to a smooth

map F : M → N which has the same degree of f. Additionally, we recall the standard

bound on the Jacobian of F̃ ; that is, Jaca F̃ ≤ 1 for every a ∈H
n
K.
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Now consider a measurable σ-equivariant map Φ : Hn
K×X → H

m
K . We can define the

pullback of the map Φ along the continuous map f as follows:

f∗Φ :Hn
K×X →H

m
K , f∗Φ(a,x) := Φ(F̃ (a),x),

where F̃ is the lift of the natural map previously described. Having introduced all the

notation we need, we are now ready to prove our version of mapping degree theorem.

Proof of Proposition 1.3. Up to changing the orientation to either M or N we can

suppose that the degree of the map f : M → N is positive. Denote by ωM and ωN the
volume forms induced on M and on N by the standard hyperbolic metric, respectively.

Let now Φ :Hn
K×X →H

m
K be the equivariant map we have in statement. The following

chain of equalities holds:

Vol(f∗Φ) =

∫
M

∫
X

√
det(f∗Φ)∗xgmdμX(x) =

=

∫
M

(∫
X

Jaca(f
∗Φ)xdμX(x)

)
ωM =

=

∫
M

(∫
X

Jaca(Φx ◦ F̃ )dμX(x)

)
ωM .

We can now take out from the sign of integration along X the Jacobian of the map F̃

(actually of the map F by its equivariance property):∫
M

(∫
X

Jaca(Φx ◦ F̃ )dμX(x)

)
ωM =

∫
M

JacaF

(∫
X

Jac
˜F (a)ΦxdμX(x)

)
ωM =

=

∫
N

∑
a∈F−1(b)

(∫
X

JacbΦxdμX(x)

)
ωN =

=

∫
N

N (b)

(∫
X

JacbΦxdμX(x)

)
ωN ≥

≥
∫
N

deg(F )

(∫
X

JacbΦxdμX(x)

)
ωN

= deg(f) ·Vol(Φ).

In the computation above, for any b ∈N we defined the number N (b) as the cardinality

N (b) := card(F̃−1(b)),

and we used the co-area formula to move from the first line to the second one. Since
N (b)≥ deg(F ) and F has the same degree of f, the desired inequality follows.

Suppose now that f is homotopic to a local isometry. By the strict version of mapping

degree theorem (see [50, Theorem 6.4] for the real hyperbolic case and [6, Théorèm

Principal] for the rank-1 case), it follows that

Vol(M) = deg(f) ·Vol(N) = deg(F ) ·Vol(N),
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since F and f have the same degree. We claim that this implies that F :M →N is a local
isometry. Indeed, following the same reasoning exposed in [6, Appendix C], we have that

Vol(M)≥
∫
M

JacaF ·ωM =

∫
N

N (b) ·ωN ≥ deg(F ) ·Vol(N).

In our particular case, all of the inequalities above are actually equalities and hence
N (b) = deg(F ) and, by the equivariance of F̃ , we obtain Jaca F̃ = 1 for almost every

a ∈H
n
K. This means that F̃ :Hn

K →H
n
K coincides essentially with an isometry (hence it is

an isometry being differentiable). Thus, the induced map F :M →N is a local isometry.

By the conditions on both the cardinalityN (b) and on the Jacobian of F, if we substitute
their respective values into the chain of equalities at the beginning of the proof, we get

that

Vol(f∗Φ) = deg(f) ·Vol(Φ),

as claimed. �
We would like to apply the proposition above to argue a relation between the degree of

the continuous map f and the natural volumes of the cocycles σ and f∗σ, respectively.
Unfortunately, if Ψ is the natural map associated to σ, it is not true a priori that f∗Ψ is
the natural map associated to f∗σ. For this reason, a weaker statement is given by the

following.

Corollary 5.1. Let Γ,Λ≤G(n) be two torsion-free uniform lattices. Set M =Γ\Hn
K, N =

Λ\Hn
K and let f :M →N be a continuous map with nonvanishing degree. Fix a standard

Borel probability Λ-space (X,μX) and consider a measurable cocycle σ : Λ×X → G(m).
Suppose that σ admits a natural map Ψ. Then it holds that

|deg(f)| ≤ Vol(f∗Ψ)

NV(σ)
.

Additionally, if f is homotopic to a local isometry, then the equality is attained.

Proof. The claim follows immediately by substituting Ψ in Proposition 1.3 and noticing

that we have NV(σ) = Vol(Ψ) by definition.

Remark 5.2. In the situation of Corollary 5.1, it is worth noticing that Vol(f∗Ψ) is

bounded from above by Vol(M). Indeed, we have that

Vol(f∗Ψ) =

∫
M

JacaF

(∫
X

Jac
˜F (a)ΨxdμX(x)

)
ωM ≤

≤
∫
M

(∫
X

dμX(x)

)
ωM =Vol(M), (12)

where we moved from the first line to the second one using the bound on the Jacobian of

both natural maps F̃ and Ψ.
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We conclude this section by giving a characterisation of continuous maps homotopic to
local isometries in terms of naturally maximal cocycles. A cocycle σ : Λ×X → G(m) is

naturally maximal if it admits a natural map Ψ :Hn
K×X →H

m
K and it holds that

NV(σ) = Vol(Λ\Hn
K).

Compare the following result with [36, Proposition 1.4].

Corollary 5.3. Let Γ,Λ ≤ G(n) be two torsion-free uniform lattices. Set M = Γ\Hn
K,

N = Λ\Hn
K and let f : M → N be a continuous map with nonvanishing degree. Fix a

standard Borel probability Λ-space (X,μX) and consider a naturally maximal cocycle σ :
Λ×X →G(m) with natural map Ψ. Then f is homotopic to a local isometry if and only

if Vol(f∗Ψ) = Vol(M).

Proof. We are going to keep the same notation of both Proposition 1.3 and Corollary 5.1.

Suppose that f is homotopic to a local isometry. By Corollary 5.1 it follows that

Vol(f∗Ψ) = deg(f) ·NV(σ) = deg(f) ·Vol(N),

and the latter equality is justified by the maximality assumption. As a consequence of
the strict version of mapping degree theorem [50, Theorem 6.4], [6, Théorèm Principal],

it holds that

Vol(M) = deg(f) ·Vol(N),

and hence Vol(f∗Ψ) = Vol(M), as claimed.

Assume now that Vol(f∗Ψ) = Vol(M). By Inequality (12) we argue that

Jaca F̃ = 1,

for almost every a ∈ H
n
K. Thus, F̃ is an isometry and F :M →N is a local isometry. In

particular, it holds that

Vol(M) = deg(F ) ·Vol(N) = deg(f) ·Vol(N),

and the statement follows again by the strict version of that mapping degree theorem.
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