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Abstract. I review the nature of three-dimensional collapse in the Zeldovich approximation, how
it relates to the underlying nature of the three-dimensional Lagrangian manifold and naturally
gives rise to a hierarchical structure formation scenario that progresses through collapse from
voids to pancakes, filaments and then halos. I then discuss how variations of the Zeldovich
approximation (based on the gravitational or the velocity potential) have been used to define
classifications of the cosmic large-scale structure into dynamically distinct parts. Finally, I turn
to recent efforts to devise new approaches relying on tessellations of the Lagrangian manifold to
follow the fine-grained dynamics of the dark matter fluid into the highly non-linear regime and
both extract the maximum amount of information from existing simulations as well as devise
new simulation techniques for cold collisionless dynamics.
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1. Introduction

Zeldovich’s legendary formula (Zeldovich 1970) describes cosmological structure forma-
tion and in particular the emergence of singularities under gravitational collapse that
emerge from critical curves in the velocity perturbation field. It arises rather simply from
the Lagrangian motion of pressure-free fluid parcels under self gravity. The relation be-
tween Lagrangian and Eulerian space can at all times be described by the position x and
velocity v of a fluid parcel labeled by its three-dimensional Lagrangian coordinate q as
formally given by

Xq(t) =q+L(q,t), and vg4(t)=%q = L(q, t). (1.1)

The displacement field L at linear perturbative order is simply proportional to the grow-
ing mode of the initial velocity perturbation field. It evolves with the growth factor of
linear density perturbations

L(q, t) x D, vq(0), and L(q, t) o< Dy vg(0), (1.2)

which is the Zeldovich approximation, implying that the fluid elements move on straight
lines as determined by their initial velocity vectors. The density then becomes obviously
(simply through the Jacobian of the transformation from q to x)
3
1+5:H(1+D+>‘f)71’ where \; = eig{T}; = 0;;0}, (1.3)
i=0

and ¢ is the velocity potential (i.e. vq(t) D, V ¢), which is, at first order, proportional
to the gravitational potential. Since T;; is a symmetric and real tensor, its eigenvalues are
real numbers and thus can be arranged A; < Ao < A3. This however implies that § can
undergo a maximum of three singularities over time, depending on the number of negative
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Figure 1. The cosmic web as formed in an N-body simulation of the ACDM cosmology at
z = 0. The width of the image is 250 h~'Mpc, shown is the logarithmic overdensity log(1 + 9).
Zel’dovich’s first order perturbation theory predicts the formation of pancakes, filaments, halos
and voids in the cosmic matter distribution. Since in CDM perturbation exist down to very
small scales, filaments are of course made up of haloes, and pancakes of filaments.

eigenvalues \;. If \; < 0, then at some finite time ¢;, when D, (¢;)\; = —1, the fluid ele-
ment will undergo a singularity along the eigenvector associated with A\, followed by the
other axes assuming they correspond to negative eigenvalues. Thus, the first objects that
form are two-dimensional structures (the infamous Zeldovich pancakes). Then the col-
lapse along a second axis happens and a one-dimensional structure emerges (a filament),
before also the third axis collapses and finally a (roughly) spherical structure forms. Of
course this is a somewhat simplistic picture and in general the singularities/catastrophes
that can arise have a multitude of structures (see Hidding et al. 2014 for an extensive
discussion of catastrophes in the Zel’dovich approximation). Since density perturbations
exist on various scales, this pancake collapse scenario occurs simultaneously on different
scales leading to the multi-scale nature of the cosmic web. On the smallest scales sit the
halos, embedded in larger perturbations for which the final direction has not collapsed
yet, corresponding to filaments. In turn, the filaments are embedded in even larger scale
perturbations for which two axes have not collapsed yet, corresponding to the pancakes.
Naturally, if any eigenvalue is smaller than zero, the corresponding axis will never col-
lapse in this approximation. In Figure 1, we show the cosmic web as it emerges in a
density map of an N-body simulation of a ACDM cosmology.

As is well known, the approximation of eq. (1.2) breaks down in two cases: (1) af-
ter shell-crossing in one-dimension, when the gravitational force acting on a fluid parcel
reverses its direction, and (2) in multiple dimensions if higher derivatives of the gravi-
tational perturbation field (e.g. ;1 ¢) become non-negligible compared to the tidal (i.e.
0;j¢) term (e.g. Crocce et al. 2006). We will give point (1) more attention next.
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Figure 2. Left: Collapse of a plane wave under self gravity. Shell-crossing leads to a gravita-
tionally bound structure forming in the centre. Regions of tidal expansion in the final potential
correspond to regions outside the bound structure and regions of tidal compression to the inside.
Right: Haloes from an N-body ACDM simulation classified by the signature of the tidal ten-
sor eigenvalues smoothed on 2 h~'Mpc splitting them into clusters (red: -,-,-), filaments (blue:
+,-,-), walls (green: +,+,-) and voids (yellow: +,4,+) according to the method of Hahn et al.
(2007b). The image is 180 h ™' Mpc wide.

2. The Zeldovich approximation, non-linear structure formation and
identification of dynamically distinct structures of the cosmic web

In Figure 2, we show the collapse of a collisionless self-gravitating plane wave, i.e. the
collapse of a sinusoidal perturbation L(q,0)  sin(k-q), or equivalently ¢ o< — cos(k-q),
where k is the wave vector of the perturbation. We plot the fully non-linear solution
in a slightly different way than is done usually. The bottom panel shows the initial
gravitational potential, the middle panel shows the trajectories of particles over time
(a given curve corresponds to a fixed q), and the top panel shows the gravitational
potential at the final time. Time is plotted logarithmically in the middle panel to highlight
better the dynamics around the time of first shell-crossing. Several important observations
can be made from this simple diagram, which is perfectly reproduced by the Zeldovich
approximation for all points outside of the outer caustics of the multi-stream region. In
the fully non-linear setting, repeated shell-crossing happens in the center due to self-
gravity. We observe that (1) the initial tidal field is given by A = 0;;¢ « cos(k - q)
implying that trajectories in the central region are convergent (A < 0), and trajectories
outside are divergent (A > 0). Of course, the outer trajectories still collapse onto the
central structure, but the Eulerian volume which had A > 0 initially remains divergent
and becomes underdense. (2) the final potential has not changed qualitatively from the
initial. Obviously, it still has a convergent (A < 0) central part and divergent (A > 0)
outer parts (in both cases separated by the horizontal black lines which are drawn to
intersect at the inflection points of ¢). Furthermore, the convergent region agrees well
with the shell-crossed region. This latter observation provides a strong motivation to
use the final tidal field to classify the cosmic web into dynamically distinct regions as
suggested by Hahn et al. (2007b).

Naturally, in CDM, almost all matter is in dark matter halos so that a simple classi-
fication by the final potential would identify halos as dips in the potential rather than
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describe the large-scale structure. For this reason, Hahn et al. (2007b) smoothed the
potential on about twice the virial scale of M, halos of ~ 2h~'Mpc at z = 0 and on cor-
respondingly smaller scales at high redshift (Hahn et al. 2007a). The resulting smoothed
gravitational potential 1) can then be classified into distinct regions according to the
signature of the eigenvalues of 9;;1, just as in eq. (1.3). Regions of three-dimensional
compression (—, —, —) correspond then to tidal compression on the smoothed scale and
thus can be identified with clusters (or nodes of the web), and corresondingly (+, —, —)
with filaments, (+, +, —) with walls and (+, 4, +) with voids. The performance of such a
classification can be seen in the right panel of Figure 2. Very clearly, the method is able
to identify the nodes of the cosmic web and the larges filaments very well and assigns the
finer filaments to walls. However, One can immediately see from this classification that
the volume assigned to voids is very small, which subsequently has led Forero-Romero
et al. (2009) to argue that the signature should not be evaluated w.r.t. to zero as this
describes only the asymptotic behavior, i.e. whether 14 D, X vanishes within a finite time
in eq. (1.3). They have thus introduced an additional (free) parameter \;;, with respect
to which the eigenvalues are compared, i.e. the signature of (A\; + A;p,) is determined in-
stead. Another (arguable) shortcoming is the fixed smoothing scale, which e.g. identifies
all nodes of the cosmic only on one scale. The combination of multi-scale filtering with
an evaluation of the tidal eigenvalues has been discussed by Cautun et al. (2013).

During the linear stages of structure formation — as expressed by the Zeldovich approxi-
mation — the velocity field and the gradient of the gravitational potential are proportional
to each other (cf. eq. 1.2). This implies that at early times a classification by the eigenval-
ues of the tidal tensor eig 0;;1 is equivalent to a classification by the velocity deformation
tensor eig 0;v;. At late times, this equality is however broken by non-linear terms so that
Hoffman et al. (2012) have proposed to use the latter when classifying structures of the
cosmic web. In particular, while primordial vorticity is usually neglected since it is a
decaying perturbation, at late time vorticity arises in the non-linear cosmic velocity field
(see the discussion in the next section). In addition to these approaches inspired by the
evolution of large-scale structure in the Zeldovich approximation, also density fields and
logarithmic density fields have been used (most notably Aragén-Calvo et al. 2007a, 2010;
Sousbie 2011; Cautun et al. 2013). With such a multitude of classifiers available, the
question what needs to be classified arises, since all definitions are to a large degree arbi-
trary. What all methods have achieved is to provide a clear prediction for the alignment
of halo spins and shapes with the cosmic web (e.g. Aragén-Calvo et al. 2007b; Hahn
et al. 2007a; Codis et al. 2012, among others). It still remains to be seen whether there
are other observable properties of galaxies that depend on the cosmic web environment
rather than just the halo mass and the central vs. satellite distinction.

3. The Zeldovich approximation, the Lagrangian manifold and
Lagrangian tesselations

Another interesting property of the mapping between Lagrangian and Eulerian space

is that it has a manifold structure and directly describes the distribution function of

a perfectly cold fluid (Arnold et al. 1982; Shandarin and Zeldovich 1989). This means

that the mapping between Lagrangian space and Eulerian phase space varies smoothly

between points close in Lagrangian space, i.e. the mapping is differentiable,

q— (XQ(t)v Vq (t))7 = Tq = (qu7 VqV) ’ (31>

where the latter defines the three-dimensional space tangent to the cold distribution
function in six-dimensional phase space. If the cold distribution function is initially suf-
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Figure 3. Foldings of the triangulated phase space sheet in 2+2 dimensional phase space over
time. Panels (a) to (¢) show the time evolution of a two-dimensional N-body simulation of only
16> particles where the density field is given by triangles connecting particles neighbouring in
Lagrangian space. The resulting density estimate is defined everywhere in space. Panel (d) shows
the positions of the N-body particles at the same time as panel (c).

ficiently smooth, it will remain so by virtue of the collisionless Vlasov-Poisson system of
equations. The density of dark matter in the vicinity of q is given by the determinant of
the spatial part, i.e.
-1

) (3.2)

Oz
qu

where m, is the particle mass. Notably, as we had already seen in eq. (1.3), the density
becomes singular in caustics, where this determinant vanishes, i.e. where the distribu-
tion function has a tangent perpendicular to configuration space. The evolution of the
tangent space can be described in terms of a geodesic deviation equation around point q
(Vogelsberger et al. 2008) and allows one to study in simulations e.g. how often a particle
goes through a caustic (White and Vogelsberger 2009).

More recently however, Abel et al. (2012) and Shandarin et al. (2012) noted that
the tangent space can be easily approximated in simulations by combining information
from neighboring points in Lagrangian space. This can be achieved by determining the
neighbors of point q by a Delaunay triangulation of the regular lattice that the N-body
particles form in Lagrangian space. Thus, the discrete points q; (i.e. the N-body particles)
can be associated with the vertices of a tetrahedral mesh that covers all of Lagrangian
space, and thus also all of Eulerian configuration space. Each tetrahedron uniquely de-
fines an approximation to Tg, i.e. one can calculate 0z, /0g; and 0v; /Og; uniquely for each
tetrahedron. This in turn enables one to calculate the density of a tetrahedron according
to eq. (3.2). This is the single-stream density. Since after shell crossing several tetrahe-
dra may overlap a given point x in configuration space, the densities of all tetrahedra
overlapping that point need to be added up to obtain the configuration space density.
We illustrate the procedure in two dimensions in Figure 3. The left-most panel shows
the initial triangular mesh. Before shell-crossing occurs, the triangles do not overlap.
Density perturbations come from particles that are displaced between Lagrangian and
Eulerian space leading to density perturbations between the triangles consistent with
Zeldovich’s formula. Over time, the perturbations grow, shell-crossing occurs and sev-
eral triangles can overlap the same point in configuration space. Clearly the filamentary
cosmic web emerges already from this simple demonstration. For comparison, the right
panel shows the locations of the N-body particles where the filamentary structure is by
far not as clearly visible as in the triangulated density estimate that tracks explicitly the
anisotropic local deformation tensors.

p=m, |det
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The approximation of the phase space sheet by finite volume tetrahedral elements
provides access to a wide range of properties of dark matter flows that could not be
measured before. Most notably, the tetrahedral elements allow to measure density fields
with significantly reduced noise without the need for any smoothing. This allows for
rather breath-taking possibilities for visualization (Abel et al. 2012; Kaehler et al. 2012)
or gravitational lensing simulations with suppressed noise (Angulo et al. 2014) and allows
to, e.g., explicitly count the number of streams overlaying points in configuration space
(Shandarin et al. 2012; Abel et al. 2012). They also provide a new way to determine
whether structures are collapsed (and thus folded) along three, two, one or no directions
which allows one to more directly identify halos, filaments, walls and voids (Neyrinck
and Shandarin 2012; Falck et al. 2012).

Furthermore, this Lagrangian tessellation approach provides excellent estimates of cos-
mic mean velocity fields and their derivatives (Hahn et al. 2014). Since the single stream
density is known, a very accurate estimate of the bulk velocity field can be obtained. It
is defined as the density weighted mean velocity

<V> _ ZSGS Vs (X) pé’ (X)
ZSGS Ps (X) ,
where S stands for all streams that contain a point x in configuration space. This allows

one to define the exact differentials of the collisionless mean multi-stream velocity field
as

(3.3)

V- (v) =((Vlogp) - (v—(v))) +(V-V) (3.4)
and

V x (v) = ((Vlog p) x (v — (v)), (3.5)

which hold if the derivative is not taken across caustics. Most notably, the curl of the
mean field vanishes in single stream regions since gravity cannot generate vortical modes,
but it can arise in multi-stream regions as a ’collective’ phenomenon (see also Pichon and
Bernardeau 1999). We furthermore see that the velocity divergence also has a ’collective’
term, which depends on alignment of local flows with the density gradient, in addition
to the single stream divergence.

In Figure 4, we show a slice through the density field (left panel) and the velocity di-
vergence field (right panel) calculated from an N-body simulation of halo in a warm dark
matter cosmology. We see that underdense regions have positive velocity divergence be-
fore shell-crossing, while overdense regions have negative divergence. After shell-crossing,
overdense regions also show a positive divergence. The correlation before shell crossing
follows directly from a series expansion of eq. (1.3) which yields 1+ ~ 1—-A )" eig dv; /Dg;
(where A is a positive constant, see also Kitaura et al. 2012). The reversal after shell
crossing must thus come from the ’collective’ term. Care has to be taken when comparing
these results to velocity fields which are sampled on a mesh and then differentiated on
that mesh, since in that case the discontinuous velocity jumps across caustics completely
dominate the differential fields so that one essentially only measures the motion of caus-
tics. The exact derivatives that can be computed using the triangulated sheet do not
suffer from these inherent problems.

Another exciting possibility is to attempt to evolve the N-body system self-consistently
using the tetrahedral approximation to the distribution function (Hahn et al. 2013). In
such an approach, the vertices become tracers of the flow and the mass is, unlike in the
N-body approach, not centered at the vertices, but is contained in the tetrahedral vol-
ume element. Hahn et al. (2013) have shown that this “TetPM” approach significantly
reduces discreteness effects known for N-body simulations (e.g. Wang and White 2007).
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Figure 4. Slices through the density (left) and bulk velocity divergence field (right panel)
from a warm dark matter simulation. Before shell-crossing underdense regions are divergent,
and overdense regions are convergent. After shell-crossing, overdense regions are predominantly
divergent as well which reflects that the volume of the dark matter sheet is growing over time.
[Adapted from Hahn et al. (2014)].

We show the result of such a simulation, where the mass distribution due to the tetrahe-
dra is approximated by sampling the tetrahedra with mass-tracing pseudo-particles, in
the top panels of Figure 5. The top left panel shows the well known artificial fragmenta-
tion of filaments in warm dark matter simulations if the N-body method is used at a high
force to low mass resolution ratio. The top right panel shows that the tetrahedral ap-
proach spreads the mass smoothly between the flow tracers leading to sharp well-defined
filaments that show no sign of fragmentation.

These fragments have made it inherently difficult if not impossible to measure the mass
function of halos in warm dark matter (WDM) cosmologies robustly (e.g. Schneider et al.
2013) and their very presence might well invalidate many other predictions from such
simulations. Using the TetPM method Angulo et al. (2013) were able to measure the
WDM halo mass function in the absence of such fragments and found a distinctly differ-
ent picture of large-scale structure and halo formation than in CDM: smooth pancakes
permeated by filaments with very dense cores connecting the nodes of the cosmic web.
They found that halos do not form below the truncation scale of the power spectrum, but
come only into existence once the last axis collapses, quite in accord with the prediction
of Zeldovich’s equation (1.3).

The rapid (phase and possibly chaotic) mixing of dark matter as it orbits in the
potential wells of dark matter halos leads to a growth of the dark matter sheet that cannot
be tracked by the Lagrangian motion of the tracer particles alone. The approximation
that the tetrahedra describe the neighbourhood of a Lagrangian point q well breaks down
as a consequence. The practical effect of this is that mass gets preferentially assigned to
the center of halos making them more and more dense (Hahn et al. 2013). This limits the
applicability of a tessellation approach based on a fixed number of Lagrangian tracers
in the inner parts of dark matter halos where strong mixing occurs. This problem can
however be resolved by inserting new vertices in the tessellation, i.e. by splitting the
tetrahedra adaptively, in order to keep following the evolution of the dark matter sheet
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Figure 5. Top: Magnitude of the gravitational force in a simulation of structure formation in a
warm dark matter cosmology. The N-body method (top left) shows artificial fragmentation of the
filaments into clumps due to inherent discreteness effects. Spreading the mass between particles
using tetrahedral elements strongly suppresses such discreteness effects. Bottom: Adaptive
refinement of the phase space sheet (right) will allow to track its rapid super-Lagrangian growth
in the inner of halos. [Top panel adapted from Hahn et al. (2013)]

through all its complicated foldings at late times. The effect of such a refinement can
be seen in the bottom panels of Figure 5. In the left panel a standard N-body particle
distribution is shown, while the right panel shows the distribution of flow tracers after
tetrahedra were allowed to split into smaller units. The newly inserted vertices clearly
trace out the regions of strongest deformation of the sheet. An article discussing the
feasibility of such a adaptive dynamic refinement technique of the tessellation is currently
in preparation (Hahn and Angulo 2015). Refinement will allow to track the full evolution
of the fine-grained distribution function in the deeply non-linear regime.

4. Summary

In this article, we have attempted to present an overview of the connection between
Zeldovich’s groundbreaking work from 1970 describing the evolution of Lagrangian fluid
elements in an expanding universe (Zeldovich 1970), predicting a hierarchy of structures
of pancakes, filaments and clusters, and modern work to dissect the cosmic web into
distinct components. We have described how this work has inspired methods to classify
the large-scale structure into dynamically distinct structure through the signature of
eigenvalues of the tidal tensor or the velocity deformation tensor. Arguably the most in-
teresting result of these attempts has been the discovery of (mass-dependent) alignments
of the spin and shape of dark matter halos with the surrounding cosmic web.

In the second part, we described how Zeldovich’s description of the Lagrangian mo-
tion of fluid elements and their tidal deformation is equivalent to recent attempts to
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decompose the dark matter sheet (or Lagrangian manifold) into finite volume elements
with the help of tessellations. The resulting tetrahedra, spanned by four tracer particles
(which can be the N-body particles of a cosmological simulation) are finite difference ap-
proximations to Zeldovich’s famous formula and describe the same dynamical behaviour
allowing for shell-crossing along three distinct directions. We gave a brief overview of the
published applications of these tessellation approaches to a finite volume Zeldovich ap-
proximation in terms of using them to provide new insights into the phase space structure
of N-body simulations. Finally we discussed how they can be used to create alternative
simulation methods for self-gravitating dark matter in the cold limit that evolve the tes-
sellated phase space sheet self-consistently in phase-space. The rapid wrapping of the
phase space sheet inside of halos where mixing occurs necessitates the adaptive refine-
ment of the tessellation. Adaptively refined tesselations are a method which is currently
in development and will provide new exciting insights into structure formation since the
adaptive refinement allows to follow the full evolution of the fine-grained distribution
function of dark matter as it is warped through gravitational collapse from pancakes to
filaments and finally folded up in a halo. Information which is unaccessible for N-body
methods and can only approximately be reconstructed without dynamic refinement.
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