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Abstract

Let G be a simple exceptional algebraic group of adjoint type over an algebraically closed field of
characteristic p > 0 and let X = PSL2(p) be a subgroup of G containing a regular unipotent element
x of G. By a theorem of Testerman, x is contained in a connected subgroup of G of type A1. In this
paper we prove that with two exceptions, X itself is contained in such a subgroup (the exceptions
arise when (G, p) = (E6, 13) or (E7, 19)). This extends earlier work of Seitz and Testerman, who
established the containment under some additional conditions on p and the embedding of X in G.
We discuss applications of our main result to the study of the subgroup structure of finite groups of
Lie type.

2010 Mathematics Subject Classification: 20G41 (primary); 20E32, 20E07 (secondary)

1. Introduction

Let G be a simple algebraic group of adjoint type over an algebraically closed
field K of characteristic p > 0. Let X = PSL2(q) be a subgroup of G, where
q > 4 is a p-power, and let x ∈ X be an element of order p. By the main theorem
of [26], x is contained in a closed connected subgroup of G of type A1, unless
G = G2, p = 3 and x belongs to the conjugacy class of G labelled A(3)1 as in [14].
With a view towards applications to the study of the subgroup structure of finite
groups of Lie type, it is desirable to seek natural extensions of this result. In

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2019.12 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:t.burness@bristol.ac.uk
mailto:donna.testerman@epfl.ch
https://doi.org/10.1017/fms.2019.12


T. C. Burness and D. M. Testerman 2

particular, under what conditions can one embed the full subgroup X in an A1

subgroup of G?
As a special case of the main theorem of [29], this question has a positive

answer when G is classical and X is not contained in a proper parabolic subgroup
of G (for G = SLn(K ), this is a well-known theorem of Steinberg [32]). One
can see that the condition on the embedding of X is necessary by considering
indecomposable representations of X which do not arise as restrictions of
indecomposable representations of an algebraic A1. In [29], Seitz and Testerman
also provide a positive answer if G is a simple exceptional algebraic group (of
type G2, F4, E6, E7 or E8) and p is large enough, still under the same assumption
that X is not contained in a proper parabolic subgroup of G. More precisely, the
approach in [29] requires p > N (G) where

N (G2) = 19, N (F4) = 43, N (E6) = 43, N (E7) = 67, N (E8) = 113. (1)

More general results on the embedding of finite quasisimple subgroups in
exceptional algebraic groups are established by Liebeck and Seitz in [18]. For
instance, if X = PSL2(q) and q is sufficiently large, then [18, Theorem 1] implies
that X is contained in a proper closed positive-dimensional subgroup of G. Here
‘sufficiently large’ means that q > t (G) · (2, p − 1) with

t (G2) = 12, t (F4) = 68, t (E6) = 124, t (E7) = 388, t (E8) = 1312. (2)

It is natural to seek an extension of [29, Theorem 2] by removing the conditions
on p and the embedding of X in G when G is of exceptional type and X =
PSL2(q). In [30], Seitz and Testerman study the case where x ∈ X is semiregular
in G (that is, CG(x) is a unipotent group). Notice that if x is not semiregular then
x ∈ CG(s)0 for some nontrivial semisimple element s ∈ G and one can hope to
answer the question in the proper reductive subgroup CG(s)0; so the semiregular
case, where such a reduction is not possible, is particularly interesting. In this
situation, the main result of [30] states that X is contained in a connected subgroup
of type A1 if either q > p, or if q = p and PGL2(q) 6 NG(X).

In this paper, we extend the results in [30] by studying the remaining case
where X = PSL2(p) and PGL2(p) 66 NG(X). In order to do this, we assume
x ∈ X is regular in G, which means that CG(x) is an abelian unipotent group of
dimension r , where r is the rank of G (equivalently, x is contained in a unique
Borel subgroup of G). It is well known that regular unipotent elements exist in
all characteristics and they form a single conjugacy class. Since the order of x is
the smallest power of p greater than the height of the highest root of G (see [35,
Order Formula 0.4]), our hypothesis implies that p > h, where h is the Coxeter
number of G. (Recall that h = (1/r) dim G − 1 = ht(α0)+ 1, where ht(α0) is the
height of the highest root of G.)
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Our main result is the following (in this paper, an A1-type subgroup is a closed
connected subgroup isomorphic to SL2(K ) or PSL2(K )).

THEOREM 1. Let G be a simple exceptional algebraic group of adjoint type over
an algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a
subgroup of G containing a regular unipotent element of G. Then exactly one of
the following holds:

(i) X is contained in an A1-type subgroup of G;

(ii) G = E6, p = 13 and X is contained in a D5-parabolic subgroup of G;

(iii) G = E7, p = 19 and X is contained in an E6-parabolic subgroup of G.

In all three cases, X is uniquely determined up to G-conjugacy.

REMARK 1. Let us make some comments on the statement of Theorem 1.

(a) To see the uniqueness of X in part (i), it suffices to show that every subgroup
Y = PSL2(p) of G containing x is conjugate to X . Write X < A and Y <

B, where A and B are A1-type subgroups of G. By Proposition 2.11(ii), A
and B are G-conjugate, say A = Bg, so X, Y g < A. Finally, by applying
[17, Theorem 5.1] and Lang’s theorem, we deduce that X and Y g are A-
conjugate.

(b) The interesting examples arising in (ii) and (iii) were found by Craven [9]
in his recent study of the maximal subgroups with socle PSL2(q) in finite
exceptional groups of Lie type. The action of such a subgroup X on the
adjoint module Lie(G) is described in Theorem 8.1 (see Section 8) and its
construction is explained in [9, Section 9]. Let us say a few words on the
construction in (ii), where G = E6 and p = 13. Let P = QL be a D5-
parabolic subgroup of G and identify the unipotent radical Q with a 16-
dimensional spin module for L ′ = D5. Take a subgroup Y = PSL2(p) < L ′

containing a regular unipotent element of L ′ and consider the semidirect
product QY < P (note that Y is uniquely determined up to L ′-conjugacy).
Now one checks that Q|Y has an 11-dimensional composition factor W with
dim H 1(Y,W ) = 1, which is a direct summand of Q. It follows that there
is a complement X = PSL2(p) to Q in QY that is not QY -conjugate to
Y . Moreover, one can show that X contains a regular unipotent element of
G and there is a unique P-class of such subgroups X (hence X is uniquely
determined up to G-conjugacy). We show that the subgroup X constructed
in this way is not contained in an A1-type subgroup of G (this follows from
Theorem 2 below). A similar construction can be given in (iii) and again one
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can show that such a subgroup is both unique up to conjugacy and is not
contained in an A1-type subgroup.

(c) The conclusion of Theorem 1 for G = G2 can be deduced from the proof
of [30, Lemma 3.1]. It also follows from Kleidman’s classification of the
maximal subgroups of G2(p) in [13]. However, for completeness we provide
an alternative proof, following the same approach we use for the other
exceptional groups.

(d) Finally, let us comment on the adjoint hypothesis in the statement of the
theorem. Let G be a simple exceptional algebraic group and let Gad be
the corresponding adjoint group. Suppose Y = PSL2(p) or SL2(p) is a
subgroup of G containing a regular unipotent element y of G. The regularity
of y implies that Z(Y ) 6 Z(G) and thus YZ(G)/Z(G) = PSL2(p) is a
subgroup of Gad containing a regular unipotent element, so it is determined
by Theorem 1.

The next result shows that the subgroups X in part (i) of Theorem 1 are G-
irreducible in the sense of Serre (that is, X is not contained in a proper parabolic
subgroup of G). The proof is given at the end of Section 2. By [36, Theorem 1.2],
any connected reductive subgroup of a reductive algebraic group G containing a
regular unipotent element is G-irreducible, so we can view Theorem 2 as a partial
analogue for subgroups isomorphic to PSL2(p) in simple exceptional groups.

THEOREM 2. Let G be a simple exceptional algebraic group of adjoint type over
an algebraically closed field of characteristic p > 0 and let x ∈ G be a regular
unipotent element such that

x ∈ X = PSL2(p) < A < G,

where A is an A1-type subgroup of G. Then X is G-irreducible.

REMARK 2. As in Theorem 1, let X = PSL2(p) be a subgroup of G containing
a regular unipotent element. By combining Theorems 1 and 2, we deduce that X
is contained in an A1-type subgroup of G if and only if X is not contained in a
proper parabolic subgroup of G. In particular, the examples arising in parts (ii)
and (iii) of Theorem 1 are genuine exceptions to the containment in (i).

The next result follows by combining Theorem 1 with the main results of
[29, 30].
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COROLLARY 1. Let G be a simple algebraic group of adjoint type over an
algebraically closed field of characteristic p > 0 and let X = PSL2(q) be a
subgroup of G containing a regular unipotent element of G, where q > 4 is a
p-power. In addition, if G is classical assume that X is G-irreducible. Then either

(a) X is contained in an A1-type subgroup of G, or

(b) q = p and (G, p, X) is one of the cases in parts (ii) and (iii) in Theorem 1.

Next we present some further applications of Theorem 1. Let G be a simple
algebraic group as in Theorem 1 and recall that a finite subgroup H of G is Lie
primitive if

(a) H does not contain a subgroup of the form O p′(G F), where F is a Steinberg
endomorphism of G with fixed point subgroup G F ; and

(b) H is not contained in a proper closed subgroup of G of positive dimension.

In [11, Section 3], Guralnick and Malle determine the maximal Lie primitive
subgroups H of G containing a regular unipotent element (the maximal closed
positive-dimensional subgroups of G containing a regular unipotent element were
determined in earlier work of Saxl and Seitz [27]). More precisely, they give a
list of possibilities for H , but they do not claim that all cases actually occur. In
particular, their proof relies on [29] and thus H = PSL2(p) arises as a possibility
when G ∈ {F4, E6, E7, E8} and h 6 p 6 N (G), where N (G) is the integer in (1).
Therefore, by combining [11, Theorems 3.3, 3.4] with Theorem 1, we obtain the
following refinement.

COROLLARY 2. Let G be a simple exceptional algebraic group of adjoint type
over an algebraically closed field of characteristic p > 0. Suppose H is a
maximal Lie primitive subgroup of G containing a regular unipotent element. Let
H0 denote the socle of H.

(i) If G = G2, then one of the following holds:

(a) p = 2 and H = J2;

(b) p = 7 and H = 23.SL3(2), G2(2) or PSL2(13);

(c) p = 11 and H = J1.

(ii) If G = F4, then one of the following holds:

(a) p = 2 and H0 = PSL3(16), PSU3(16) or PSL2(17);

(b) p = 13 and H = 33.SL3(3), or H0 = PSL2(25), PSL2(27) or 3 D4(2).
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(iii) If G = E6, then one of the following holds:

(a) p = 2 and H0 = PSL3(16), PSU3(16) or Fi22;

(b) p = 13 and either H = 33+3.SL3(3) or H0 =
2 F4(2)′.

(iv) If G = E7, then p = 19 and H0 = PSU3(8) or PSL2(37).

(v) If G = E8, then one of the following holds:

(a) p = 2 and H0 = PSL2(31);

(b) p = 7 and H0 = PSp8(7) or Ω9(7);

(c) p = 31 and H = 25+10.SL5(2) or 53.SL3(5), or H0 = PSL2(32),
PSL2(61) or PSL3(5).

REMARK 3. By Corollary 2, there are no Lie primitive subgroups containing a
regular unipotent element if p > 31. This lower bound is best possible: the case
(G, p)= (E8, 31)with H0 = PSL2(32) is a genuine example (this can be deduced
from recent work of Litterick [22]). However, we are not claiming that all of the
possibilities listed in Corollary 2 are Lie primitive and contain regular unipotent
elements (indeed, we expect that this list can be reduced further).

We can also use Theorem 1 to shed new light on the subgroup structure of
finite exceptional groups of Lie type. Let G be a simple exceptional algebraic
group of adjoint type over F̄p with p prime and let F : G → G be a Steinberg
endomorphism of G with fixed point subgroup G F , an almost simple group over
Fq . The maximal subgroups of the Ree groups 2G2(q) and 2 F4(q) (and their
automorphism groups) have been determined up to conjugacy by Kleidman [13]
and Malle [23], respectively, and similarly G2(q) is handled in [8] for q even and
in [13] for q odd. Therefore, we may assume G F is one of F4(q), E6(q), 2 E6(q),
E7(q) and E8(q). In these cases, through the work of many authors, the problem
of determining the maximal subgroups H of G F has essentially been reduced to
the case where H is an almost simple group of Lie type with socle H0 over a field
Fq0 of characteristic p (see [24, Section 29.1] and the references therein). Here
one of the main problems is to determine if such a subgroup is of the form M F ,
where M is maximal among positive-dimensional F-stable closed subgroups of
G. Significant restrictions on the rank of H0 and the size of q0 are established
in [16, 18], but the problem of obtaining a complete classification is still open.

The case H0 = PSL2(q0) is of particular interest. If q0 > t (G)·(2, p−1), where
t (G) is the integer in (2), then the aforementioned work of Liebeck and Seitz [18]
shows that q = q0 and H = M F for some maximal connected subgroup M of G of
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type A1. Further results in this direction have recently been obtained by Craven [9]
when G F is one of F4(q), E6(q), 2 E6(q) or E7(q). Using the maximality of H , he
proves that H = M F in almost every case, but his approach is unable to eliminate
certain values of q0. In particular, the case where H = PSL2(h + 1) contains a
regular unipotent element of G is problematic (the existence of such subgroups, in
a much more general setting, was established by Serre [31], which explains why
they are called Serre embeddings in [9]). Using Theorem 1, one can show that
all maximal Serre embeddings are of the form M F (we can also handle G = E8,
which is excluded in [9]). In particular, it follows that part (1) in [9, Theorem 1.2]
is a subcase of part (2), and similarly part (2) in [9, Theorem 1.4] is a subcase of
part (3).

To conclude the introduction, let us briefly describe the main steps in the proof
of Theorem 1 (we refer the reader to Section 2.5 for more details). Suppose
x ∈ X = PSL2(p) < G is a regular unipotent element of G and let A < G
be an A1-type subgroup containing x with maximal torus T = {t (c) | c ∈ K×}.
Set V = Lie(G) and F×p = 〈ξ〉. Without loss of generality, replacing X by a
suitable G-conjugate, we show that we may assume X contains the toral element
t (ξ) ∈ T , which corresponds to a diagonalizable element s ∈ SL2(p) with
eigenvalues ξ and ξ−1 (see Lemma 2.19). We can use the known action of A
on V to determine the eigenvectors and eigenspaces of s on V and this severely
restricts the possibilities for V |X . It is possible to obtain further restrictions on the
indecomposable summands of V |X by considering the trace on V of semisimple
elements in X of small order (typically, we only need to work with elements of
order 2 and 3).

In this way, in almost all cases, we are able to reduce to the situation where
V |X is compatible with the action of a PSL2(p) subgroup of A. In this situation,
V |X is given in Table 2 (our notation for indecomposable summands in Table 2 is
explained in Section 2.1) and we observe that the socle of V |X has a 3-dimensional
simple summand

W = 〈w2, w0, w−2〉,

where wi is an eigenvector for s with eigenvalue ξ i . Let Ei be the ξ i -eigenspace
of s on V . Without loss of generality, we may assume that the action of x on W
(in terms of this basis) is given by the matrix1 1 1

0 1 2
0 0 1


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and thus

w2 ∈ ker(x − 1)∩ E2,

w0 ∈ (ker((x − 1)2) \ ker(x − 1))∩ E0,

w−2 ∈ (ker((x − 1)3) \ ker((x − 1)2))∩ E−2.

Our main goal is to show that W is an sl2-subalgebra of V .
To do this, we may assume that x is obtained by exponentiating the regular

nilpotent element
∑

γ∈Π(G) eγ ∈ V with respect to a fixed Chevalley basis

B = {eα, fα, hγ |α ∈ Φ+(G), γ ∈ Π(G)}

for V (see Section 2.5 for more details). This allows us to explicitly identify a
maximal torus of an A1-type subgroup of G containing x , which means that we
can compute eigenvectors and eigenspaces for s in terms of the Chevalley basis.
With the aid of MAGMA [3] to simplify the computations, we can describe the
action of x on V in terms of a dim G × dim G matrix with respect to B and then
compute bases for the subspaces ker((x − 1)i) for i > 1. In this way, we obtain
expressions for w2, w0 and w−2 in terms of B, but with undetermined coefficients.
We then derive relations between these coefficients by considering the action of x
on W , and further relations can be found by using the fact that CV (x) = ker(x−1)
is an abelian subalgebra. Apart from a handful of special cases, this allows us to
reduce to the case where W is an sl2-subalgebra and we complete the argument
by showing that the stabilizer of W in G is an A1-type subgroup.

This process of elimination and extension comprises the bulk of the proof of
Theorem 1 (see Sections 3–7). However, there are a handful of possibilities for
(G, p) which require further attention; these are the cases arising in part (ii) of
Theorem 2.23 and they are handled in Section 8. In each of these cases, the action
of X on V is known (up to one of three possibilities if (G, p) = (E6, 13) or (E7,

19)) and X stabilizes a nonzero subalgebra of 〈eα |α ∈ Φ+(G)〉. This allows us to
reduce to the case where X is contained in a proper parabolic subgroup P = QL
of G. Let π : P → P/Q be the quotient map. Using π , we identify L with P/Q
and so we may view π(X) as a subgroup of L ′. We may as well assume that P is
a minimal parabolic (with respect to containing X ), so π(X) is not contained in
a proper parabolic subgroup of L ′. Now π(x) ∈ L ′ is a regular unipotent element
which is contained in an A1-type subgroup H of L ′ (this follows by combining
Theorem 2.23 with the aforementioned earlier work of Seitz and Testerman [29]
for classical groups). By inspecting [15], we can determine the action of H on V ,
which must be compatible with the action of X on V given in Theorem 2.23. In
this way we deduce that (G, p, L ′) = (E6, 13, D5) and (E7, 19, E6) are the only
possibilities, and this completes the proof of Theorem 1.

https://doi.org/10.1017/fms.2019.12 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.12


A1-type subgroups containing regular unipotent elements 9

Notation

Our notation is fairly standard. For a simple algebraic group G we write Φ(G),
Φ+(G) and Π(G) = {α1, . . . , αr } for the set of roots, positive roots and simple
roots of G, with respect to a fixed Borel subgroup, and we follow Bourbaki [4]
in labelling the simple roots. We often denote a root α = a1α1 + · · · + arαr by
writing α = a1 · · · ar . If V is a module for a group then soc(V ) and rad(V ) denote
the socle and radical of V , respectively, and we write V m to denote V ⊕ · · · ⊕ V
(with m summands). It will be convenient to write [An1

1 , . . . , Ank
k ] for a block-

diagonal matrix with a block Ai occurring with multiplicity ni . In addition, we
write Ji for a standard (upper triangular) unipotent Jordan block of size i .

2. Preliminaries

In this section, we record some preliminary results that will be needed in the
proof of Theorem 1. We start by recalling some well-known results from the
modular representation theory of the simple groups PSL2(p). Our main reference
is Alperin [1].

2.1. Representation theory. Let K be an algebraically closed field of
characteristic p > 5, let X = PSL2(p) and let P = 〈x〉 ∼= Z p be a Sylow
p-subgroup of X .

The subgroup P of X has exactly p indecomposable KP-modules, say Wi for
i = 1, . . . , p, where dim Wi = i and Wp is the unique projective indecomposable
KP-module. The element x has Jordan form [Ji ] on Wi . In particular, if W is a
projective KP-module, then dim W = ap for some a > 1, and x has Jordan form
[J a

p ] on W .
There are precisely (p + 1)/2 simple KX-modules, labelled V1, V3, . . . ,

Vp in [1], where dim Vi = i . In particular, every simple KX-module is odd-
dimensional. Here V1 is the trivial module and Vp is the Steinberg module. It
is easy to see that x has Jordan form [Ji ] on Vi . By a theorem of Steinberg, each
Vi is the restriction of a simple module for the corresponding algebraic group of
type A1 (see [33, Section 13]), so we can refer to the highest weight of Vi with
respect to a maximal torus of the algebraic A1. We identify the weights of this
1-dimensional torus with the set of integers, and we often write Vi = L X (i − 1)
to highlight the highest weight of Vi .

Similarly, there are precisely (p+1)/2 projective indecomposable KX-modules,
labelled P1, P3, . . . , Pp in [1], where Pp = Vp is simple and the remainder are
reducible. Here dim P1 = dim Pp = p and dim Pi = 2p for 1 < i < p. The
element x has Jordan form [Jp] on P1 and Pp, and Jordan form [J 2

p ] on the
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remaining Pi . The structure of these modules is described by Alperin [1, pages 48–
49]. In terms of composition factors, we have

P1 = V1|Vp−2|V1

and
Pi = Vi |(Vp−i+1⊕ Vp−i−1)|Vi

where 1 < i < p is odd. (Here this notation indicates that soc(Pi) ∼= Pi/rad(Pi) ∼=

Vi and rad(Pi)/soc(Pi) ∼= Vp−i+1⊕ Vp−i−1.) It will be convenient to define

U = P1 = L X (0)|L X (p − 3)|L X (0) (3)

and

W (i) = Pi+1 = L X (i)|(L X (p − i − 1)⊕ L X (p − i − 3))|L X (i) (4)

for i ∈ {2, 4, . . . , p − 3}.
The Green correspondence (see [1, Section 11]) implies that if V is an

indecomposable KX-module then V |P = W ⊕W ′ where W is projective (or zero)
and W ′ is indecomposable (or zero). In particular, the following lemma holds.

LEMMA 2.1. Let V be an n-dimensional indecomposable KX-module and write
n = ap + b, where a > 0 and 0 6 b < p. Then x has Jordan form [J a

p , Jb] on V .

The main result on the structure of indecomposable KX-modules is the
following theorem. Here we define a subtuple of an n-tuple [m1, . . . ,mn] to be
a tuple of the form [m i ,m i+1, . . . ,m j ] for some 1 6 i 6 j 6 n. We denote this
by writing

[m i ,m i+1, . . . ,m j ] ⊆ [m1, . . . ,mn].

THEOREM 2.2. Let V be a reducible indecomposable nonprojective KX-module.
Then there exists an integer ` > 2 and a subtuple

[a1, . . . , a`] ⊆ [1, p − 2, 3, p − 4, . . . , p − 2, 1]

such that

soc(V ) = Va1 ⊕ Va3 ⊕ · · · ⊕ Va`−ε , V/soc(V ) = Va2 ⊕ Va4 ⊕ · · · ⊕ Va`−1+ε

where ε = 1 if ` is even, otherwise ε = 0.

Proof. This follows from the discussion in [12, Section 3]. Also see [9,
Section 7.3].
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COROLLARY 2.3. Let V be an indecomposable KX-module with precisely two
composition factors. If soc(V ) = L X (i) then

V/soc(V ) ∈ {L X (p − i − 3), L X (p − i − 1)}

for some i ∈ {0, 2, . . . , p − 3}, hence dim V = p ± 1.

COROLLARY 2.4. Let V be a reducible indecomposable KX-module. Then
dim V > p − 1. Moreover, if V has at least four composition factors, then
dim V > 2(p − 1).

2.2. Traces. As in Section 2.1, let K be an algebraically closed field of
characteristic p > 5 and set X = PSL2(p). Let x2 and x3 be representatives of
the unique conjugacy classes of elements of order 2 and 3 in X , respectively (note
that xi is semisimple since p > 5). Let V be a KX-module and let tr(V, xi) denote
the trace of xi on V .

LEMMA 2.5. If V = L X (i) then

tr(V, x2) = (−1)i/2, tr(V, x3) =

1 i ≡ 0 (mod 3)
−1 i ≡ 1 (mod 3)
0 i ≡ 2 (mod 3).

Proof. This is a straightforward calculation, using the fact that we can identify
L X (i) with the i th symmetric power Symi(M), where M is the natural module
for SL2(K ).

If V is a KX-module with composition factors M1, . . . ,Mk , then

tr(V, xi) =

k∑
j=1

tr(M j , xi)

since the action of xi is diagonalizable. Therefore, the next two results are
immediate corollaries of Lemma 2.5 (here we use the notation U and W (i)
defined in (3) and (4)).

LEMMA 2.6. We have

tr(U, x2) =

{
1 p ≡ 1 (mod 4)
3 p ≡ 3 (mod 4), tr(U, x3) =

{
1 p ≡ 1 (mod 3)
2 p ≡ 2 (mod 3).
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Table 1. Traces of elements of order 2 and 3 on the adjoint module.

G T2(G, V ) T3(G, V )
G2 −2 −1, 5
F4 −4, 20 −2, 7
E6 −2, 14 −3, 3, 6, 15, 30
E7 −7, 5, 25 −2, 7, 34, 52
E8 −8, 24 −4, 5, 14, 77

LEMMA 2.7. We have

tr(W (i), x2) =

{
2 i ≡ 0 (mod 4)
−2 i ≡ 2 (mod 4)

and

tr(W (i), x3) =



{
2 p ≡ 1 (mod 3)
1 p ≡ 2 (mod 3) i ≡ 0 (mod 3)

{
−1 p ≡ 1 (mod 3)
−2 p ≡ 2 (mod 3) i ≡ 1 (mod 3)

{
−1 p ≡ 1 (mod 3)
1 p ≡ 2 (mod 3) i ≡ 2 (mod 3).

Let G be a simple algebraic group over K of adjoint type, let V be a KG-module
and let m be a positive integer. Define

Tm(G, V ) = {tr(V, x) | x ∈ G has order m}.

Recall that the adjoint module for G is the Lie algebra Lie(G), on which G acts
via the adjoint representation.

PROPOSITION 2.8. Let G be a simple exceptional algebraic group of adjoint type
over an algebraically closed field of characteristic p > 5. Let V = Lie(G) be the
adjoint module. Then Tm(G, V ) is recorded in Table 1 for m ∈ {2, 3}.

Proof. This follows by inspecting the dimensions of the centralizers of elements
of order m in G (see [10, Tables 4.3.1 and 4.7.1]), using the fact that

dim CV (g) = dim CG(g)

for every semisimple element g ∈ G (see [6, Section 1.14], for example).
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Table 2. The action of X on V = Lie(G) in Proposition 2.12.

G p V |X
G2 p > 11 L X (10)⊕ L X (2)

p = 7 W (2)
F4 p > 23 L X (22)⊕ L X (14)⊕ L X (10)⊕ L X (2)

p = 19 W (14)⊕ L X (10)⊕ L X (2)
p = 17 W (10)⊕ L X (14)⊕ L X (2)
p = 13 W (10)⊕W (2)

E6 p > 23 L X (22)⊕ L X (16)⊕ L X (14)⊕ L X (10)⊕ L X (8)⊕ L X (2)
p = 19 W (14)⊕ L X (16)⊕ L X (10)⊕ L X (8)⊕ L X (2)
p = 17 W (10)⊕ L X (16)⊕ L X (14)⊕ L X (8)⊕ L X (2)
p = 13 W (10)⊕W (8)⊕W (2)

E7 p > 37 L X (34)⊕ L X (26)⊕ L X (22)⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)
p = 31 W (26)⊕ L X (22)⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)
p = 29 W (22)⊕ L X (26)⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)
p = 23 W (18)⊕W (10)⊕ L X (22)⊕ L X (14)⊕ L X (2)
p = 19 W (14)⊕W (10)⊕W (2)⊕ L X (18)

E8 p > 59 L X (58)⊕ L X (46)⊕ L X (38)⊕ L X (34)⊕ L X (26)⊕ L X (22)
⊕ L X (14)⊕ L X (2)

p = 53 W (46)⊕ L X (38)⊕ L X (34)⊕ L X (26)⊕ L X (22)⊕ L X (14)⊕ L X (2)
p = 47 W (34)⊕ L X (46)⊕ L X (38)⊕ L X (26)⊕ L X (22)⊕ L X (14)⊕ L X (2)
p = 43 W (38)⊕W (26)⊕ L X (34)⊕ L X (22)⊕ L X (14)⊕ L X (2)
p = 41 W (34)⊕W (22)⊕ L X (38)⊕ L X (26)⊕ L X (14)⊕ L X (2)
p = 37 W (34)⊕W (26)⊕W (14)⊕ L X (22)⊕ L X (2)
p = 31 W (26)⊕W (22)⊕W (14)⊕W (2)

For instance, if g ∈ G = E8 has order 3 and CG(g) = A8, then dim CV (g) = 80
and the self-duality of V implies that the action of g on V is given by the diagonal
matrix [I80, ωI84, ω

2 I84], up to conjugacy, whereω is a primitive cube root of unity.
Therefore, tr(V, g) = −4.

REMARK 2.9. Suppose X = PSL2(p) is contained in G = E6, where p > 5 and
G is adjoint. Write G = Ĝ/S and X = X̂/S, where Ĝ is the simply connected
group of type E6 and S = Z3 is the centre of Ĝ. Now X has Schur multiplier Z2,
which implies that X̂ = Z3×X . Therefore, every element y ∈ X of order 3 lifts to
an element in Ĝ of order 3. In particular, if y ∈ X has order 3 then CG(y)0 = A5T1,
D4T2 or A3

2 (see [10, Table 4.7.1]), whence tr(V, y) ∈ {−3, 6, 15} with respect to
V = Lie(G).

REMARK 2.10. In a few cases it is helpful to know the eigenvalue multiplicities
on V of elements in G of order m > 3 for certain values of m; the relevant cases
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are the following:

(G,m) ∈ {(F4, 7), (E6, 7), (E7, 5), (E8, 19)}.

It is straightforward to obtain this information with the aid of MAGMA [3], using
an algorithm of Litterick (see [21, Section 3.3.1]), which is heavily based on work
of Moody and Patera [25]. We thank Dr. Litterick for his assistance with these
computations.

2.3. A1-type subgroups. Let G be a simple algebraic group and recall that p
is a good prime for G if p > 2 in types B,C and D, p > 3 for G2, F4, E6 and E7,
and p > 5 when G is of type E8 (all primes are good in type A).

PROPOSITION 2.11. Let G be a simple algebraic group of adjoint type over an
algebraically closed field of good characteristic p > 0. Let x ∈ G be an element
of order p.

(i) There is an A1-type subgroup of G containing x.

(ii) If x is regular then the subgroup in (i) is unique up to G-conjugacy.

Proof. Part (i) follows from the main theorem of [35]. Part (ii), for G exceptional,
follows from [15, Theorem 4]. Now assume G is classical and let H be an A1-type
subgroup of G containing x . Let V be the natural module for G. By [36, Theorem
1.2], H is not contained in a proper parabolic subgroup of G. In particular, if G
is of type A, B or C then H acts irreducibly and tensor indecomposably (see [36,
Proposition 2.3]) on V and the conjugacy statement follows from representation
theory.

Finally, let us assume G = Dr (with r > 4). We claim that H < L < G, where
L = Br−1 is the stabilizer of a nonsingular 1-space. The result then follows since
H is unique in L up to L-conjugacy, and L itself is unique up to G-conjugacy.
To justify the claim, first observe that x has Jordan form [J2r−1, J1] on V , using
[27, Lemma 1.2(ii)] and the fact that x has order p, so p 6= 2. If H acts irreducibly
on V then the Jordan form of x implies that H is tensor decomposable, but this
is incompatible with [27, Lemma 1.5]. Therefore, H acts reducibly on V and we
complete the argument by applying [20, Lemma 2.2].

PROPOSITION 2.12. Let G be a simple exceptional algebraic group of adjoint
type and let x ∈ G be a regular unipotent element such that

x ∈ X = PSL2(p) < A < G,
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where A is an A1-type subgroup. Then the action of X on the adjoint module
V = Lie(G) is given in Table 2.

Proof. A precise description of V |A as a tilting module is given in [19, Table
10.1] (for G = E6 we may assume that A < F4 < G so the action of A on V
can be deduced from the actions of A on Lie(F4) and the minimal module for F4

(see [19, Table 10.2])). Following [19], we write T (λ;µ; . . .) for a tilting module
having the same composition factors as the direct sum of Weyl modules for A
with highest weights λ,µ, . . . In terms of this notation, we get

V |A =


T (10; 2) G = G2

T (22; 14; 10; 2) G = F4

T (22; 16; 14; 10; 8; 2) G = E6

T (34; 26; 22; 18; 14; 10; 2) G = E7

T (58; 46; 38; 34; 26; 22; 14; 2) G = E8.

As explained at the start of [19, Section 10], we can express T (λ;µ; . . .) as a
direct sum of indecomposable tilting modules of the form T (c), where the highest
weight c is at most 2p − 2. For example, suppose G = F4 and p = 19, so V |A =
T (22; 14; 10; 2) as above. The highest weight is 22, so one summand is T (22),
which is a uniserial module of shape 14|22|14 (see [28, Lemma 2.3]). The highest
weight not already accounted for is 10, so T (10) = L A(10) is a summand and we
deduce that V |A = T (22)⊕ L A(10)⊕ L A(2) and thus

V |X = T (22)|X ⊕ L X (10)⊕ L X (2).

By [28, Lemma 2.3], T (22)|X is a projective indecomposable KX-module of
dimension 2p = 38, so T (22)|X = W (i) for some i . By comparing socles, it
follows that i = 14 and thus

V |X = W (14)⊕ L X (10)⊕ L X (2)

as recorded in Table 2. The other cases are similar and we omit the details.

For the remainder of this section, let G be a simple exceptional algebraic group
of adjoint type over an algebraically closed field K of characteristic p > 0, and let
r and h = h(G) be the rank and Coxeter number of G, respectively. We assume
G contains a regular unipotent element of order p, which means that

p > h. (5)

We need to recall the construction of A1-type subgroups of G containing regular
unipotent elements, following the treatment in [31, 34, 35].
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First we need some new notation. Let LC be a simple Lie algebra over C of
type Φ(G). Fix a Chevalley basis

B = {eα, fα, hγ |α ∈ Φ+(G), γ ∈ Π(G)}

of LC and write zi = zαi for z ∈ {e, f, h} and Π(G) = {α1, . . . , αr }. It will be
convenient to define fα = e−α for each α ∈ Φ+(G). Let LZ be the Z-span of B
and set LK = LZ ⊗Z K . (By abuse of notation, we also write eα, fα, ei , fi , hi for
the elements eα ⊗ 1, fα ⊗ 1, and so forth, in LK .) Fix a root α ∈ Φ(G). As in the
familiar Chevalley construction, we have

(ad(eα) j/j !)(LZ) ⊆ LZ

for all j > 0, and this allows us to construct the element

exp(ad(xeα)) ∈ GLdim G(Z[x]),

where x is an indeterminate. Passing to K , we obtain a 1-dimensional unipotent
subgroup

Uα = {exp(ad(γ eα)) | γ ∈ K } 6 Aut(LK )
0
= G

(see [5, Proposition 4.4.2]). Note that G = 〈Uα |α ∈ Φ(G)〉.
Given the lower bound on p in (5), we can make a similar construction for more

general elements of LZ. To do this, let LZ(p) be the Z(p)-span of B, where Z(p) is
the localization of Z at the prime ideal (p) = pZ, so that LK = LZ(p) ⊗Z(p) K . By
[35, Proposition 1.5] we have

(ad(e) j/j !)(LZ(p)) ⊆ LZ(p)

for all e ∈
∑

α∈Φ+(G) Zeα and all j > 0. Then as in the Chevalley construction, for
any nonzero element y in

∑
α∈Φ+(G) Zeα or

∑
α∈Φ+(G) Z fα, we can produce

xy(x) = exp(ad(xy)) ∈ GLdim G(Z(p)[x]).

In particular, by passing to K , we define

Uy = {xy(γ ) = exp(ad(γ y)) | γ ∈ K } ⊆ Aut(LK )
0
= G. (6)

We use this general set-up to construct certain A1-type subgroups of our group
G, following [34, 35]. In order to state the main result (Proposition 2.13 below),
recall that an ordered triple of elements (e, h, f ) chosen from LK (or from LZ)
is an sl2-triple if the elements satisfy the commutation relations between the
standard generators of the Lie algebra sl2, namely

[h, e] = 2e, [h, f ] = −2 f, [e, f ] = h.

We have the following result (in part (iii), we use the notation xy(γ ) from (6)).
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PROPOSITION 2.13. Suppose p > h(G) and (e, h, f ) is an sl2-triple of LZ, with
e =

∑r
i=1 ei and f ∈

∑r
i=1 Z fi . Then the following hold:

(i) Ue and U f are 1-dimensional subgroups of G.

(ii) A = 〈Ue,U f 〉 is an A1-type subgroup of G.

(iii) T = {t (c) | c ∈ K×} is a maximal torus of 〈Ue,U f 〉, where

t (c) = xe(c)x f (−c−1)xe(c)xe(−1)x f (1)xe(−1),

and the map t : Gm → T is a morphism of algebraic groups.

(iv) The action of T on the basis {v̄ = v ⊗ 1 | v ∈ B} of LK is given by

t (c) · ēα = cα(h)ēα, t (c) · h̄i = h̄i

for all α ∈ Φ(G), 1 6 i 6 r . Moreover, αi(h) = 2 for all 1 6 i 6 r .

(v) T normalizes Ue and U f .

(vi) Ue contains a regular unipotent element of G.

Proof. This follows by combining [34, Lemmas 1 and 2] with [35, Lemma 1.2].

The following result will play an important role in the proof of Theorem 1.

PROPOSITION 2.14. Suppose p > h(G) and (e, h, f ) is an sl2-triple of LZ, with
e =

∑r
i=1 ei and f ∈

∑r
i=1 Z fi . Let W be the 3-dimensional subalgebra of LK

generated by {e, f } and let H be the stabilizer of W in G. Then H is an A1-type
subgroup of G.

Proof. Let A be the A1-type subgroup of G constructed in Proposition 2.13(ii).
Note that A contains a regular unipotent element and it clearly stabilizes W
by construction, so A 6 H . Let M1 be a maximal closed positive-dimensional
subgroup of G with H 6 M1. By the main theorem of [36], A is not contained
in a proper parabolic subgroup of G, so Borel–Tits [2, Corollary 3.9] (also see
Weisfeiler [37]) implies that M1 is reductive. By [27, Theorem A], either M1 is an
A1-type subgroup (and thus A = H = M1), or G = E6 and M1 = F4. In the latter
case, H 6= M1 since M1 does not stabilize a 3-dimensional subspace of LK , so let
M2 be a maximal closed positive-dimensional subgroup of M1 with H 6 M2. As
above, M2 is reductive and by applying [27, Theorem A] once again, we conclude
that A = H = M2.
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We would like to be able to use Proposition 2.14 to identify the stabilizers of
other sl2-subalgebras of LK . With this aim in mind, we present Proposition 2.15
below. In order to state this result, we need some additional notation.

Suppose we have an sl2-triple (e, h, f ) as in Proposition 2.13. Let T be the
1-dimensional torus constructed in part (iii) of the proposition. Let α0 ∈ Φ(G) be
the highest root and recall that h(G) = ht(α0) + 1, where ht : Φ(G)→ N is the
familiar height function (that is, if α =

∑
i aiαi then ht(α) =

∑
i ai ). Then

{2i |−ht(α0) 6 i 6 ht(α0)}

is the set of weights of T on both LZ and LK . For each T -weight m, write (LZ)m
for the corresponding T -weight space and similarly for LK . In both the statement
and proof of the following result, we use the notation ā = a⊗ 1 ∈ LK for a ∈ LZ.

PROPOSITION 2.15. Suppose p > h(G) and (e, h, f ) is an sl2-triple of LZ, with
e =

∑r
i=1 ei and f ∈

∑r
i=1 Z fi . Suppose y ∈ (LZ)p−1 ∩CLZ(e) and z ∈ (LZ)p−3

are chosen so that

(i) [y, z] = 0 in LZ; and

(ii) (ē, h̄ + γ ȳ, f̄ + γ z̄) is an sl2-triple in LK for some γ ∈ K .

Then there exists g ∈ CG(ē) such that g · h̄ = h̄ + γ ȳ and g · f̄ = f̄ + γ z̄ in LK .
Moreover, the stabilizer in G of the subalgebra W of LK generated by {ē, f̄ + γ z̄}
is an A1-type subgroup.

Proof. First observe that y ∈
∑

α∈Φ+(G) Zeα since y ∈ (LZ)p−1, so we can take
g = xy(γ ) ∈ G as in (6). Note that g ∈ CG(ē) since y ∈ CLZ(e). Now y is an
eigenvector for ad(h) (since y is a T -weight vector), so [y, [y, h]] = 0 and thus

g · h̄ = h̄ + γ [ȳ, h̄] = h̄ − γ [h̄, ȳ] = h̄ − γ (p − 1)ȳ = h̄ + γ ȳ.

The maximum T -weight in LZ is 2ht(α0), which is at most 2(p − 1) since p >
h(G) > ht(α0), so ad(y)i( f ) ∈ (LZ)i(p−1)−2 = 0 for all i > 3 and thus

g · f̄ = f̄ + γ [ȳ, f̄ ] + 1
2γ

2
[ȳ, [ȳ, f̄ ]].

In addition, since [y, z] = 0 and z ∈ (LZ)p−3, we have

[h + y, f + z] = −2 f + (p − 3)z + [y, f ]. (7)

The sl2 commutation relations imply that [h̄ + ȳ, f̄ + z̄] = −2( f̄ + z̄), which
is equal to −2 f̄ − 3z̄ + [ȳ, f̄ ] by (7). Therefore, [ȳ, f̄ ] = z̄ and it follows that
[ȳ, [ȳ, f̄ ]] = 0. We conclude that g · h̄ = h̄ + γ ȳ and g · f̄ = f̄ + γ z̄ in LK , as
required. The final statement concerning the stabilizer of W follows immediately
from Proposition 2.14.
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2.4. Exponentiation. In this section, we turn to a different notion of
‘exponentiation’, following Seitz [28]. As before, let G be a simple exceptional
algebraic group of adjoint type over an algebraically closed field K of
characteristic p > 0 and let r and h denote the rank and Coxeter number of
G, respectively. Let U = 〈Uα | α ∈ Φ

+(G)〉 be the unipotent radical of a fixed
Borel subgroup B of G corresponding to our choice of base Π(G) = {α1,

. . . , αr }, where the root subgroup Uα is defined as in (6). As explained in [28,
Section 5], we may view Lie(U ) as an algebraic group via the Hausdorff formula.
Set V = Lie(G).

We start by recalling [28, Proposition 5.3].

PROPOSITION 2.16. Suppose p > h. Then there exists a unique isomorphism of
algebraic groups

θ : Lie(U )→ U (8)

whose tangent map is the identity and which is B-equivariant; that is, θ(b · n) =
bθ(n)b−1 for all n ∈ Lie(U ), b ∈ B.

Suppose G contains a regular unipotent element x of order p, so p > h and we
are in a position to use Proposition 2.16 to study the structure of CG(x). Replacing
x by a suitable conjugate, we may assume that

x = xe(1) = exp(ad(e)),

where e =
∑r

i=1 ei . As in Proposition 2.13, let A be an A1-type subgroup of
G containing x , and let T = {t (c) | c ∈ K×} be the given maximal torus of
A. Without loss of generality, we may assume that T is contained in the Borel
subgroup B defined above. From the description of the action of A on V = Lie(G)
in the proof of Proposition 2.12, it follows that t (c) acts on the 1-eigenspace
CV (x) = Lie(CG(x)) as

diag(cd1, . . . , cdr ), (9)

where the di are recorded in Table 3 (we label the di so that they form a decreasing
sequence).

PROPOSITION 2.17. Let x = xe(1) ∈ G be a regular unipotent element of order
p, where e =

∑r
i=1 ei , and let T = {t (c) | c ∈ K×} be the torus constructed in

Proposition 2.13. Then there exist connected 1-dimensional unipotent subgroups
X i = {xi(γ ) | γ ∈ K } such that the following hold:

(i) CG(x) = 〈X i | 1 6 i 6 r〉. In particular, each z ∈ CG(x) can be written as a
commuting product of the form z =

∏r
i=1 xi(γi) for some γi ∈ K .
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Table 3. The integers d1, . . . , dr in (9).

G di

G2 10, 2
F4 22, 14, 10, 2
E6 22, 16, 14, 10, 8, 2
E7 34, 26, 22, 18, 14, 10, 2
E8 58, 46, 38, 34, 26, 22, 14, 2

(ii) We have
t (c)xi(γ )t (c)−1

= xi(cdiγ ) (10)

for all c ∈ K×, γ ∈ K , 1 6 i 6 r .

Proof. First note that p > h since x has order p. As above, let

U = 〈Uα |α ∈ Φ
+(G)〉

be the unipotent radical of a Borel subgroup B of G and note that x ∈ U and
T 6 B. Moreover, we have CG(x) 6 U and thus CV (x) = Lie(CG(x)) ⊆ Lie(U ).
Choose vr ∈ Lie(U ) such that θ(vr ) = x , where θ is the map in Proposition 2.16.
Extend to a basis {v1, . . . , vr } of the 1-eigenspace CV (x), where t (c) · vi = cdivi

for each i , and construct the corresponding connected 1-dimensional unipotent
subgroups

X i = {xi(γ ) = θ(γ vi) | γ ∈ K } 6 G.

Recall that CG(x) is abelian, so CV (x) = Lie(CG(x)) is an abelian subalgebra
and the proof of [28, Proposition 5.4] implies that each X i is contained in CG(x).
Therefore, H = 〈X i | 1 6 i 6 r〉 is a closed connected unipotent subgroup of
CG(x). Moreover, vi ∈ Lie(X i) for each i , so dim H > r and thus H = CG(x)
(note that CG(x) is connected since G is adjoint). Part (i) now follows since
CG(x) is abelian. Finally, part (ii) follows from the B-equivariance of θ (see
Proposition 2.16).

PROPOSITION 2.18. Let U be the unipotent radical of a Borel subgroup B of G,
let W be a proper nonzero subalgebra of Lie(U ) and let H be the stabilizer of
W in G. Assume H contains a regular unipotent element of G of order p. Then
either

(i) H is contained in a proper parabolic subgroup of G; or

(ii) H is contained in an A1-type subgroup of G.
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Proof. Since p > h, we can consider the isomorphism θ : Lie(U ) → U in (8).
Let Z = Z(W ) be the centre of W , which is a nonzero abelian subalgebra of W
stabilized by H . We claim that θ(Z) 6 H . To see this, let z ∈ Z , w ∈ W and
note that θ(z) and θ(w) commute since [z, w] = 0 in Lie(U ) (see the proof of
[28, Proposition 5.4]). The B-equivariance of θ implies that

θ(θ(z) · w) = θ(z)θ(w)θ(z)−1
= θ(w),

so θ(z) · w = w and the claim follows. Therefore, H is a positive-dimensional
subgroup of G containing a regular unipotent element.

To complete the argument, we proceed as in the proof of Proposition 2.14,
using Borel–Tits [2, Corollary 3.9]. Let us assume H is not contained in a proper
parabolic subgroup of G. Then H 6 M1, where M1 is a maximal closed reductive
positive-dimensional subgroup of G. By the main theorem of [27], either M1 is
an A1-type subgroup, or G = E6 and M1 = F4, so we may assume that we are in
the latter situation. Suppose H = M1. Since

V |M1 = Lie(M1)⊕ V26,

where V26 is the minimal module for M1, it follows that W = V26 is the only
possibility. But V26 must contain nonzero elements in the Lie algebra of a maximal
torus of G (just by comparing dimensions) and this is a contradiction. Therefore
H is a proper subgroup of M1 and thus H 6 M2 for some maximal closed
reductive subgroup M2 of M1. By a further application of [27] we conclude that
H is contained in an A1-type subgroup of G.

2.5. Methods. In this section, we discuss the proof of Theorem 1, highlighting
the main steps and ideas.

Let G be a simple exceptional algebraic group of adjoint type defined over an
algebraically closed field K of characteristic p > 0. Let r be the rank of G and let
V = Lie(G) be the adjoint module. Suppose x ∈ X = PSL2(p) < G is a regular
unipotent element of G, so p > h where h is the Coxeter number of G. The
embedding of X in G corresponds to an abstract homomorphism ϕ : SL2(p)→ G
with kernel Z = Z(SL2(p)) and image X .

As before, let LC be a simple Lie algebra over C of type Φ(G) and fix a
Chevalley basis

B = {eα, fα, hγ |α ∈ Φ+(G), γ ∈ Π(G)}. (11)

Since p > h, we can view B as a basis for V , where eα, fα are in the appropriate
root spaces with respect to the Cartan subalgebra spanned by the hγ . It will be
convenient to write zi = zαi for z ∈ {e, f, h} and Π(G) = {α1, . . . , αr }.
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Set e =
∑r

i=1 ei and let (e, h, f ) be an sl2-triple as in Proposition 2.13. Let A be
the corresponding A1-type subgroup of G constructed in Proposition 2.13, with
maximal torus T = {t (c) | c ∈ K×} and associated morphism t : Gm → T . By
replacing X by a suitable G-conjugate, we may assume that x = exp(ad(e)) ∈ A.
Let v : Ga → A be a morphism of algebraic groups such that

t (c)v(γ )t (c)−1
= v(c2γ )

for all c ∈ K×, γ ∈ K . We may assume v : Ga → im(v) is an isomorphism of
algebraic groups.

Consider the elements

u =
(

1 1
0 1

)
, s =

(
ξ 0
0 ξ−1

)
(12)

in SL2(p), where F×p = 〈ξ〉 = {1, . . . , p − 1}. Without loss of generality, we
may assume that x = ϕ(u) = v(1) so ϕ(sus−1) = ϕ(um) = v(m) with m = ξ 2.
Then t (ξ)xt (ξ)−1

= ϕ(s)xϕ(s)−1 and thus ϕ(s) = t (ξ)z for some z ∈ CG(x). Set
s̄ = ϕ(s) ∈ X .

LEMMA 2.19. There exists a CG(x)-conjugate of X containing x and t (ξ).

Proof. As noted above, we have s̄ = t (ξ)z for some z ∈ CG(x). By
Proposition 2.17 there are scalars γi ∈ K such that z =

∏r
i=1 xi(γi). Let us

consider a general element y =
∏r

i=1 xi(δi) ∈ CG(x). In view of (10), we get

ys̄ y−1
=

∏
i

xi(δi)t (ξ)
∏

i

xi(γi − δi)t (ξ)−1t (ξ)

=

∏
i

xi(δi)
∏

i

xi(ξ
di (γi − δi))t (ξ)

=

∏
i

xi(δi + ξ
di (γi − δi))t (ξ)

where the di are the integers appearing in Table 3.
Since p > h and F×p = 〈ξ〉, it is easy to see that there is at most one i such

that ξ di = 1. If there is no such i then we can set δi = ξ
diγi/(ξ

di − 1) for all i ,
so ys̄ y−1

= t (ξ) and X y is the desired conjugate of X . Finally, suppose ξ d j = 1
and γ j 6= 0 for some j . By defining δi as above for all i 6= j , we get ys̄ y−1

=

t (ξ)x j(γ j)with [t (ξ), x j(γ j)] = 1. But this implies that ys̄ y−1 is a nonsemisimple
element, which contradicts the semisimplicity of s̄.

In view of the lemma, we may assume that X contains t (ξ), which corresponds
to a diagonalizable element s ∈ SL2(p) with eigenvalues ξ and ξ−1. Since
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t (ξ) ∈ T , we can use the known action of A on V (see the proof of
Proposition 2.12) to determine the eigenvectors and eigenspaces of s on V .
For example,

{ξ d1, ξ d2, . . . , ξ dr } (13)

is the collection of eigenvalues of s on CV (x), where the di are given in Table 3.
We set s̄ = t (ξ) = s Z ∈ X , where Z is the centre of SL2(p). Note that A contains
the Borel subgroup 〈s̄, x〉 of X .

The proof of Theorem 1 has three main steps, which we now describe.

Step 1: Elimination. Our initial aim is to reduce to the situation where the action
of X on V is compatible with the decomposition of V as an A-module given
in Table 2. In almost all cases, we are able to achieve this goal. To do this, we
consider the possible decompositions of V |X as a direct sum of indecomposable
KX-modules, using the description of these modules given in Section 2.1, with
the aim of eliminating all but one possibility.

First we use the fact that the decomposition of V |X has to be compatible with
the Jordan form of x on V (this can be read off from the relevant tables in [14]).
In addition, it must be compatible with the known eigenvalues of s on V (as noted
above, these are just the eigenvalues of t (ξ) on V , which we can compute from
the known action of A on V ). Note that if M is an indecomposable summand of
V |X then the restriction of M to 〈s〉 is completely reducible, so we just need to
identify the KX-composition factors of M in order to compute the eigenvalues of
s on this summand. Often it is sufficient to compare the eigenvalues of s on CV (x)
with the expected eigenvalues in (13), and we can also use our earlier calculations
on the traces of elements of order 2 and 3 to obtain further restrictions on V |X (see
Section 2.2). With this approach in mind, the following lemma will be useful.

LEMMA 2.20. Let M be an indecomposable KX-module of the form L X (i), U or
W ( j), where i ∈ {0, 2, . . . , p−1} and j ∈ {2, 4, . . . , p−3}. Then the eigenvalues
of s on CM(x) are ξ i , 1 and {ξ j , ξ− j

}, respectively.

Proof. First recall that x has Jordan form [Ji+1], [Jp] and [J 2
p ] on L X (i), U and

W ( j), respectively. The fixed point of x on the simple module L X (i) has highest
weight i , so the result is clear in this case. Similarly, soc(U ) = L X (0) so s has
eigenvalue ξ 0 on CU (x). Finally, suppose M = W ( j). The highest weight of
soc(M) = L X ( j) is j , so ξ j is one of the eigenvalues of s on CM(x). To determine
the second eigenvalue, it is helpful to view W ( j) as the restriction to X of the
tilting module T (2p− 2− j) for the ambient algebraic group of type A1 (see [28,
Lemma 2.3]). On the latter module, x has a fixed point of weight 2p− 2− j (the
high weight), so the eigenvalue of s is ξ 2p−2− j

= ξ− j as required.
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Let us illustrate how Step 1 is carried out in the specific case (G, p) = (E8, 31).

EXAMPLE 2.21. Suppose G = E8 and p = 31, so x has Jordan form [J 8
31] on V

(see [14, Table 9]). In particular, V |X is projective and thus every indecomposable
summand of V |X is also projective. In terms of the notation introduced in
Section 2.1, the possibilities for V |X are as follows

M1⊕M2⊕M3⊕M4⊕M5⊕M6⊕M7⊕M8

W (a1)⊕M1⊕M2⊕M3⊕M4⊕M5⊕M6

W (a1)⊕W (a2)⊕M1⊕M2⊕M3⊕M4

W (a1)⊕W (a2)⊕W (a3)⊕M1⊕M2

W (a1)⊕W (a2)⊕W (a3)⊕W (a4)

where Mi ∈ {L X (30),U } and ai ∈ {2, 4, . . . , 28}. If V |X has an Mi summand,
then s has an eigenvalue ξ 30

= ξ 0 on CV (x), which contradicts (13), so we must
have

V |X = W (a1)⊕W (a2)⊕W (a3)⊕W (a4).

Since ξ 30
= 1 and s has eigenvalues ξ i , ξ−i on CW (i)(x) (see Lemma 2.20), it

follows that

{ξ a1, ξ−a1, ξ a2, ξ−a2, ξ a3, ξ−a3, ξ a4, ξ−a4} = {ξ 28, ξ 16, ξ 8, ξ 4, ξ 26, ξ 22, ξ 14, ξ 2
}

(see Table 3). Up to a reordering of summands, this immediately implies that

a1 ∈ {2, 28}, a2 ∈ {4, 26}, a3 ∈ {8, 22}, a4 ∈ {14, 16}.

Let y ∈ X be an involution. Since tr(W (i), y) = ±2 and tr(V, y) ∈ {−8, 24}
(see Lemma 2.7 and Proposition 2.8), it follows that tr(W (ai), y) = −2 for all
i , whence ai ≡ 2 (mod 4) and thus (a1, a2, a3, a4) = (2, 26, 22, 14) is the only
possibility. We have now reduced to the case where the decomposition of V |X is
compatible with V |A (see Table 2).

Step 2: Extension. Next observe that if V |X has the decomposition given in Table 2
then the socle of V |X has a simple summand W = L X (2). To complete the
argument, we aim to show that W is an sl2-subalgebra of V and its stabilizer
in G is an A1-type subgroup. We can do this in almost every case; the exceptions
are the two special cases appearing in the statement of Theorem 1.

Let {w2, w0, w−2} be a basis for W , where wi is an eigenvector for s with
eigenvalue ξ i . We may assume that the action of x on W is given by the matrix1 1 1

0 1 2
0 0 1

 (14)
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with respect to this basis (that is, x(w0) = w0 + w2, and so forth). If we define
s̄ = s Z ∈ X as above then 〈s̄, x〉 is a Borel subgroup of X and we can consider
the opposite Borel subgroup 〈s̄, x ′〉 of X , where x ′ ∈ X is also a regular unipotent
element of order p. With respect to the above basis, we may assume that x ′ acts
on W via the matrix 1 0 0

2 1 0
1 1 1

 . (15)

If all these conditions are satisfied, then we say that {w2, w0, w−2} is a standard
basis for W .

With the aid of MAGMA [3] we can construct a dim G × dim G matrix to
represent the action of x on V with respect to our Chevalley basis B. Let us
illustrate this with an example.

EXAMPLE 2.22. For (G, p) = (G2, 7) we proceed as follows in MAGMA:

G:=GroupOfLieType("G2",Rationals());
L:=LieAlgebra(G);
e,f,h:=ChevalleyBasis(L);
I1:=[1..6]; I2:=[1..2];

B:=[f[7-i] : i in I1] cat [e[i]*f[i] : i in I2] cat [e[i] : i in I1];
L:=ChangeBasis(L,B);
B:=Basis(L);
e:=[B[8+i] : i in I1]; f:=[B[7-i] : i in I1]; h:=[B[6+i] : i in I2];

ad:=AdjointRepresentation(L);
y:=ad(e[1]+e[2]);
A:=MatrixAlgebra(Rationals(),14);
x:=Identity(A); y:=A!y;
for i in [1..10] do x:=x+(1/Factorial(i))*yˆi; end for;
B:=MatrixAlgebra(GF(7),14);
x:=B!x;

In this example, we are working with a Chevalley basis

B = {e[i], f [i], h[ j] : i ∈ {1, . . . , 6}, j ∈ {1, 2}}

where e[i] spans the root space of the i th positive root, f [i] is in the root space
of the corresponding negative root, and h[ j] = [e[ j], f [ j]] for j = 1, 2, with
respect to the following ordering

α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2

of positive roots (note that this agrees with the ordering given by the MAGMA
command PositiveRoots(G)). We adopt an analogous set-up in all cases.
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Moreover, we can use Proposition 2.13(iv) to compute the eigenvalues and
eigenvectors of t (ξ) (and thus s) on V in terms of B. For i ∈ Z, it will be
convenient to write Ei for the ξ i -eigenspace of s on V (sowi ∈ Ei for the elements
in a standard basis of W ).

Next we identify a basis {v1, . . . , vr } of the 1-eigenspace CV (x) = ker(x − 1)
in terms of B, where vi ∈ Edi (see Table 3). Since w2 ∈ CV (x)∩ E2 we can write

w2 =

r∑
i=1

aivi

for some ai ∈ K , where ai 6= 0 only if ξ di = ξ 2. Similarly,

w0 ∈ (ker((x − 1)2) \ ker(x − 1))∩ E0,

w−2 ∈ (ker((x − 1)3) \ ker((x − 1)2))∩ E−2.

Using MAGMA it is straightforward to compute bases for the relevant kernels;
these computations can be done by hand, but it is much quicker and more efficient
to use a machine.

Given these bases, say B2, B0 and B−2, we can write

w2 =
∑
v∈B2

avv, w0 =
∑
v∈B0

bvv, w−2 =
∑
v∈B−2

cvv

for av, bv, cv ∈ K and our goal is to determine these scalars. To do this, we can use
the specified actions of x and x ′ on W to derive relations between the coefficients.
Further relations can be determined by exploiting the fact that x and x ′ are regular
unipotent elements. For example, we observe that x ′ · w−2 = w−2 and

x ′ · [w−2, w0] = [w−2, w0 + w−2] = [w−2, w0],

where [ , ] is the Lie bracket on V , so w−2, [w−2, w0] ∈ CV (x ′). Since the
regularity of x ′ implies that CG(x ′) is abelian, it follows that CV (x ′) =
Lie(CG(x ′)) is an abelian subalgebra of V (for the latter equality, recall that
p > h) and thus

[w−2, [w−2, w0]] = 0. (16)

Proceeding in this way, our goal is to reduce to the case where W = 〈w2, w0,

w−2〉 is an sl2-subalgebra, with w2 =
∑r

i=1 ei and w−2 ∈
∑r

i=1 Z fi . Moreover, we
want to find integers λ,µ such that (w2, λw0, µw−2) is an sl2-triple over Z (that is,
an sl2-triple of LZ in the notation of Section 2.3). Indeed, if we can do this, then
Proposition 2.14 implies that the stabilizer of W in G is an A1-type subgroup and
so we are in the generic situation described in part (i) of Theorem 1. In a few cases,
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Table 4. The exceptional cases (G, p, V |X ) in Theorem 2.23.

G p V |X
F4 13 W (10)⊕W (2)
E6 13 W (10)⊕W (8)⊕W (2)

W (10)⊕W (4)⊕W (2)
W (10)2⊕W (4)

E7 19 W (8)⊕W (4)⊕W (2)⊕U
W (16)⊕W (10)⊕W (4)⊕U
W (16)⊕W (14)⊕W (8)⊕U

E8 37 W (34)⊕W (26)⊕W (14)⊕ L X (22)⊕ L X (2)

we are unable to force w−2 ∈
∑r

i=1 Z fi , but by appealing to Proposition 2.15 we
can still show that the same conclusion holds.

In the remaining cases where W is not an sl2-subalgebra, or the action of X
on V is incompatible with V |A, we show that X stabilizes a nonzero subalgebra
of 〈eα |α ∈ Φ+(G)〉. More precisely, we establish the following result, which
reduces the proof of Theorem 1 to the handful of cases appearing in Table 4 (see
Remark 1(a) for the conjugacy statement in part (i)).

THEOREM 2.23 (Reduction Theorem). Let G be a simple exceptional algebraic
group of adjoint type over an algebraically closed field of characteristic p > 0.
Let X = PSL2(p) be a subgroup of G containing a regular unipotent element of
G and set V = Lie(G) with Chevalley basis as in (11). Then one of the following
holds:

(i) X is contained in an A1-type subgroup of G and X is uniquely determined
up to G-conjugacy;

(ii) X stabilizes a nonzero subalgebra of 〈eα |α ∈ Φ+(G)〉 and (G, p, V |X ) is
one of the cases in Table 4.

We prove the Reduction Theorem in Sections 3–7, considering each possibility
for G in turn.

Step 3: Parabolic analysis. The final step in our proof of Theorem 1 concerns the
cases arising in Theorem 2.23(ii), given in Table 4. In view of Proposition 2.18,
we may assume that X is contained in a proper parabolic subgroup P = QL of
G and we proceed by studying the possible embeddings of X in such a subgroup.
Take P to be a minimal such parabolic and let π : P → P/Q be the quotient map.
By identifying L with P/Q, we may view π(X) as a subgroup of L ′. Now we can
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show that π(X) < H , where H is an A1-type subgroup of L ′ containing a regular
unipotent element of L ′ (namely, π(x)), so we can use [15, Tables 1–5] to study
the composition factors of V |H for each (G, L ′). In turn, this imposes restrictions
on the decomposition of V |X . But the possibilities for V |X are listed in Table 4
and in this way we arrive at the two special cases in the statement of Theorem 1.
See Section 8 for the details. (Notice that we adopt a similar approach in the proof
of Theorem 2 below.)

EXAMPLE 2.24. To illustrate some of the above ideas, let us explain how we
handle the case (G, p) = (E8, 31). Recall that in Example 2.21 we reduced to the
situation where

V |X = W (2)⊕W (26)⊕W (22)⊕W (14),

which is compatible with the decomposition of V |A. By following the approach
in Example 2.22, we use MAGMA to determine the action of x on V in terms of a
Chevalley basis B.

Let W = soc(W (2)) = L X (2) and let {w2, w0, w−2} be a standard basis of W as
above. First consider w2 ∈ CV (x). Now CV (x)∩ E2 is 1-dimensional (indeed, by
inspecting Table 3 we see that there is a unique di which is congruent to 2 modulo
30), spanned by the sum of the simple root vectors, so we must have

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8)

for some nonzero scalar a1 ∈ K . Similarly, w0 is contained in the 1-dimensional
space ker((x − 1)2)∩ E0 and by considering the relation x(w0) = w0 + w2 we
take

w0 = a2(h1 + 19h2 + 4h3 + 9h4 + 28h5 + 18h6 + 10h7 + 4h8).

Finally, w−2 is in the 2-dimensional space ker((x −1)3)∩ E−2 (note that ξ−2
=

ξ 58 since p = 31) and it follows that

w−2 = a3(8 f1 + 28 f2 + f3 + 10 f4 + 7 f5 + 20 f6 + 18 f7 + f8)+ a4eα0

where α0 = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 is the highest root.
Note that a3 6= 0 since w−2 ∈ ker((x − 1)3) \ ker((x − 1)2) and eα0 ∈ CV (x).

By considering the action of x on W (see (14)) we quickly deduce that a2 =

16a1 and a3 = 4a1. Finally, one checks that the condition in (16) yields a4 = 0, so
setting a1 = 1 we have

w2 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8
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w0 = 16(h1 + 19h2 + 4h3 + 9h4 + 28h5 + 18h6 + 10h7 + 4h8)

w−2 = 4(8 f1 + 28 f2 + f3 + 10 f4 + 7 f5 + 20 f6 + 18 f7 + f8)

and it is easy to see that w2, w0 and w−2 satisfy the relations

[w2, w−2] = 2w0, [w2, w0] = w2, [w0, w−2] = w−2, (17)

and thus W = 〈w2, w0, w−2〉 is an sl2-subalgebra. If we set

w′2 = w2, w′0 = −2w0, w′
−2 = −w−2, (18)

then (w′2, w
′

0, w
′

−2) is an sl2-triple. Moreover, working mod p, we have

w′
−2 = 92 f1 + 136 f2 + 182 f3 + 270 f4 + 220 f5 + 168 f6 + 114 f7 + 58 f8

and thus (w′2, w
′

0, w
′

−2) is an sl2-triple over Z (see the proof of [35, Proposition
2.4]). Since X stabilizes W , it is contained in an A1-type subgroup of G by
Proposition 2.14. This completes the proof of Theorem 1 for G = E8 with p = 31.

We close this section by presenting a proof of Theorem 2.

Proof of Theorem 2. Let V = Lie(G) be the adjoint module for G. Seeking a
contradiction, suppose X < P , where P = QL is a proper parabolic subgroup of
G with unipotent radical Q and Levi factor L . We may as well assume that P is
minimal with respect to the containment of X . In particular, if π : P → P/Q is
the quotient map and we identify L with P/Q, then π(X) is not contained in a
proper parabolic subgroup of L ′. Now π(x) is a regular unipotent element of L ′

(see [36, Lemma 2.6]). Writing L ′ = L1 · · · L t , where each L i is a simple factor,
let πi : L ′ → L i be the naturally defined projection map. Then πi(π(X)) < L i

contains a regular unipotent element of L i and does not lie in a proper parabolic
subgroup of L i .

If L i is of classical type, we apply the main theorem of [29] to see that
πi(π(X)) is contained in an A1-type subgroup of L i . On the other hand, if L i

is of exceptional type, then G is of type En and L i is of type Em for m < n. In this
case, we apply Theorem 2.23 to conclude once again that πi(π(X)) is contained
in an A1-type subgroup of L i for all relevant values of p. In particular, in all cases
we deduce that π(X) lies in an A1-type subgroup H of L ′.

Now the KH-composition factors of V |H can be read off from the information
in [15, Tables 1–5] and we can use this to determine the KX-composition factors
of V |X (to do this, note that we may set all qi = 1 in terms of the notation in [15,
Tables 1–5]). Indeed, each composition factor of V |P is an irreducible KL′-module
(the unipotent radical Q acts trivially on the KP-composition factors of V |P ), so
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the decompositions of V |X and V |H have to be compatible. But the decomposition
of V |X is given in Table 2 and in this way we reach a contradiction.

To see this, first observe that X has at least one trivial composition factor on V ,
coming from Z(L). By inspecting Table 2, this immediately implies that

(G, p) ∈ {(F4, 13), (E6, 13), (E8, 37)}.

Suppose (G, p) = (E8, 37). From Table 2, the KX-composition factors of V |X
are as follows:

L X (34)2, L X (26)2, L X (22)2, L X (20), L X (14)2,
L X (10), L X (8), L X (2)2, L X (0).

(19)

By inspecting [15, Table 5], using the fact that V |X has a unique trivial
composition factor, we deduce that L ′ = A4 A2 A1, A4 A3 or D5 A2. However, in
each of these cases we see that V |X has an L X (6) composition factor, which is
incompatible with (19). The other two possibilities for (G, p) can be eliminated in
a similar fashion. For example, if (G, p) = (E6, 13) then the composition factors
of V |X are

L X (10)3, L X (8)3, L X (4), L X (2)4, L X (0).

By inspecting [15, Table 3], just considering trivial composition factors, we
deduce that L ′ = A2

2 A1, A4 A1 or D5, but in each case we find that V |X has two or
more L X (4) factors. This is a contradiction. �

As mentioned above, the proof of Theorem 2.23 will be given in Sections 3–7,
where we carry out Steps 1 and 2 (elimination and extension) for each group in
turn. We handle Step 3 in Section 8, thus completing the proof of Theorem 1.

3. The case G = G2

We begin the proof of Theorem 1 by handling the case G = G2. As noted
in Remark 1(c), the result in this case can be deduced from the proof of [30,
Lemma 3.1] (it also follows from Kleidman’s classification of the maximal
subgroups of G2(p) in [13]).

THEOREM 3.1. Let G be a simple algebraic group of type G2 over an
algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a
subgroup of G containing a regular unipotent element x of G. Then X is
contained in an A1-type subgroup of G.
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Proof. The Coxeter number of G is 7, so we have p > 7. Let V = Lie(G) be
the adjoint module for G and fix a Chevalley basis for V as in (11). We use the
notation introduced in Section 2.5. In particular, 〈s̄, x〉 is a Borel subgroup of X ,
where s̄ = t (ξ) = s Z and

{ξ 10, ξ 2
} (20)

are the eigenvalues of s ∈ SL2(p) on CV (x), where F×p = 〈ξ〉. Let Ei be the
ξ i -eigenspace of s on V and recall from Section 2.3 that we may assume x is
obtained by exponentiating the regular nilpotent element e = e1+ e2 ∈ V (that is,
we assume x = exp(ad(e))). According to [14, Table 2], the Jordan form of x on
V is as follows: {

[J11, J3] p > 11
[J 2

7 ] p = 7. (21)

We use the notation U and W (i) for the projective indecomposable KX-modules
defined in (3) and (4), respectively.

Case 1. V |X is semisimple.

First assume V |X is semisimple and recall that x has Jordan form [Jm+1] on
L X (m) (for 0 6 m < p). In view of (21), it follows that

V |X =
{

L X (10)⊕ L X (2) p > 11
L X (6)2 p = 7.

If p = 7 then the above decomposition implies that ξ 6 is an eigenvalue of s on
CV (x), but this is not compatible with (20).

Now assume p > 11, so V |X = L X (10)⊕ L X (2). As in Section 2.5, let {w2,

w0, w−2} be a standard basis for the summand W = L X (2), so wi ∈ Ei and the
action of x on W is given by the matrix in (14). Our goal is to show that W is an
sl2-subalgebra with w2 = e and w−2 ∈

∑2
i=1 Z fi . Furthermore, we seek integers

λ,µ so that (w2, λw0, µw−2) is an sl2-triple over Z, which will allow us to apply
Proposition 2.14.

For p > 17 we find that each space

ker(x − 1)∩ E2, ker((x − 1)2)∩ E0, ker((x − 1)3)∩ E−2 (22)

is 1-dimensional, which gives us

w2 = a1(e1 + e2), w0 = a2(h1 + 13h2), w−2 = a3(4 f1 + f2)

for some nonzero scalars ai ∈ K (in the expressions for w0 and w−2, the specific
coefficients of the hi and fi will depend on the characteristic p; the coefficients
presented here are for p = 17). If we set a1 = 1 then by considering the action
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of x on V we deduce that a2 = 14 and a3 = 7. Now w2, w0 and w−2 satisfy the
relations in (17), so we get an sl2-triple (w′2, w

′

0, w
′

−2) as in (18). Here w′
−2 =

−w−2 = 6 f1 + 10 f2 (for p = 17) and thus (w′2, w
′

0, w
′

−2) is an sl2-triple over Z
(see the proof of [35, Proposition 2.4]). Finally, by applying Proposition 2.14, we
conclude that X is contained in an A1-type subgroup of G.

Next assume p = 13. Once again ker(x − 1)∩ E2 and ker((x − 1)2)∩ E0 are
1-dimensional, but now ker((x − 1)3)∩ E−2 is 2-dimensional, spanned by the
vectors 11 f1+ f2 and e32 (here we use the notation e32 for eγ with γ = 3α1+2α2).
Therefore

w2 = a1(e1 + e2), w0 = a2(h1 + 6h2), w−2 = a3(11 f1 + f2)+ a4e32

for some ai ∈ K . By considering the action of x on W we deduce that a2 = 10a1

and a3 = 3a1. Moreover, (16) implies that a4 = 0 and by arguing as above, setting
a1 = 1 and using Proposition 2.14, we deduce that X is contained in an A1-type
subgroup of G.

Now suppose p = 11. Here we have

w2 = a1(e1 + e2), w0 = a2(h1 + 9h2)+ a3e32, w−2 = a4(5 f1 + f2)+ a5e31

and by considering the action of x on W we deduce that a2 = 8a1, a4 = a1 and
a5 = 2a3. We may as well set a1 = 1, so

w2 = e1 + e2, w0 = 8(h1 + 9h2)+ γ e32, w−2 = 5 f1 + f2 + 2γ e31

for some γ ∈ K . One now checks that the relations in (17) are satisfied (for all
γ ), so W = 〈w2, w0, w−2〉 is an sl2-subalgebra. Moreover, if we take

e = w2, h = −2(8(h1+9h2)) = 6h1+4h2, f = −(5 f1+ f2) = 6 f1+10 f2,

then (e, h, f ) is an sl2-triple over Z and we can apply Proposition 2.15 (with
y = e32 and z = e31). It follows that the stabilizer of W in G is an A1-type
subgroup.

Case 2. rad(V |X ) 6= 0, p > 11.

To complete the proof of the theorem we may assume that rad(V |X ) 6= 0.
Suppose p > 11 and W is a reducible indecomposable summand of V |X . If
p > 13 then dim W > 12 (see Corollary 2.4) and thus Lemma 2.1 implies that x
has a Jordan block of size n > 12 on W , but this is incompatible with (21). Now
assume p = 11. Here (21) implies that W has at least three composition factors
(if there were only two, then Lemma 2.1 and Corollary 2.3 would imply that x has
Jordan form [J10] or [J11, J1] on W , which contradicts (21)). By Lemma 2.1, it
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follows that x has Jordan form [J11, Ji ] on W with i ∈ {0, 3}, so dim W ∈ {11, 14}.
By considering Theorem 2.2, it is easy to see that i = 0 is the only possibility, so
W = U is projective and thus

V |X = U ⊕ L X (2).

However, this implies that an involution x2 ∈ X has trace 2 on V (see Section 2.2),
which is incompatible with Proposition 2.8. This is a contradiction.

Case 3. rad(V |X ) 6= 0, p = 7.

Finally, let us assume p = 7. Let P = 〈x〉 be a Sylow p-subgroup of X and
observe that V |P is projective. Then [1, Corollary 3, Section 9] implies that V |X
is projective and thus each indecomposable summand is also projective. Since the
eigenvalues of s on CV (x) are {ξ 4, ξ 2

}, we deduce that V |X = W (2) or W (4).
In fact, by considering the trace of x2, we see that V |X = W (2) is the only
option. This is compatible with the decomposition of V with respect to an A1-
type subgroup of G containing a regular unipotent element (see Table 2).

Let W be the L X (2) summand in the socle of V |X and let {w2, w0, w−2}

be a standard basis. The spaces ker(x − 1)∩ E2 and ker((x − 1)2)∩ E0 are 1-
dimensional, whereas ker((x − 1)3)∩ E−2 is 2-dimensional and we get

w2 = a1(e1 + e2), w0 = a2(h1 + 4h2), w−2 = a3(2 f1 + f2)+ a4e32

for some ai ∈ K . Set a1 = 1, so w2 = e. By considering the action of x on W we
deduce that a2 = a3 = 4. Moreover, (16) implies that a4 = 0 and we deduce that
W = 〈w2, w0, w−2〉 is an sl2-subalgebra and the relations in (17) are satisfied. As
before, the desired result now follows by applying Proposition 2.14.

This completes the proof of Theorem 3.1.

4. A reduction for G = F4

In this section, our goal is to establish Theorem 2.23 when G = F4. The proof
of Theorem 1 in this case will be completed in Section 8. Our main result is the
following.

THEOREM 4.1. Let G be a simple algebraic group of type F4 over an
algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a
subgroup of G containing a regular unipotent element x of G and set V = Lie(G).
Then one of the following holds:

(i) X is contained in an A1-type subgroup of G;
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(ii) p= 13, V |X =W (10)⊕W (2) and X stabilizes a nonzero subalgebra of
〈eα |α ∈ Φ+(G)〉.

Proof. Here p > 13 and we set up the standard notation as before. In particular,

{ξ 22, ξ 14, ξ 10, ξ 2
} (23)

are the eigenvalues of s on CV (x), where F×p = 〈ξ〉, and
[J23, J15, J11, J3] p > 23
[J 2

19, J11, J3] p = 19
[J 2

17, J15, J3] p = 17
[J 4

13] p = 13

(24)

is the Jordan form of x on V (see [14, Table 4]). We may assume that x is obtained
by exponentiating the regular nilpotent element e = e1 + e2 + e3 + e4 in V , with
respect to a Chevalley basis for V as in (11). It will also be useful to note that V |X
is self-dual.

Case 1. V |X is semisimple

If p ∈ {13, 17, 19} then (24) implies that

V |X =

L X (18)2⊕ L X (10)⊕ L X (2) p = 19
L X (16)2⊕ L X (14)⊕ L X (2) p = 17
L X (12)4 p = 13

but none of these decompositions are compatible with the eigenvalues of s on
CV (x) given in (23). For example, if p = 19 then the given decomposition implies
that the relevant eigenvalues are {ξ 0, ξ 0, ξ 10, ξ 2

}, but this contradicts (23).
Now assume p > 23, so

V |X = L X (22)⊕ L X (14)⊕ L X (10)⊕ L X (2).

Let W be the L X (2) summand and let {w2, w0, w−2} be a standard basis for W as
in Section 2.5, so wi ∈ Ei (the ξ i -eigenspace of s on V ) and the action of x and x ′

on W is given by the matrices in (14) and (15), respectively, where 〈s̄, x ′〉 is the
opposite Borel subgroup of X . If p > 29 then the spaces in (22) are 1-dimensional
and we get

w2 = a1(e1 + e2 + e3 + e4)

w0 = a2(h1 + 23h2 + 4h3 + 6h4)
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w−2 = a3(5 f1 + 28 f2 + 20 f3 + f4)

for some ai ∈ K (in the expressions for w0 and w−2, the specific coefficients
depend on the characteristic p; the ones given here are for p = 29). If we set
a1 = 1 then we can use the action of x on V to deduce that a2 = 18 and a3 = 13.
Moreover, the relations in (17) are satisfied and it follows that (w′2, w

′

0, w
′

−2) is an
sl2-triple, where these elements are defined in (18). Now

w′
−2 = −w−2 = −13(5 f1 + 28 f2 + 20 f3 + f4) = 22 f1 + 42 f2 + 30 f3 + 16 f4

working mod p (for p = 29), so (w′2, w
′

0, w
′

−2) is an sl2-triple over Z (see the
proof of [35, Proposition 2.4]). By applying Proposition 2.14, we conclude that
X is contained in an A1-type subgroup of G.

Now suppose p = 23. Here

w2 = a1(e1 + e2 + e3 + e4)

w0 = a2(h1 + 4h2 + 16h3 + 7h4)+ a3e2342

w−2 = a4(10 f1 + 17 f2 + 22 f3 + f4)+ a5e1342

for some ai ∈ K (we use the notation e2342 for eγ with γ = 2α1+3α2+4α3+2α4,
and similarly for e1342). By considering the action of x on W we deduce that
a2 = 12a1, a4 = 7a1 and a5 = 2a3. Setting a1 = 1 we get

w2 = e1 + e2 + e3 + e4

w0 = 12(h1 + 4h2 + 16h3 + 7h4)+ γ e2342

w−2 = 7(10 f1 + 17 f2 + 22 f3 + f4)+ 2γ e1342

for some γ ∈ K , and one can check that the relations in (17) are satisfied. In
particular, W is an sl2-subalgebra of V . Set

e = w2, h = −2(12(h1 + 4h2 + 16h3 + 7h4)) = 22h1 + 15h2 + 14h3 + 9h4

and

f = −(7(10 f1 + 17 f2 + 22 f3 + f4)) = 22 f1 + 19 f2 + 7 f3 + 16 f4.

Then (e, h, f ) is an sl2-triple over Z and by applying Proposition 2.15 (with
y = e2342 and z = e1342) we deduce that the stabilizer of W in G is an A1-type
subgroup.

Case 2. rad(V |X ) 6= 0, p > 19.

For the remainder we may assume that rad(V |X ) 6= 0. First assume p > 19.
By arguing as in Case 2 in the proof of Theorem 3.1, it is straightforward to
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reduce to the case p = 19. For example, suppose p = 23 and W is a reducible
indecomposable summand of V |X . The Jordan form of x on V (see (24)) implies
that W has at least three composition factors and we can use Lemma 2.1 to see
that x has Jordan form [J23, Ji ] on W with i ∈ {0, 3, 11, 15}, so dim W ∈ {23, 26,
34, 38}. Using Theorem 2.2, we deduce that i = 0 is the only option, so

V |X = U ⊕ L X (14)⊕ L X (10)⊕ L X (2).

But this implies that an involution x2 ∈ X has trace 0 on V , which is incompatible
with Proposition 2.8.

Now assume p = 19. Suppose W is a reducible nonprojective indecomposable
summand of V |X . By combining Lemma 2.1 and Theorem 2.2 we deduce that x
has Jordan form [J 2

19, J11] or [J 2
19, J3] on W , so there is a unique such summand

(and the other summand is simple). However, this is incompatible with the self-
duality of V |X . For example, if x has Jordan form [J 2

19, J3] on W , then V |X =
W ⊕ L X (10) and Theorem 2.2 implies that

soc(W ) = L X (0)⊕ L X (2)⊕ L X (4), W/soc(W ) = L X (16)⊕ L X (14)

(up to duality) so V |X is not self-dual.
Therefore, we may assume that each indecomposable summand is either simple

or projective, so the possibilities for V |X are as follows:U ⊕ L X (18)⊕ L X (10)⊕ L X (2)
U 2
⊕ L X (10)⊕ L X (2)

W (i)⊕ L X (10)⊕ L X (2)

with i ∈ {2, 4, . . . , 16}. As in (23), the eigenvalues of s on CV (x) are

{ξ 4, ξ 14, ξ 10, ξ 2
}.

Since s has eigenvalues 1 and {ξ i , ξ−i
} on CU (x) and CW (i)(x), respectively (see

Lemma 2.20), it follows that

V |X = W (i)⊕ L X (10)⊕ L X (2)

with i ∈ {4, 14}. The case i = 4 can be ruled out by considering the trace of x2;
hence i = 14 and V |X is compatible with the containment of X in an A1-type
subgroup of G (see Table 2). We need to show that X is contained in such a
subgroup. To do this we can repeat the argument in Case 1 for p > 29 (the details
are entirely similar).

Case 3. rad(V |X ) 6= 0, p = 17.
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Now assume p = 17. Suppose W is a reducible nonprojective indecomposable
summand of V |X . It is easy to check that the Jordan form of x on W is either
[J 2

17, J3] or [J17, J15], so there is a unique such summand. If x has Jordan form
[J 2

17, J3] on W then Theorem 2.2 implies that V |X = W ⊕ L X (14) (up to duality)
where

soc(W ) = L X (0)⊕ L X (2)⊕ L X (4), W/soc(W ) = L X (16)⊕ L X (14),

but this is incompatible with the self-duality of V |X . Similarly, in the other case
we have V |X = W ⊕ V1⊕ L X (2) and

soc(W ) = L X (i)⊕ L X (i + 2), W/soc(W ) = L X (14− i)⊕ L X (12− i)

with i ∈ {0, 2, 4, . . . , 12} and V1 ∈ {L X (16),U }. By self-duality, i = 6 is
the only option. But this implies that x2 has trace 0 on V , which contradicts
Proposition 2.8.

It follows that each indecomposable summand of V |X is either simple or
projective. By arguing as above (the case p = 19), using the fact that s has
eigenvalues {ξ 6, ξ 14, ξ 10, ξ 2

} on CV (x), we deduce that

V |X = W (i)⊕ L X (14)⊕ L X (2)

with i ∈ {6, 10}. If i = 6 then one can check that an element x3 ∈ X of order 3
has trace 1 on V , so Proposition 2.8 implies that i = 10. Therefore, the action of
X is compatible with an A1-type subgroup of G (see Table 2) and it remains to
establish the desired containment.

As before, let {w2, w0, w−2} be a standard basis of the L X (2) summand W in
the decomposition of V |X . In the usual manner we deduce that

w2 = a1(e1 + e2 + e3 + e4)

w0 = a2(h1 + 5h2 + 6h3 + 10h4)

for some nonzero scalars a1, a2 ∈ K . We may assume a1 = 1. Now w−2 is
contained in ker((x − 1)3)∩ E−2, which is 2-dimensional, and we get

w−2 = a3(12 f1 + 9 f2 + 4 f3 + f4)+ a4(e1231 − e1222).

Since the action of x on W is given by the matrix in (14) we deduce that a2 = 6
and a3 = 1. Finally, the condition in (16), which is obtained by considering the
action of x ′ on W , implies that a4 = 0. It is easy to see that the relations in (17) are
satisfied and we complete the argument in the usual manner, via Proposition 2.14.

Case 4. rad(V |X ) 6= 0, p = 13.
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Finally, let us assume that p = 13. Here V |X is projective and thus each
indecomposable summand is also projective. Since the eigenvalues of s on CV (x)
are {ξ 10, ξ 2, ξ 10, ξ 2

}, we quickly deduce that V |X is one of the following:

W (2)⊕W (10), W (2)2, W (10)2.

Let y = ŷ Z ∈ X be an element of order 7, where ŷ ∈ SL2(13) is SL2(K )-
conjugate to a diagonal matrix diag(ω, ω−1) and ω ∈ K is a nontrivial 7th root of
unity. For each decomposition we can compute the eigenvalues of y on V and then
compare the results with the list of eigenvalue multiplicities of all elements in G
of order 7 (as noted in Remark 2.10, the latter can be computed using Litterick’s
algorithm in [21]). For example, if V |X = W (2)2 then y ∈ GL52(K ) is conjugate
to the diagonal matrix

[I8, ωI8, ω
2 I8, ω

3 I6, ω
4 I6, ω

5 I8, ω
6 I8],

but one checks that no element in G of order 7 acts on V with these eigenvalues.
In this way, we deduce that V |X = W (2)⊕W (10) is the only possibility.

Let W be the L X (2) summand in the socle of V |X and let {w2, w0, w−2}

be a standard basis. The spaces ker(x − 1)∩ E2 and ker((x − 1)2)∩ E0 are 2-
dimensional and we get

w2 = a1(e1 + e2 + e3 + e4)+ a2(e1231 − e1222)

w0 = a3(h1 + 9h2 + 12h3 + 9h4)+ a4(e1221 + 10e1122)

for some ai ∈ K . Finally, one checks that ker((x − 1)3)∩ E−2 is 4-dimensional
and we take

w−2 = a5(3 f1+ f2+10 f3+ f4)+a6(e1220+3e0122)+a7(e1121+8e0122)+a8e2342.

In the usual manner, by considering the action of x on W , we get a3 = 2a1, a4 =

a2, a5 = 10a1 and a7 = 2a2 + a6. In addition, the condition in (16) yields the
following system of equations:

a2
1a2 + 8a2

1a6 = 0
7a2

1a2 + 11a2
1a6 = 0

11a2
1a2 + 5a2

1a6 = 0
4a2

1a8 + 8a1a2
2 + 7a1a2a6 = 0.

If a1 6= 0 then these equations imply that a2 = a6 = a8 = 0, so

w2 = a1(e1 + e2 + e3 + e4)
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w0 = −a1(h1 + 9h2 + 12h3 + 9h4)

w−2 = 10a1(3 f1 + f2 + 10 f3 + f4)

and by setting a1 = 1 we can use Proposition 2.14 to show that X is contained in
an A1-type subgroup. On the other hand, if a1 = 0 then we can set a2 = 1, so

w2 = e1231 − e1222

w0 = e1221 + 10e1122

w−2 = a6(e1220 + 3e0122)+ (2+ a6)(e1121 + 8e0122)+ a8e2342.

One checks that [w2, w0] = 0, so

0 = x ′ · [w2, w0] = [w2 + 2w0 + w−2, w0 + w−2]

and we deduce that a6 = 7, hence

w−2 = 7e1220 + 9e1121 + 2e0122 + a8e2342.

It is now easy to check that W ⊆ 〈eα |α ∈ Φ+(G)〉 is a subalgebra, which gives
case (ii) in the statement of the theorem.

This completes the proof of Theorem 4.1.

5. A reduction for G = E6

The following result, which we prove in this section, establishes Theorem 2.23
for groups of type E6.

THEOREM 5.1. Let G be a simple adjoint algebraic group of type E6 over an
algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a subgroup
of G containing a regular unipotent element x of G and set V = Lie(G). Then
one of the following holds:

(i) X is contained in an A1-type subgroup of G;

(ii) p = 13, V |X is one of

W (10)⊕W (8)⊕W (2), W (10)⊕W (4)⊕W (2), W (10)2⊕W (4)

and X stabilizes a nonzero subalgebra of 〈eα |α ∈ Φ+(G)〉.

Proof. Here p > 13, V |X is self-dual and

{ξ 22, ξ 16, ξ 14, ξ 10, ξ 8, ξ 2
} (25)
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are the eigenvalues of s on CV (x), where F×p = 〈ξ〉 (see Section 2.5). By
inspecting [14, Table 6], we see that

[J23, J17, J15, J11, J9, J3] p > 23
[J 2

19, J17, J11, J9, J3] p = 19
[J 3

17, J15, J9, J3] p = 17
[J 6

13] p = 13

(26)

is the Jordan form of x on V . We adopt the notation introduced in Section 2.

Case 1. V |X is semisimple.

If p ∈ {13, 17, 19} then

V |X =

L X (18)2⊕ L X (16)⊕ L X (10)⊕ L X (8)⊕ L X (2) p = 19
L X (16)3⊕ L X (14)⊕ L X (8)⊕ L X (2) p = 17
L X (12)6 p = 13

but not one of these decompositions is compatible with the eigenvalues of s on
CV (x) (see (25)) so we may assume p > 23 and

VX = L X (22)⊕ L X (16)⊕ L X (14)⊕ L X (10)⊕ L X (8)⊕ L X (2).

Let W be the L X (2) summand and let {w2, w0, w−2} be a standard basis for W . If
p > 29 then one checks that each of the spaces in (22) are 1-dimensional and the
result quickly follows via Proposition 2.14. For example, if p = 29 then

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6)

w0 = a2(h1 + 5h2 + 20h3 + 28h4 + 20h5 + h6)

w−2 = a3( f1 + 5 f2 + 20 f3 + 28 f4 + 20 f5 + f6)

and by setting a1 = 1 and considering the action of x on W (see (14)), we deduce
that a2 = 21 and a3 = 13. One now checks that (w2,−2w0,−w−2) is an sl2-triple
over Z (see the proof of [35, Proposition 2.4]) and by applying Proposition 2.14
we deduce that X is contained in an A1-type subgroup of G.

Now assume p = 23. Here ker((x − 1)2)∩ E0 and ker((x − 1)3)∩ E−2 are
2-dimensional and we get

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6)

w0 = a2(h1 + 10h2 + 22h3 + 17h4 + 22h5 + h6)+ a3e122321

w−2 = a4( f1 + 10 f2 + 22 f3 + 17 f4 + 22 f5 + f6)+ a5e112321
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where a1a2a4 6= 0. Set a1 = 1. From the action of x on W we deduce that a2 = 15,
a4 = 7 and a5 = 2a3, so

w2 = e1 + e2 + e3 + e4 + e5 + e6

w0 = 15(h1 + 10h2 + 22h3 + 17h4 + 22h5 + h6)+ γ e122321

w−2 = 7( f1 + 10 f2 + 22 f3 + 17 f4 + 22 f5 + f6)+ 2γ e112321

for some γ ∈ K . If we take

e = w2, h = −2(15(h1 + 10h2 + 22h3 + 17h4 + 22h5 + h6))

and

f = −7( f1 + 10 f2 + 22 f3 + 17 f4 + 22 f5 + f6)

= 16 f1 + 22 f2 + 7 f3 + 19 f4 + 7 f5 + 16 f6

then (e, h, f ) is an sl2-triple over Z and using Proposition 2.15 we conclude that
X is contained in an A1-type subgroup of G.

Case 2. rad(V |X ) 6= 0, p > 19.

If p > 23 then we can essentially repeat the argument in the proof of
Theorem 4.1 (see the first paragraph in Case 2). Indeed, it is easy to reduce to
the case where p = 23 and

V |X = U ⊕ L X (16)⊕ L X (14)⊕ L X (10)⊕ L X (8)⊕ L X (2),

but this is not compatible with (25).
Now assume p = 19. First suppose V |X has a reducible nonprojective

indecomposable summand W . By applying Lemma 2.1 and Theorem 2.2, we
deduce that the Jordan form of x on W is one of the following:

[J 2
19, J11], [J 2

19, J9], [J 2
19, J3], [J19, J17].

In particular, V |X has a unique such summand. The structure of W is described in
Theorem 2.2 and it is easy to see that the existence of such a summand contradicts
the self-duality of V |X . For instance, suppose x has Jordan form [J 2

19, J9] on W .
Then up to duality we have

soc(W ) = L X (6)⊕ L X (8)⊕ L X (10), W/soc(W ) = L X (10)⊕ L X (8)

and thus V |X = W ⊕ L X (16)⊕ L X (10)⊕ L X (2) is not self-dual. The other cases
are very similar.
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Therefore, we may assume that each indecomposable summand of V |X is either
simple or projective. By considering the eigenvalues of s in (25), we deduce that

V |X = W (i)⊕ L X (16)⊕ L X (10)⊕ L X (8)⊕ L X (2)

with i ∈ {4, 14}. If i = 4 then we find that x2 has trace 2 on V , which contradicts
Proposition 2.8, hence i = 14 is the only possibility. In the usual manner, we now
construct a basis

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6)

w0 = a2(h1 + 18h2 + 9h3 + 5h4 + 9h5 + h6)

w−2 = a3( f1 + 18 f2 + 9 f3 + 5 f4 + 9 f5 + f6)+ a4(e112211 − e111221)

(with a1a2a3 6= 0) of the summand W = L X (2) of V |X . If we set a1 = 1 and
consider the action of x on W (see (14)) we deduce that a2 = 11 and a3 = 3, and
one checks that the condition in (16) gives a4 = 0. The result now follows in the
usual manner via Proposition 2.14.

Case 4. rad(V |X ) 6= 0, p = 17.

First assume that V |X has a reducible indecomposable nonprojective summand
W . In the usual way, by combining Lemma 2.1 and Theorem 2.2, we deduce that
the Jordan form of x on W is one of the following:

[J 3
17, J3], [J 2

17, J9], [J 2
17, J3], [J17, J15].

Suppose that x has Jordan form [J 3
17, J3] on W , so V |X = W ⊕ L X (14)⊕ L X (8).

By applying Theorem 2.2, using the self-duality of V |X , we deduce that

soc(W ) = W/soc(W ) = L X (10)⊕ L X (8)⊕ L X (6)

is the only possibility, but this is incompatible with the eigenvalues of s on CV (x).
We can rule out [J 2

17, J9] and [J 2
17, J3] by the self-duality of V |X , so let us assume

x has Jordan form [J17, J15] on W . By self-duality it follows that

soc(W ) = W/soc(W ) = L X (8)⊕ L X (6)

and thus V |X is one of the following:{
W ⊕M1⊕M2⊕ L X (8)⊕ L X (2)
W ⊕W (i)⊕ L X (8)⊕ L X (2)

where M j ∈ {L X (16),U } and i ∈ {2, 4, . . . , 14}. However, it is clear that none of
these decompositions are compatible with (25).
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For the remainder, we may assume that each indecomposable summand of V |X
is either simple or projective. By considering the eigenvalues of s, we deduce that

V |X = W (i)⊕M1⊕ L X (14)⊕ L X (8)⊕ L X (2)

with i ∈ {6, 10} and M1 ∈ {L X (16),U }. By computing the trace of x3 and
appealing to Proposition 2.8 (and also Remark 2.9), it follows that i = 10 and
M1 = L X (16) is the only possibility. In particular, we have now reduced to the
case where the decomposition of V |X is compatible with containment in an A1-
type subgroup of G (see Table 2).

As before, let W be the L X (2) summand of V |X and let {w2, w0, w−2} be a
standard basis of W . The reader can check that

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6)

w0 = a2(h1 + 12h2 + 4h3 + 9h4 + 4h5 + h6)+ a3(e112211 − e111221)

w−2 = a4( f1 + 12 f2 + 4 f3 + 9 f4 + 4 f5 + f6)+ a5(e112210 + e011221)

+ a6(e111211 + 15e011221)

with a1a2a4 6= 0. Set a1 = 1. By considering the action of x on W we deduce that
a2 = 9, a4 = 1 and a6 = 2a3 + a5. The condition in (16) yields a5 = 15a3, so
a6 = 0 and thus

w2 = e1 + e2 + e3 + e4 + e5 + e6

w0 = 9(h1 + 12h2 + 4h3 + 9h4 + 4h5 + h6)+ γ (e112211 − e111221)

w−2 = f1 + 12 f2 + 4 f3 + 9 f4 + 4 f5 + f6 + 15γ (e112210 + e011221)

for some γ ∈ K . In addition, the relations in (17) are satisfied and W is an sl2-
subalgebra of V . Set

e = w2, h = −2(9(h1 + 12h2 + 4h3 + 9h4 + 4h5 + h6))

and

f = −( f1 + 12 f2 + 4 f3 + 9 f4 + 4 f5 + f6)

= 16 f1 + 5 f2 + 13 f3 + 8 f4 + 13 f5 + 16 f6.

Then (e, h, f ) is an sl2-triple over Z and by applying Proposition 2.15, where
we set y = e112211 − e111221 and z = −(e112210 + e011221), we conclude that X is
contained in an A1-type subgroup of G.

Case 5. rad(V |X ) 6= 0, p = 13.
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Here (26) implies that V |X is projective, so each indecomposable summand
is also projective. In view of (25), we must have V |X = W (i)⊕W ( j)⊕W (k)
with i, j ∈ {2, 10} and k ∈ {4, 8}. In each case, the traces of x2 and x3 are
−2 and −3, respectively, so we need to work harder to eliminate some of these
decompositions. Let y = ŷ Z ∈ X be an element of order 7, where ŷ ∈ SL2(13) is
SL2(K )-conjugate to a diagonal matrix diag(ω, ω−1) and ω ∈ K is a nontrivial 7th
root of unity. We can compute the eigenvalues of y on V and then compare with
the eigenvalue multiplicities of all elements in G of order 7, which we obtain using
the algorithm in [21]. In this way, we deduce that V |X is one of the following:

W (10)⊕W (8)⊕W (2), W (10)⊕W (4)⊕W (2), W (10)2⊕W (4).

Case 5(a). p = 13, V |X = W (10)⊕W (8)⊕W (2).

Here V |X is compatible with the containment of X in an A1-type subgroup
of G (see Table 2). Let W be the L X (2) summand in the socle of V |X and let
{w2, w0, w−2} be a standard basis. In the usual manner, we deduce that

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6)+ a2(e112210 + e111211 − e011221)

w0 = a3(h1 + 3h2 + 10h3 + h4 + 10h5 + h6)+ a4(e111210 + 3e111111 − e011211)

w−2 = a5( f1 + 3 f2 + 10 f3 + f4 + 10 f5 + f6)+ a6(e111110 + 7e011210 − e011111)

+ a7(e101111 + 9e011210)+ a8(e122321)

for some scalars ai ∈ K . By considering the action of x on W , together with the
condition in (16), we see that

a3 = 5a1, a4 = a2, a5 = 10a1, a7 = 6a2 + 2a6

and either a1 = 0 or a2 = a6 = a8 = 0. In the latter situation, we set a1 = 1
and then check that the relations in (17) are satisfied – this allows us to apply
Proposition 2.14 to conclude that X is contained in an A1-type subgroup of G.
Now assume a1 = 0 and set a2 = 1. Here one checks that [w−2, w2] = 0 and thus
[w−2, w2 + 2w0 + w−2] = 0 since x ′ preserves the Lie bracket on V . This yields
a6 = 9, so

w2 = e112210 + e111211 − e011221

w0 = e111210 + 3e111111 − e011211 (27)
w−2 = 9e111110 + 11e101111 + 6e011210 + 4e011111 + a8(e122321).

We conclude that W is an X -invariant subalgebra of 〈eα |α ∈ Φ+(G)〉, as in part
(ii) of the theorem.
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Case 5(b). p = 13, V |X = W (10)⊕W (4)⊕W (2) or W (10)2⊕W (4).

Let W be the L X (4) summand in the socle of V |X and let {w4, w2, w0, w−2,

w−4} be a basis of W with wi ∈ Ei . We may assume that the actions of x and x ′

on W are given by the matrices
1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 ,


1 0 0 0 0
4 1 0 0 0
6 3 1 0 0
4 3 2 1 0
1 1 1 1 1

 (28)

respectively (in terms of this basis). One checks that ker(x − 1)∩ E4 is 1-
dimensional, whereas the spaces

ker((x − 1)2)∩ E2, ker((x − 1)3)∩ E0

are 3-dimensional, and

ker((x − 1)4)∩ E−2, ker((x − 1)5)∩ E−4

have dimension 5 and 6, respectively, and we get

w4 = a1(e112211 − e111221)

w2 = a2(e112210 + e011221)+ a3(e111211 + 11e011221)

+ a4(e1 + e2 + e3 + e4 + e5 + e6)

w0 = a5(e111210 + e011211)+ a6(e111111 + 8e011211)

+ a7(h1 + 3h2 + 10h3 + h4 + 10h5 + h6)

w−2 = a8(e111110 + e011111)+ a9(e101111 + 10e011111)+ a10(e011210 + 9e011111)

+ a11( f1 + 3 f2 + 10 f3 + f4 + 10 f5 + f6)+ a12(e122321)

w−4 = a13(e111100 + 3e001111)+ a14(e101110 + e001111)+ a15(e011110 + 6e001111)

+ a16(e010111 + 3e001111)+ a17(12 f101000 + 10 f010100 + 2 f001100

+ 11 f000110 + f000011)+ a18(e112321)

for some ai ∈ K .
Set a1 = 1 and consider the relations among the ai obtained from the action

of x on this basis. It is also helpful to note that x ′ is a regular unipotent element,
so CV (x ′) is abelian and we see that [w−4, [w−4, w−2]] = 0 since [w−4, w−2] ∈

CV (x ′). In this way, we deduce that

w4 = e112211 − e111221
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w2 = a2(e112210 + e011221)+ (1+ a2)(e111211 + 11e011221)

w0 = 2a2(e111210 + e011211)+ (6+ 6a2)(e111111 + 8e011211)

w−2 = a8(e111110 + e011111)+ (4+ 5a2 + 2a8)(e101111 + 10e011111)

+ (6a2 + 12a8)(e011210 + 9e011111)+ a12(e122321)

w−4 = a13(e111100 + 3e001111)+ (2a2 + 8a8 + a13)(e101110 + e001111)

+ (11a2 + 9a8)(e011110 + 6e001111)

+ (1+ 2a2 + 2a8 + 12a13)(e010111 + 3e001111)+ 4a12(e112321).

Next one checks that [w2, w−2] = 0, so x ′ · [w2, w−2] = 0 and thus

[w2 + 3w0 + 3w−2 + w−4, w−2 + w−4] = 0

since x ′ preserves the Lie bracket. This yields a13 = 12a2+2a2
2+12a2a8. Similarly,

[w4, w2] = 0 and thus

[w4 + 4w2 + 6w0 + 4w−2 + w−4, w2 + 3w0 + 3w−2 + w−4] = 0.

This relation implies that a2
2 + 12a2a8 + 9a2 + 12a8 = 0 and it is now

straightforward to check that W ⊆ 〈eα |α ∈ Φ+(G)〉 is a subalgebra.

This completes the proof of Theorem 5.1.

6. A reduction for G = E7

In this section, we establish the following result, which proves Theorem 2.23
for groups of type E7.

THEOREM 6.1. Let G be a simple adjoint algebraic group of type E7 over an
algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a subgroup
of G containing a regular unipotent element x of G and set V = Lie(G). Then
one of the following holds:

(i) X is contained in an A1-type subgroup of G;

(ii) p = 19, V |X is one of

W (8)⊕W (4)⊕W (2)⊕U, W (16)⊕W (10)⊕W (4)⊕U,

W (16)⊕W (14)⊕W (8)⊕U

and X stabilizes a nonzero subalgebra of 〈eα |α ∈ Φ+(G)〉.
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Proof. Here we have p > 19 and

{ξ 34, ξ 26, ξ 22, ξ 18, ξ 14, ξ 10, ξ 2
} (29)

is the collection of eigenvalues of s on CV (x), where F×p = 〈ξ〉. By [14, Table 8],
the Jordan form of x on V is as follows:

[J35, J27, J23, J19, J15, J11, J3] p > 37
[J 2

31, J23, J19, J15, J11, J3] p = 31
[J 2

29, J27, J19, J15, J11, J3] p = 29
[J 5

23, J15, J3] p = 23
[J 7

19] p = 19.

(30)

Note that V |X is self-dual.

Case 1. V |X is semisimple.

If p < 37 then the eigenvalues of s on CV (x) are incompatible with (29), so we
may assume p > 37 and thus

V |X = L X (34)⊕ L X (26)⊕ L X (22)⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)

in view of (30). Let W be the L X (2) summand and let {w2, w0, w−2} be a standard
basis for W . In the usual manner, it is straightforward to show that W is an
appropriate sl2-subalgebra and we can use Proposition 2.14 to show that (i) holds
in the statement of the theorem. For example, if p = 37 we get

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7)

w0 = a2(h1 + 33h2 + 15h3 + 5h4 + 12h5 + 32h6 + 28h7)

w−2 = a3(4 f1 + 21 f2 + 23 f3 + 20 f4 + 11 f5 + 17 f6 + f7)+ a4e2234321.

If we set a1 = 1, then by considering the action of x on W , we deduce that a2 = 20
and a3 = 10. Furthermore, the relation in (16) implies that a4 = 0 and we deduce
that (w2,−2w0,−w−2) is an sl2-triple over Z (see the proof of [35, Proposition
2.4]). Now apply Proposition 2.14.

Case 2. rad(V |X ) 6= 0, p > 29.

If p > 37 then a combination of Lemma 2.1 and Corollary 2.4 implies that x
has a Jordan block of size n > 36 on V , but this contradicts (30).

Next assume p = 31. In the usual way, by applying Lemma 2.1 and
Theorem 2.2, and by appealing to the self-duality of V |X , we can reduce to
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the case where each indecomposable summand of V |X is either simple or
projective. By considering the eigenvalues in (29), it follows that

V |X = W (i)⊕ L X (22)⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)

with i ∈ {4, 26}. If i = 4 then an involution x2 ∈ X has trace −3 on V , which
contradicts Proposition 2.8. Therefore i = 26 and it is entirely straightforward to
show that the L X (2) summand of V |X is an appropriate sl2-subalgebra. The result
follows via Proposition 2.14 in the usual fashion.

A similar argument applies when p = 29. If V |X has a reducible nonprojective
summand then the self-duality of V |X implies that

V |X = M1⊕M2⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)

is the only possibility, where

soc(M1) ∼= M1/soc(M1) = L X (12)⊕ L X (14)

and M2 ∈ {L X (28),U }. However, this implies that x2 has trace−3 on V , which is
a contradiction. Therefore, the indecomposable summands of V |X are simple or
projective, and by considering the eigenvalues in (29) we deduce that

V |X = W (i)⊕ L X (26)⊕ L X (18)⊕ L X (14)⊕ L X (10)⊕ L X (2)

with i ∈ {6, 22}. We can rule out i = 6 by computing the trace of x3, so i = 22
and we complete the argument as in the previous case.

Case 3. rad(V |X ) 6= 0, p = 23.

As before, it is not difficult to reduce to the case where each indecomposable
summand of V |X is either simple or projective. By considering the eigenvalues in
(29) we deduce that

V |X = W (i)⊕W ( j)⊕M1⊕ L X (14)⊕ L X (2)

where i ∈ {4, 18}, j ∈ {10, 12} and M1 ∈ {L X (22),U }. By computing the trace of
x2 we see that (i, j) = (4, 12) or (18, 10), and we can rule out the first possibility
by considering the trace of x3. This calculation with x3 also implies that M1 =

L X (22), so

V |X = W (18)⊕W (10)⊕ L X (22)⊕ L X (14)⊕ L X (2).

Let W be the L X (2) summand and fix a standard basis {w2, w0, w−2}. By
considering the spaces

ker(x − 1)∩ E2, ker((x − 1)2)∩ E0, ker((x − 1)3)∩ E−2,
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we deduce that

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7)

w0 = a2(h1 + 17h2 + 6h3 + 15h4 + 11h5 + 11h6 + 15h7)

+ a3(e1223210 + e1123211 − e1122221)

w−2 = a4(20 f1 + 18 f2 + 5 f3 + f4 + 13 f5 + 13 f6 + f7)

+ a5(e1123210 + 2e1122211 + 20e1112221).

Setting a1 = 1 and using the action of x on W , we deduce that a2 = 6, a4 = 19
and a5 = 2a3, so we have

w2 = e1 + e2 + e3 + e4 + e5 + e6 + e7

w0 = 6(h1 + 17h2 + 6h3 + 15h4 + 11h5 + 11h6 + 15h7)

+ γ (e1223210 + e1123211 − e1122221)

w−2 = 19(20 f1 + 18 f2 + 5 f3 + f4 + 13 f5 + 13 f6 + f7)

+ 2γ (e1123210 + 2e1122211 + 20e1112221)

for some γ ∈ K . One can check that the relations in (17) are satisfied, so W is an
sl2-subalgebra of V . Set

e = w2, h = −2(6(h1 + 17h2 + 6h3 + 15h4 + 11h5 + 11h6 + 15h7)),

f = −19(20 f1 + 18 f2 + 5 f3 + f4 + 13 f5 + 13 f6 + f7)

= 11 f1 + 3 f2 + 20 f3 + 4 f4 + 6 f5 + 6 f6 + 4 f7

and

y = e1223210 + e1123211 − e1122221, z = e1123210 + 2e1122211 + 20e1112221.

Then (e, h, f ) is an sl2-triple over Z and we can use Proposition 2.15 to deduce
that X is contained in an A1-type subgroup of G.

Case 4. rad(V |X ) 6= 0, p = 19.

Finally, let us assume p = 19 so V |X is projective and each indecomposable
summand is also projective. By considering the eigenvalues in (29), it follows that

V |X = W (i)⊕W ( j)⊕W (k)⊕M1

where i ∈ {2, 16}, j ∈ {4, 14}, k ∈ {8, 10} and M1 ∈ {L X (18),U }. By computing
the trace of x2 we see that (i, j, k,M1) is one of the following:

(2, 14, 10, L X (18)), (16, 4, 8, L X (18)), (16, 4, 10,U ),
(16, 14, 8,U ), (2, 4, 8,U ).
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In all of these cases, x3 has trace 2 on V , which is compatible with Proposition 2.8.
If V |X = W (16)⊕W (4)⊕W (8)⊕ L X (18) then there is an element y ∈ X of
order 5 with eigenvalues [I25, ωI27, ω

2 I27, ω
3 I27, ω

4 I27] on V , but one checks that
there are no elements in G that act on V in this way (for example, see [7, Table
6]), so this possibility is ruled out.

If V |X is one of

W (8)⊕W (4)⊕W (2)⊕U, W (16)⊕W (10)⊕W (4)⊕U,

W (16)⊕W (14)⊕W (8)⊕U,

then X stabilizes the 1-dimensional subalgebra of V spanned by the vector

w = e1122111 − e1112211 + e0112221.

Indeed, X stabilizes soc(U )= L X (0), which is spanned by a vector in CV (x)∩ E0.
But one checks that CV (x)∩ E0 = 〈w〉 so we are in case (ii) of the theorem.

Finally, suppose V |X =W (2)⊕W (14)⊕W (10)⊕ L X (18), which is
compatible with the containment of X in an A1-type subgroup of G (see
Table 2). Let W be the L X (2) summand in the socle of V |X and let {w2, w0, w−2}

be a standard basis. In the usual way we obtain

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7)

w0 = a2(h1 + 2h2 + 12h3 + 14h4 + 5h5 + 6h6 + 17h7)

+ a3(e1122111 − e1112211 + e0112221)

w−2 = a4(9 f1 + 18 f2 + 13 f3 + 12 f4 + 7 f5 + 16 f6 + f7)

+ a5(e1122110 − e1112210 + 13e1112111 + 12e0112211)+ a6(e2234321)

and we may assume a1 = 1. By considering the action of x on W , together with
the condition in (16), we deduce that a2 = 2, a4 = 11, a5 = 16a3 and a6 = 13a2

3 ,
so we have

w2 = e1 + e2 + e3 + e4 + e5 + e6 + e7

w0 = 2(h1 + 2h2 + 12h3 + 14h4 + 5h5 + 6h6 + 17h7)

+ γ (e1122111 − e1112211 + e0112221)

w−2 = 11(9 f1 + 18 f2 + 13 f3 + 12 f4 + 7 f5 + 16 f6 + f7)

+ 16γ (e1122110 − e1112210 + 13e1112111 + 12e0112211)+ 13γ 2(e2234321)

for some γ ∈ K . Set

e = w2, h = −2(2(h1 + 2h2 + 12h3 + 14h4 + 5h5 + 6h6 + 17h7)),
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f = −11(9 f1 + 18 f2 + 13 f3 + 12 f4 + 7 f5 + 16 f6 + f7)

= 15 f1 + 11 f2 + 9 f3 + f4 + 18 f5 + 14 f6 + 8 f7

and

y = e1122111 − e1112211 + e0112221

z1 = 8(e1122110 − e1112210 + 13e1112111 + 12e0112211)

z2 = 11e2234321.

Then (e, h, f ) is an sl2-triple over Z, but we cannot directly apply
Proposition 2.15. However, a minor modification of the argument in the proof of
that proposition will work.

First observe that y ∈ (LZ)p−1 ∩CLZ(e), z1 ∈ (LZ)p−3 and z2 ∈ (LZ)2p−4 (in
terms of the notation used in the proof of Proposition 2.15). Setting δ = −2γ , we
see that

(w2,−2w0,−w−2) = (ē, h̄ + δ ȳ, f̄ + δz̄1 + δ
2 z̄2)

is an sl2-triple in LK for all choices of γ ∈ K . Put g = exp(ad(δy)) ∈ G and note
that

g · ē = ē, g · h̄ = h̄+ δ[ȳ, h̄] = h̄+ δ ȳ, g · f̄ = f̄ + δ[ȳ, f̄ ]+ 1
2δ

2
[ȳ, [ȳ, f̄ ]]

(for the final equality, note that all higher degree terms are zero since the
maximum T -weight on LZ is 2ht(α0) 6 2(p − 1)). Now calculating (in LZ),
we have

[h + y, f + z1 + z2] = −2 f + (p − 3)z1 + (2p − 4)z2 + [y, f ] + [y, z1]

and passing to LK , setting γ = − 1
2 , we deduce that

−2 f̄ − 3z̄1 − 4z̄2 + [ȳ, f̄ ] + [ȳ, z̄1] = −2( f̄ + z̄1 + z̄2).

Therefore [ȳ, f̄ ] + [ȳ, z̄1] = z̄1 + 2z̄2 and by comparing T -weights we deduce
that [ȳ, f̄ ] = z̄1 and [ȳ, z̄1] = 2z̄2. Finally, this implies that

g · f̄ = f̄ + δz̄1 +
1
2δ

2
[ȳ, z̄1] = f̄ + δz̄1 + δ

2 z̄2

and we can now conclude as in the proof of Proposition 2.15. In particular, X is
contained in an A1-type subgroup of G.

This completes the proof of Theorem 6.1.

7. A reduction for G = E8

In this section, we complete the proof of the Reduction Theorem (see
Theorem 2.23). Our main result is the following:
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THEOREM 7.1. Let G be a simple algebraic group of type E8 over an
algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a
subgroup of G containing a regular unipotent element x of G and set V = Lie(G).
Then one of the following holds:

(i) X is contained in an A1-type subgroup of G;

(ii) p= 37, V |X =W (34)⊕W (26)⊕W (14)⊕ L X (22)⊕ L X (2) and X stabi-
lizes a nonzero subalgebra of 〈eα |α ∈ Φ+(G)〉.

Proof. First note that p > 31. In fact, we may assume p > 37 since the case
p = 31 was handled in Section 2 (see Examples 2.21 and 2.24). Recall that

{ξ 58, ξ 46, ξ 38, ξ 34, ξ 26, ξ 22, ξ 14, ξ 2
} (31)

is the collection of eigenvalues of s on CV (x) and note that V |X is self-dual. The
Jordan form of x on V is as follows:

[J59, J47, J39, J35, J27, J23, J15, J3] p > 59
[J 2

53, J39, J35, J27, J23, J15, J3] p = 53
[J 3

47, J39, J27, J23, J15, J3] p = 47
[J 4

43, J35, J23, J15, J3] p = 43
[J 4

41, J39, J27, J15, J3] p = 41
[J 6

37, J23, J3] p = 37
[J 8

31] p = 31

(32)

(see [14, Table 9]).

Case 1. V |X is semisimple.

By considering the eigenvalues in (31) we deduce that p > 59 and

V |X = L X (58)⊕ L X (46)⊕ L X (38)⊕ L X (34)⊕ L X (26)
⊕ L X (22)⊕ L X (14)⊕ L X (2).

Let W be the L X (2) summand and let {w2, w0, w−2} be a standard basis. If p > 61
then it is straightforward to show that W is an appropriate sl2-subalgebra and
the result follows by applying Proposition 2.14 (note that for p = 61 we find
that ker((x − 1)3)∩ E−2 is 2-dimensional, but this does not cause any special
difficulties). Now assume p = 59. Here ker((x−1)2)∩ E0 and ker((x−1)3)∩ E−2

are both 2-dimensional and we get

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8)
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w0 = a2(h1 + 22h2 + 52h3 + 35h4 + 46h5 + 48h6 + 41h7 + 25h8)

+ a3(e23465432)

w−2 = a4(26 f1 + 41 f2 + 54 f3 + 25 f4 + 16 f5 + 9 f6 + 4 f7 + f8)+ a5(e23465431).

Set a1 = 1 and consider the action of x on W (see (14)). We deduce that a2 = 13,
a4 = 1 and a5 = 2a3, so

w2 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8

w0 = 13(h1 + 22h2 + 52h3 + 35h4 + 46h5 + 48h6 + 41h7 + 25h8)

+ γ (e23465432)

w−2 = 26 f1 + 41 f2 + 54 f3 + 25 f4 + 16 f5 + 9 f6 + 4 f7 + f8 + 2γ (e23465431)

for some γ ∈ K . Set

e = w2, h = −2(13(h1+ 22h2+ 52h3+ 35h4+ 46h5+ 48h6+ 41h7+ 25h8))

and

f = −(26 f1 + 41 f2 + 54 f3 + 25 f4 + 16 f5 + 9 f6 + 4 f7 + f8)

= 33 f1 + 18 f2 + 5 f3 + 34 f4 + 43 f5 + 50 f6 + 55 f7 + 58 f8.

Then (e, h, f ) is an sl2-triple over Z (see the proof of [35, Proposition 2.4]) and
by applying Proposition 2.15 (with y = e23465432 and z = e23465431) we deduce that
X is contained in an A1-type subgroup of G.

Case 2. rad(V |X ) 6= 0, p > 53.

If p > 61 then the dimension of each indecomposable summand of V |X is at
least 60, which implies that the Jordan form of x has a block of size n > 60. This
is a contradiction.

Next assume p = 59. Suppose W is a reducible indecomposable nonprojective
summand of V |X , so dim W > 58 (see Corollary 2.4). In view of (32) and
Lemma 2.1, we deduce that x has Jordan form [J59, Ji ] on W for some odd
integer i between 3 and 47. But this implies that dim W is even, so Corollary 2.3
implies that W has at least four composition factors and thus i > 57 (again,
by Corollary 2.4). This is a contradiction. Therefore, we may assume that each
indecomposable summand of V |X is either simple or projective. Clearly,

V |X = U ⊕ L X (46)⊕ L X (38)⊕ L X (34)⊕ L X (26)⊕ L X (22)⊕ L X (14)⊕ L X (2)

is the only possibility. However, this implies that x2 has trace −4 on V , which
contradicts Proposition 2.8.
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Now assume p = 53. As in the previous case, by applying Lemma 2.1 and
Theorem 2.2, and by appealing to the self-duality of V |X , it is straightforward to
reduce to the case where the indecomposable summands of V |X are either simple
or projective. Moreover, by considering the eigenvalues in (31), we deduce that

V |X = W (i)⊕ L X (38)⊕ L X (34)⊕ L X (26)⊕ L X (22)⊕ L X (14)⊕ L X (2)

with i ∈ {6, 46}. By computing the trace of x3 ∈ X , it follows that i = 46. It is now
entirely straightforward to show that the L X (2) summand of V |X is an appropriate
sl2-subalgebra and the result follows via Proposition 2.14.

Case 3. rad(V |X ) 6= 0, p = 47.

As in the previous case, we can quickly reduce to the situation where each
indecomposable summand of V |X is simple or projective, in which case

V |X = W (i)⊕M2⊕ L X (38)⊕ L X (26)⊕ L X (22)⊕ L X (14)⊕ L X (2)

with i ∈ {12, 34} and M1 ∈ {L X (46),U }. By computing the trace of x2 we
deduce that i = 34 and M1 = L X (46), in which case V |X is compatible with
the containment of X in an A1-type subgroup of G (see Table 2).

As usual, let W be the L X (2) summand of V |X and let {w2, w0, w−2} be a
standard basis for W . We get

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8)

w0 = a2(h1 + 26h2 + 3h3 + 6h4 + 31h5 + 10h6 + 37h7 + 18h8)

+ a3(e23354321 − e22454321)

w−2 = a4(34 f1 + 38 f2 + 8 f3 + 16 f4 + 20 f5 + 11 f6 + 36 f7 + f8)

+ a5(e22354321 − 2e13354321).

We may set a1 = 1. By considering the action of x on this basis we deduce that
a2 = 1, a4 = 36 and a5 = 45a3, so

w2 = e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8

w0 = h1 + 26h2 + 3h3 + 6h4 + 31h5 + 10h6 + 37h7 + 18h8

+ γ (e23354321 − e22454321)

w−2 = 36(34 f1 + 38 f2 + 8 f3 + 16 f4 + 20 f5 + 11 f6 + 36 f7 + f8)

+ 45γ (e22354321 − 2e13354321)

for some γ ∈ K . One now checks that the relations in (17) are satisfied and thus
W is an sl2-subalgebra of V . Set

e = w2, h = −2(h1 + 26h2 + 3h3 + 6h4 + 31h5 + 10h6 + 37h7 + 18h8)
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and

f = −36(34 f1 + 38 f2 + 8 f3 + 16 f4 + 20 f5 + 11 f6 + 36 f7 + f8)

= 45 f1 + 42 f2 + 41 f3 + 35 f4 + 32 f5 + 27 f6 + 20 f7 + 11 f8.

Then (e, h, f ) is an sl2-triple over Z (see the proof of [35, Proposition 2.4])
and we can use Proposition 2.15 to conclude that X is contained in an A1-type
subgroup of G.

Case 4. rad(V |X ) 6= 0, p = 43.

By arguing in the usual manner, it is straightforward to reduce to the case
where each indecomposable summand of V |X is either simple or projective. By
considering the eigenvalues in (31), we deduce that

V |X = W (i)⊕W ( j)⊕ L X (34)⊕ L X (22)⊕ L X (14)⊕ L X (2)

with i ∈ {4, 38} and j ∈ {16, 26}. By computing the trace of x2, we see that
(i, j) = (38, 26) is the only option, in which case V |X is compatible with the
desired containment of X in an A1-type subgroup of G. As usual, we now
construct the summand W = L X (2) of V |X in terms of a standard basis {w2,

w0, w−2}; it is easy to show that W is an appropriate sl2-subalgebra and we can
conclude by applying Proposition 2.14.

Case 5. rad(V |X ) 6= 0, p = 41.

First assume that V |X has a reducible indecomposable nonprojective summand
W . In the usual way, we deduce that the Jordan form of x on W is one of the
following: 

[J 4
41, J27], [J 4

41, J15]

[J 3
41, J3]

[J 2
41, J27], [J 2

41, J15], [J 2
41, J3]

[J41, J39].

If the Jordan form is either [J 4
41, J27] or [J 4

41, J15] then there is a unique such
summand. Moreover, W has an odd number of composition factors and it is easy
to see that this is incompatible with the self-duality of V |X . Similar reasoning
rules out the cases where x has Jordan form [J 2

41, Ji ]. Finally, suppose x has
Jordan form [J 3

41, J3] or [J41, J39]. Here the self-duality of V |X implies that

soc(W ) ∼= W/soc(W ) = L X (22)⊕ L X (20)⊕ L X (18)

or
soc(W ) ∼= W/soc(W ) = L X (20)⊕ L X (18),
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respectively. However, the existence of such a summand would mean that ξ 20 is an
eigenvalue of s on CV (x), which is not the case (see (31)). Therefore, we conclude
that every indecomposable summand of V |X is either simple or projective. More
precisely, in view of (31), it follows that

V |X = W (i)⊕W ( j)⊕ L X (38)⊕ L X (26)⊕ L X (14)⊕ L X (2)

with i ∈ {6, 34} and j ∈ {18, 22}. By computing the trace of x3 we deduce that
(i, j) = (34, 22), in which case V |X is compatible with the containment of X in
an A1-type subgroup.

Let W be the L X (2) summand of V |X and let {w2, w0, w−2} be a standard basis.
In the usual manner we deduce that

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8)

w0 = a2(h1 + 30h2 + 10h3 + 27h4 + 22h5 + 25h6 + 36h7 + 14h8)

w−2 = a3(3 f1 + 8 f2 + 30 f3 + 40 f4 + 25 f5 + 34 f6 + 26 f7 + f8)

+ a4(e22343221 − e12343321 + e12244321).

Set a1 = 1. By considering the action of x on this basis we get a2 = 36 and
a3 = 24. Finally, one can check that the condition in (16) implies that a4 = 0 and
now the desired result follows from Proposition 2.14.

To complete the proof of the theorem, we may assume that p = 37 (recall that
the case p = 31 was handled earlier in Examples 2.21 and 2.24).

Case 6. rad(V |X ) 6= 0, p = 37.

As usual, let us first assume that V |X has a reducible indecomposable
nonprojective summand W . By applying Lemma 2.1 and Theorem 2.2, we
deduce that the Jordan form of x on W is one of the following:

[J 6
37, J23], [J 4

37, J23], [J 3
37, J3], [J 2

37, J23], [J 2
37, J3].

In fact, the self-duality of V |X implies that [J 3
37, J3] is the only possibility, with

soc(W ) ∼= W/soc(W ) = L X (16)⊕ L X (18)⊕ L X (20).

But if this is a summand of V |X then ξ 20 is an eigenvalue of s on CV (x),
contradicting (31). Therefore, we have reduced to the case where each
indecomposable summand of V |X is simple or projective. Again, by considering
(31) we deduce that

V |X = W (i)⊕W ( j)⊕W (k)⊕ L X (22)⊕ L X (2) (33)

with i ∈ {2, 34}, j ∈ {10, 26} and k ∈ {14, 22}.
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We claim that (i, j, k) = (34, 26, 14), in which case the decomposition of V |X
is compatible with the containment of X in an A1 subgroup of G. One can check
that all of the eight decompositions above are compatible with the trace of x2 and
x3, so we consider the traces of elements of larger order. Let y ∈ X be an element
of order 19. In each case it is straightforward to compute the eigenvalues of y on
V . Using Litterick’s algorithm in [21], we can compute the eigenvalues on V of
every element in G of order 19 and in this way we deduce that (i, j, k) = (34, 26,
14) as claimed.

Let W be the L X (2) summand of V |X with standard basis {w2, w0, w−2}. The
spaces

ker(x − 1)∩ E2, ker((x − 1)2)∩ E0, ker((x − 1)3)∩ E−2

have respective dimensions 2, 2 and 3, which gives

w2 = a1(e1 + e2 + e3 + e4 + e5 + e6 + e7 + e8)

+ a2(e22343221 − e12343321 + e12244321)

w0 = a3(h1 + 24h2 + 6h3 + 15h4 + 4h5 + 34h6 + 31h7 + 32h8)

+ a4(e22343211 + 24e12343221 + 25e12243321)

w−2 = a5(22 f1 + 10 f2 + 21 f3 + 34 f4 + 14 f5 + 8 f6 + 16 f7 + f8)

+ a6(e22343210 + 13e12243221 − e12233321)

+ a7(e12343211 + 23e12243221 + 2e12233321).

By considering the action of x on this basis, we deduce that a3 = 28a1, a4 = 3a2,
a5 = 16a1 and a7 = 6a2 + a6. The condition in (16) yields the equations

16a2
1a2 + 3a2

1a6 = 0
19a2

1a2 + 6a2
1a6 = 0.

If a1 6= 0 then these equations imply that a2 = a6 = 0, so we can set a1 = 1 and
then apply Proposition 2.14 to show that X is contained in an A1-type subgroup.
On the other hand, if a1 = 0 then we may assume a2 = 1, so

w2 = e22343221 − e12343321 + e12244321

w0 = 3(e22343211 + 24e12343221 + 25e12243321)

w−2 = a6(e22343210 + 13e12243221 − e12233321)

+ (6+ a6)(e12343211 + 23e12243221 + 2e12233321).
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It is straightforward to check that W ⊆ 〈eα |α ∈ Φ+(G)〉 is a subalgebra and this
puts us in case (ii) of the theorem.

This completes the proof of Theorem 7.1.

8. Proof of Theorem 1

In this final section, we complete the proof of Theorem 1. In view of
Theorem 3.1, we may assume that G is of type F4, E6, E7 or E8. Moreover, by
our work in Sections 4–7, it remains to handle the cases appearing in Table 4. In
each of these cases, X stabilizes a nonzero subalgebra W ⊆ 〈eα |α ∈ Φ+(G)〉 of
V = Lie(G) and by applying Proposition 2.18 we can assume that X is contained
in a proper parabolic subgroup P = QL of G with unipotent radical Q and
Levi factor L . The following result, when combined with Theorem 2, completes
the proof of Theorem 1. (Recall that Craven [9] has constructed a subgroup X
satisfying the conditions in parts (ii) and (iii) of Theorem 1, and he has established
its uniqueness up to conjugacy; see Remark 1(b).)

THEOREM 8.1. Let G be a simple exceptional algebraic group of adjoint type
over an algebraically closed field of characteristic p > 0. Let X = PSL2(p) be a
subgroup of G containing a regular unipotent element of G and let V = Lie(G)
be the adjoint module. If X is contained in a proper parabolic subgroup P = QL
of G, then either

(i) G = E6, p = 13, L ′ = D5 and V |X = W (10)2⊕W (4); or

(ii) G = E7, p = 19, L ′ = E6 and V |X = W (16)⊕W (14)⊕W (8)⊕U.

Proof. We may assume that P is minimal with respect to containing X . Let us
write π : P → P/Q for the quotient map and identify L with P/Q. By arguing
as in the first paragraph in the proof of Theorem 2 (see the end of Section 2),
we deduce that π(X) is contained in an A1-type subgroup H of L ′. In addition,
Theorem 2 implies that X is not contained in an A1-type subgroup of G, so (G, p,
V |X ) must be one of the cases in Table 4. As noted in the proof of Theorem 2, the
composition factors of V |H can be read off from [15, Tables 1–5] and this imposes
restrictions on the composition factors of V |X . By considering each possibility
for (G, L ′) in turn, comparing composition factors with Table 4, we show that the
cases labelled (i) and (ii) in the statement of the theorem are the only compatible
options.

First assume (G, p) = (F4, 13), so the composition factors of V |X are L X (10)3,
L X (8), L X (2)3 and L X (0). By inspecting [15, Table 2] it is easy to see that
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there is no compatible Levi subgroup L . Similarly, if (G, p) = (E8, 37) then
the composition factors of V |X are given in (19) and thus we can eliminate this
case by repeating the argument in the proof of Theorem 2.

Next suppose (G, p) = (E6, 13). The three possibilities for V |X (and their
composition factors) are as follows:

W (10)⊕W (8)⊕W (2) : L X (10)3, L X (8)3, L X (4), L X (2)4, L X (0)
W (10)⊕W (4)⊕W (2) : L X (10)3, L X (8)2, L X (6), L X (4)2, L X (2)3, L X (0)

W (10)⊕W (10)⊕W (4) : L X (10)4, L X (8), L X (6), L X (4)2, L X (2)2, L X (0)2.

In all three cases, we see that V |X has at most two trivial composition factors, so
[15, Table 3] implies that

L ′ = A2 A2
1, A2

2 A1, A4 A1 or D5.

If L ′ = A2 A2
1 then V |X has five or more L X (2) factors, which is incompatible

with all three possibilities for V |X . Similarly, if L ′ = A4 A1 then there are too
many L X (4) factors, and we can rule out L ′ = A2

2 A1 because we would get L X (1)
composition factors, which is absurd. Finally, suppose L ′ = D5. Since the Weyl
module WX (14) has an L X (10) composition factor, we see that V |X has four such
factors and thus

V |X = W (10)⊕W (10)⊕W (4)

is the only option.
Finally, let us assume (G, p) = (E7, 19). The three possibilities for V |X are as

follows:

W (8)⊕W (4)⊕W (2)⊕U : L X (16)2, L X (14)2, L X (12), L X (10), L X (8)3,
L X (4)2, L X (2)2, L X (0)2

W (16)⊕W (10)⊕W (4)⊕U : L X (16)3, L X (14), L X (12), L X (10)2, L X (8),
L X (6), L X (4)2, L X (2), L X (0)3

W (16)⊕W (14)⊕W (8)⊕U : L X (16)3, L X (14)2, L X (10), L X (8)3, L X (4),
L X (2)2, L X (0)3.

By inspecting [15, Table 4], counting the number of trivial composition factors,
we quickly reduce to a small number of possibilities for L ′. By considering
nontrivial composition factors, it is straightforward to reduce further to the case
L ′ = E6. For example, we can rule out L ′ = A6 because there would be too many
L X (4) factors. Similarly, L ′ = D5 A1 is out because we would have an L X (6)
and at least three L X (8) factors, which is not compatible with any of the three
possibilities above. We can rule out L ′ = D6 because it would imply that V |X has
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an L X (5) factor. Finally, suppose L ′ = E6. Here V |X has at least three L X (16)
and L X (8) composition factors, so

V |X = W (16)⊕W (14)⊕W (8)⊕U

is the only possibility.
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