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1. Introduction

Incomplete Bessel functions of zero order have been found useful in a number of appli-
cations to electromagnetic waves (see, for example, [1,3,5,8,9]).

Definitions of incomplete Bessel functions of general order are introduced below, and
some of their properties are obtained. The definitions, which hold for all values of the
parameters, are such that the interrelationships between incomplete functions parallel,
as far as is feasible, those for standard Bessel functions. They differ therefore from the
definitions in the text of [1]; more information about the differences is at the end of the
next section.

2. Definitions

The starting point is the definition for the incomplete modified Bessel function, which is
based on the modified Bessel function Kν(z). A suitable definition is

Kν(z, w) = Kν(z) − J(z, ν, w), (2.1)

where

J(z, ν, w) =
∫ w

0
e−z cosh t cosh νt dt. (2.2)

When |ph z| < π/2,

Kν(z) =
∫ ∞

0
e−z cosh t cosh νt dt, (2.3)
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and so

Kν(z, w) =
∫ ∞

w

e−z cosh t cosh νt dt (2.4)

when |ph z| < π/2. The representation (2.4) explains why the terminology of calling
Kν(z, w) an incomplete modified Bessel function is pertinent.

Observe that Kν(z, 0) = Kν(z) and that, as w → −∞ with z fixed and |ph z| < π/2,
Kν(z, w) → 2Kν(z). Also,

K−ν(z, w) = Kν(z, w). (2.5)

Other incomplete Bessel functions are defined in terms of Kν(z, w) by the same rules
that relate Bessel functions and Kν(z). Thus,

H(1)
ν (z, w) =

2
πi

e−νπi/2Kν(ze−πi/2, w),

= H(1)
ν (z) − 2

πi
e−νπi/2J(−iz, ν, w) (2.6)

and

H(2)
ν (z, w) = − 2

πi
eνπi/2Kν(zeπi/2, w),

= H(2)
ν (z) +

2
πi

eνπi/2J(iz, ν, w). (2.7)

It follows from (2.6), (2.5) and (2.7) that

H
(1)
−ν (z, w) = eνπiH(1)

ν (z, w), (2.8)

H
(2)
−ν (z, w) = e−νπiH(2)

ν (z, w). (2.9)

In a similar manner,

Jν(z, w) = 1
2{H(1)

ν (z, w) + H(2)
ν (z, w)}

= Jν(z) +
1
πi

{eνπi/2J(iz, ν, w) − e−νπi/2J(−iz, ν, w)}, (2.10)

Yν(z, w) =
1
2i

{H(1)
ν (z, w) − H(2)

ν (z, w)}

= Yν(z) +
1
π

{eνπi/2J(iz, ν, w) + e−νπi/2J(−iz, ν, w)}, (2.11)

Iν(z, w) =
1
πi

{e−νπiKν(z, w) − Kν(zeπi, w)}

= e−νπi/2Jν(zeπi/2, w)

= Iν(z) +
1
πi

{J(−z, ν, w) − e−νπiJ(z, ν, w)}. (2.12)

From (2.12),

I−ν(z, w) − Iν(z, w) = I−ν(z) − Iν(z) − 2
π

sin νπJ(z, ν, w),
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whence, by virtue of

Iν(z) = I−ν(z) −
(

2
π

)
sin νπKν(z)

and (2.1),

Kν(z, w) = 1
2π

I−ν(z, w) − Iν(z, w)
sin νπ

. (2.13)

In particular,
I−n(z, w) = In(z, w) (2.14)

for integer n.
Similarly,

H(1)
ν (z, w) =

J−ν(z, w) − e−νπiJν(z, w)
i sin νπ

=
Y−ν(z, w) − e−νπiYν(z, w)

sin νπ
(2.15)

and

H(2)
ν (z, w) =

eνπiJν(z, w) − J−ν(z, w)
i sin νπ

=
Y−ν(z, w) − eνπiYν(z, w)

sin νπ
. (2.16)

The book by Agrest and Maksimov [1] starts with several definitions of incomplete
Bessel functions and then develops their properties. The definitions hold under the restric-
tion R(ν + 1

2 ) > 0 and a typical example is

Jν(w, z) =
2

(ν − 1
2 )!π1/2

(
z

2

)ν ∫ w

0
cos(z cos θ) sin2ν θ dθ, (2.17)

the analogue of the Bessel function Jν(z). Note that Jν(0, z) = 0 and that, depending on
the value of ν, [∂Jν(w, z)/∂w]w=0 is zero or infinite. Later in the book the authors drop
the restriction on ν and take

jν(w, z) =
1

2πi

∫ w

w∗
ez sinh t−νt dt (2.18)

as the analogue of Jν , where w∗ is the complex conjugate of w. Although jν(0, z) = 0, its
derivative with respect to w is totally different from that of Jν(w, z). So the definitions
of (2.17) and (2.18) do not represent the same incomplete Bessel function.

It is characteristic of the other incomplete functions in the came class as Jν(w, z)
in (2.17) to vanish at w = 0 and to be represented by integrals of similar type. That
statement is also true for the incomplete functions related to (2.18). In contrast, the
definitions commencing with (2.1) reduce to standard Bessel functions when w = 0 and
are related by rules similar to those satisfied by standard Bessel functions.

3. Differential equations

It may be verified by integration by parts that Kν(z, w) is a solution of the inhomogeneous
differential equation{

z2 ∂2

∂z2 + z
∂

∂z
− ν2 − z2

}
Kν(z, w) = (ν sinh νw + z cosh νw sinhw)e−z cosh w. (3.1)
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Consequently, Kν(z, w) is a solution of the homogeneous partial differential equation
{

z2 ∂2

∂z2 + z
∂

∂z
− ν2 − z2 − ∂2

∂w2 + 2ν tanh νw
∂

∂w

}
Kν(z, w) = 0. (3.2)

It is evident from (2.12) that Iν(z, w) also satisfies (3.2). On the other hand, Jν(z, w),
Yν(z, w), H

(1)
ν (z, w) and H

(2)
ν (z, w) are solutions of

{
z2 ∂2

∂z2 + z
∂

∂z
− ν2 + z2 − ∂2

∂w2 + 2ν tanh νw
∂

∂w

}
Jν(z, w) = 0. (3.3)

Analogous versions of (3.1) can be derived for the other functions without difficulty
but details are omitted.

4. Recurrence formulae

Relations connecting different values of ν can be deduced from the previous sections and
the corresponding recurrence formulae for Bessel functions in a straightforward way. For
example,

Kν−1(z, w) + Kν+1(z, w) = −2
∂

∂z
Kν(z, w). (4.1)

In contrast

Kν−1(z, w) − Kν+1(z, w) = −2
ν

z
Kν(z, w) +

2
z

tanh νw
∂

∂w
Kν(z, w). (4.2)

The formulae for the other functions are

Iν−1(z, w) + Iν+1(z, w) = 2
∂

∂z
Iν(z, w), (4.3)

Iν−1(z, w) − Iν+1(z, w) = 2
ν

z
Iν(z, w) − 2

z
tanh νw

∂

∂w
Iν(z, w), (4.4)

H
(1)
ν−1(z, w) − H

(1)
ν+1(z, w) = 2

∂

∂z
H(1)

ν (z, w), (4.5)

H
(1)
ν−1(z, w) + H

(1)
ν+1(z, w) = 2

ν

z
H(1)

ν (z, w) − 2
z

tanh νw
∂

∂w
H(1)

ν (z, w), (4.6)

H
(2)
ν−1(z, w) − H

(2)
ν+1(z, w) = 2

∂

∂z
H(2)

ν (z, w), (4.7)

H
(2)
ν−1(z, w) + H

(2)
ν+1(z, w) = 2

ν

z
H(2)

ν (z, w) − 2
z

tanh νw
∂

∂w
H(2)

ν (z, w), (4.8)

Jν−1(z, w) − Jν+1(z, w) = 2
∂

∂z
Jν(z, w), (4.9)

Jν−1(z, w) + Jν+1(z, w) = 2
ν

z
Jν(z, w) − 2

z
tanh νw

∂

∂w
Jν(z, w), (4.10)

Yν−1(z, w) − Yν+1(z, w) = 2
∂

∂z
Yν(z, w), (4.11)

Yν−1(z, w) + Yν+1(z, w) = 2
ν

z
Yν(z, w) − 2

z
tanh νw

∂

∂w
Yν(z, w). (4.12)
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A consequence of (4.1) and (2.5) is

∂

∂z
K0(z, w) = −K1(z, w). (4.13)

Likewise, from (4.3) and (2.14),

∂

∂z
I0(z, w) = I1(z, w), (4.14)

while, from (4.5) and (2.8),

∂

∂z
H

(1)
0 (z, w) = −H

(1)
1 (z, w). (4.15)

The functions H
(2)
ν (z, w), Jν(z, w) and Yν(z, w) also satisfy (4.15). The relations (4.13)–

(4.15) may also be obtained directly from the original definitions.

5. Integral representations

One representation of Kν(z, w) has already been given in (2.4). It holds for |ph z| < π/2
and is based on (2.3). A wider range of ph z can be obtained by extending (2.3) by
analytic continuation so that

Kν(z) =
∫ ∞+iσ

0
e−z cosh t cosh νt dt (5.1)

for |ph z + σ| < π/2. A simple cross-check of (5.1) is provided by taking σ = −π and
replacing z by zeπi. Rewrite the integral as

1
2

∫ ∞−πi

∞+πi
ez cosh t−νt dt + 1

2

∫ ∞−πi

−∞−πi
ez cosh t+νt dt

or
−πiIν(z) + e−νπiKν(z)

and then the usual formula for Kν(zeπi) is recovered. More generally, agreement for
Kν(zemπi) can be secured by a parallel dissection.

One consequence of (5.1) is that

Kν(z, w) =
∫ ∞+iσ

w

e−z cosh t cosh νt dt (5.2)

for |ph z + σ| < π/2.
Representations for the other incomplete Bessel functions may now be inferred from

the definitions in § 2. Thus,

H(1)
ν (z, w) =

2
πi

e−νπi/2
∫ ∞+iσ

w

eiz cosh t cosh νt dt (5.3)
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for 0 < ph z + σ < π and

H(2)
ν (z, w) = − 2

πi
eνπi/2

∫ ∞+iσ

w

e−iz cosh t cosh νt dt (5.4)

for −π < ph z + σ < 0. Consequently, for 0 < ph z + σ < π,

Jν(z, w) =
1
πi

e−νπi/2
∫ ∞+iσ

w

eiz cosh t cosh νt dt

− 1
πi

eνπi/2
∫ ∞+iσ−iπ

w

e−iz cosh t cosh νt dt, (5.5)

Yν(z, w) = − 1
π

e−νπi/2
∫ ∞+iσ

w

eiz cosh t cosh νt dt

− 1
π

eνπi/2
∫ ∞+iσ−iπ

w

e−iz cosh t cosh νt dt. (5.6)

Furthermore,

Iν(z, w) =
1
πi

e−νπi
∫ ∞+iσ

w

e−z cosh t cosh νt dt − 1
πi

∫ ∞+iσ−iπ

w

ez cosh t cosh νt dt (5.7)

for |ph z + σ| < π/2.

6. Small argument

Since the behaviour of Bessel functions for small arguments is well known, it is only
necessary to examine the behaviour of J(z, ν, w) as z → 0. Expansion of the exponential
gives

J(z, ν, w) =
∞∑

n=0

(−z)n

n!

∫ w

0
cosh νt coshn t dt.

Since

cosh νt coshn t =
1
2n

n∑
m=0

n!
m!(n − m!)!

cosh(ν + n − 2m)t,

the expansion becomes

J(z, ν, w) =
∞∑

n=0

(− 1
2z)n

n∑
m=0

sinh(ν + n − 2m)w
m!(n − m!)!(ν + n − 2m)

. (6.1)

7. Large argument

Rather obviously, the presence of so many parameters in (5.2) makes a determination of
its asymptotics non-trivial. As a result, a full discussion will not be attempted here, but
will be dealt with in [7]. Instead, the treatment will be limited to what happens when
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w is real and σ = 0. Even with this simplification, the integral exhibits some interesting
properties.

The purpose of this section is to consider

Kν(z, w) =
∫ ∞

w

e−z cosh t cosh νt dt (7.1)

as |z| → ∞ with |ph z| < π/2 and w real. It is assumed that w and ν are kept fixed as
|z| → ∞. Relevant theorems are available in [2,6,10,11].

Since cosh t increases with |t| on the interval of integration, the possible minima of
R(z cosh t) occur at either t = w or t = 0. Hence, the minimum may be at an endpoint
or an interior point.

When w > 0 there is no interior saddle point and t = 0 is irrelevant. The endpoint
t = w is the contributor and

Kν(z, w) ∼ e−z cosh w

(
b0

z
+

b1

z2 + 2!
b2

z3 + · · ·
)

, (7.2)

where

b0 =
cosh νw

sinhw
, b1 =

ν sinh νw − coth w cosh νw

sinh2 w
, (7.3)

b2 =
ν2 cosh νw sinh2 w − 3ν cosh w sinhw sinh νw + (2 cosh2 w + 1) cosh νw

2 sinh5 w
. (7.4)

When w = 0, the saddle point coincides with an endpoint. So

Kν(z, 0) ∼ e−z

(
π

2z

)1/2(
1 +

4ν2 − 1
8z

+ · · ·
)

. (7.5)

When w < 0, there is an interior saddle point. Hence,

Kν(z, w) ∼ e−z

(
2π

z

)1/2(
1 +

4ν2 − 1
8z

+ · · ·
)

. (7.6)

A transition formula which indicates how (7.2) switches to (7.5) as w approaches the
origin is desirable. For the convenience of the reader, a method of deriving a transition
formula is described in the appendix. The expansion (A 1) in the appendix leads to

Kν(z, w) ∼
(

π

2z

)1/2

e−z

(
α0 +

α1

z

)
erfc{(2z)1/2 sinh(1

2w)}+
(

β0

z
+

β1

z2

)
e−z cosh w, (7.7)

where, from (A 2)–(A 5),

α0 = 1, β0 =
cosh νw

sinhw
− 1

2 sinh(1
2w)

, α1 = 1
8 (4ν2 − 1),

β1 =
ν sinh νw

sinh2 w
− cosh νw cosh w

sinh3 w
+

1
8 sinh3( 1

2w)
− 4ν2 − 1

16 sinh(1
2w)

.
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As a check on (7.7) note that, as w → 0, β0 and β1 become zero, as may be seen easily
from (A 6) and (A 7). Also, erfc(0) = 1 so that (7.7) is consistent with (7.5). Moreover,
when w > 0 and (2z2)1/2 sinh(1

2w) is large, the asymptotic expansion

erfc z ∼ e−z2

π1/2z

{
1 +

∞∑
p=1

(p − 1
2 )!(−1)p

π1/2z2p

}
, |ph z| < 3

4π,

can be employed. Then the first two terms of (7.2) are recovered from (7.7). For w < 0
and |(2z2)1/2 sinh(1

2w)| large, the relation

erfc(−z) = 2 − erfc(z)

leads to (7.6).

8. Large order

The asymptotics of Kν(z, w) when the magnitude of the order is large are somewhat
complex. Some idea of the behaviour can be gained by setting ν = z sinhα with the
simplification that α > 0. The restriction |ph z| < π/2 is still imposed; it implies that
|ph ν| < π/2 on account of the reality of α.

The real part of the exponent

z cosh t ∓ νt = ν(cosh t cosech α ∓ t)

possesses a minimum at t = ±α. However, the upper sign always leads to smaller values
than the lower sign. Therefore, it will be sufficient to confine our attention to the upper
sign, i.e.

Kν(z, w) ∼ 1
2

∫ ∞

w

e−ν(cosh t cosech α−t) dt (8.1)

as |ν| → ∞ with α fixed.
When w > α the saddle point is irrelevant and

Kν(z, w) ∼ 1
2ν

e−ν(cosh w cosech α−w)

sinhw cosech α − 1

{
1 − cosh w cosech α

ν(sinhw cosech α − 1)2
+ · · ·

}
. (8.2)

For w = α,

Kν(z, α) ∼ 1
2e−ν(coth α−α)

(
π

2ν coth α

)1/2

×
{

1 − 1
3

(
2
πν

)1/2

tanh3/2 α +
1

24ν
(5 tanh2 α − 3) tanhα

}
, (8.3)

and, for w < α,

Kν(z, α) ∼ e−ν(coth α−α)
(

π

2ν coth α

)1/2{
1 +

1
24ν

(5 tanh2 α − 3) tanhα

}
. (8.4)
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An expression to cope with the transition as w passes through α is

Kν(z, α) ∼ 1
2

(
α0 +

α1

ν

)(
π

2ν

)1/2

erfc
{

− b

(
ν

z

)1/2}
e−ν(coth α−α)

+
1
2ν

(
β0 +

β1

ν

)
e−ν(cosh w cosech α−w), (8.5)

where

α0 =
1

(coth α)1/2 , α1 =
(5 tanh2 α − 3)(tanhα)3/2

24
, (8.6)

β0 =
1

sinhw cosech α − 1
+

α0

b
, (8.7)

β1 = − cosh w cosech α

(sinhw cosech α − 1)3
− α0

b3 +
α1

b
(8.8)

and

b = ±21/2(cosh w cosech α − w − coth α + α)1/2 (8.9)

when w <
> α. In the limit as w → α

β0 = − 1
3 tanh2 α, β1 → 4

15 tanh3 α − 8
27 tanh5 α. (8.10)

Note that it is not permissible to allow α to tend to zero without a more careful
examination of the contribution of that part of the integral which was neglected in (8.1).

Appendix A.

This appendix sets out a method for determining the transitional asymptotic behaviour
as a saddle point and endpoint approach one another. It will be sufficient for our purposes
to discuss

I +
∫ ∞

c

e−zp(t)q(t) dt

with real c and non-singular q(t). The function p(t) will be taken to be real and to possess
a single simple saddle point at t = a in the interval of interest; a may be greater or less
than c. It will be assumed that p(t) has a minimum at the saddle point so that p′(a) = 0
and p′′(a) > 0. It will also be supposed that |ph z| < π/2.

Make the substitution
p(t) − p(a) = 1

2 (u − b)2

so that u = b corresponds to t = a. Take u > b for t > a and u < b for t < a. Choose b

so that u = 0 corresponds to t = c, while b has the same sign as a − c. Hence,

b = ±21/2{p(c) − p(a)}1/2

when a >
< c.
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After the substitution

Iezp(a) =
∫ ∞

0
g0(u)e−z(u−b)2/2 du,

where

g0(u) = q(t)
dt

du
.

Let
g0(u) = α0 + β0(u − b) + u(u − b)G0(u).

Then

Iezp(a) = α0

(
π

2z

)1/2

erfc{−b( 1
2z)1/2} +

β0

z
e−b2z/2 +

∫ ∞

0
u(u − b)G0(u)e−z(u−b)2/2 du,

where

erfc(w) =
2

π1/2

∫ ∞

w

e−y2
dy.

Integration by parts yields
∫ ∞

0
u(u − b)G0(u)e−z(u−b)2/2 du =

1
z

∫ ∞

0
g1(u)e−z(u−b)2/2 du

with
g1(u) = G0(u) + uG′

0(u).

Repeat the above procedure by setting

g1(u) = α1 + β1(u − b) + u(u − b)G1(u),

which adds α1/z and β1/z to α0 and β0, respectively. Clearly, further repetition is feasible
and

I ∼
(

α0 +
α1

z
+ · · ·

)(
π

2z

)1/2

erfc{−b( 1
2z)1/2}e−zp(a) +

(
β0 +

β1

z
+ · · ·

)
e−zp(c)

z
. (A 1)

The coefficients in (A 1) are given by

α0 = g0(b) =
q(a)

{p′′(a)}1/2 , (A 2)

β0 =
q(c)
p′(c)

+
q(a)

b{p′′(a)}1/2 (A 3)

and

α1 =
1
2q′′(p′′)2 − 1

2q′p′′′p′′ − 1
8qp(iv)p′′ + 5

24q(p′′′)2

(p′′)7/2 , (A 4)
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the derivatives being evaluated at t = a. In addition,

β1 =
q′(c)

{p′(c)}2 − q(c)p′′(c)
{p′(c)}3 − α0

b3 +
α1

b
. (A 5)

When c → a, limits of (A 3) and (A 5) are required. They are

β0 → q′

p′′ − qp′′′

3(p′′)2
, (A 6)

β1 →

{q′′′(p′′)3 − 2q′′p′′′(p′′)2 + 2q′p′′(p′′′)2 − 8
9q(p′′′)3

−q′p(iv)(p′′)2 + qp′′p′′′p(iv) − 1
5qp(v)(p′′)2}

3(p′′)5
(A 7)

evaluated at t = a.

Note added in proof

Cicchetti and Faraone [4] define their incomplete Bessel functions by (2.4) with the
restriction |ph z| < π/2 and by its analogue for Hankel functions with ph z adjusted
accordingly. For these three functions, the authors find asymptotic expressions as z → ∞
when ν is real, while |Iw| < π/2. On the common ground where ν and w are both real
and z → ∞, the authors’ asymptotic formula and (7.7) agree.
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