M. Sugiura Nagoya Math. J. Vol. 144 (1996), 137–154

EXPONENTIAL ASYMPTOTICS IN THE SMALL PARAMETER EXIT PROBLEM

MAKOTO SUGIURA

1. Introduction

Let \mathcal{M} be a *d*-dimensional Riemannian manifold of class C^{∞} with Riemannian metric $g = (g_{ij})$ and let D be a connected domain in \mathcal{M} having a non-empty smooth boundary ∂D and a compact closure \overline{D} . Suppose that $b^{\varepsilon} \in \mathfrak{X}(\mathcal{M}) = \{C^{\infty}\text{-vector fields on } \mathcal{M}\}, \varepsilon > 0$, are given and that $\{b^{\varepsilon}\}$ converges uniformly to $b \in \mathfrak{X}(\mathcal{M})$ on D' as $\varepsilon \downarrow 0$ for some neighborhood D' of D. Consider the diffusion process (x_t^{ε}, P_x) on D' with a small parameter $\varepsilon > 0$ generated by

(1.1)
$$\mathscr{L}^{\varepsilon} = \frac{\varepsilon^2}{2} \varDelta + b^{\varepsilon},$$

where Δ is the Laplace-Beltrami operator on \mathcal{M} . Uniqueness of the process requires some boundary condition on $\partial D'$. However boundary conditions are not mentioned since the process is considered only before the time when it leaves a small neighborhood of \overline{D} . In this paper, we shall study the asymptotic behavior of the expectation of the first exit time τ^{ε} from the domain D; i.e.,

$$\tau^{\varepsilon} = \inf\{t > 0 ; x_t^{\varepsilon} \notin D\},\$$

under the following assumptions:

- (A₁) (gradient condition) there exists a potential function $U \in C^{\infty}(\overline{D})$ such that $b = -\frac{1}{2} \operatorname{grad} U \operatorname{on} \overline{D};$
- (A₂) the set of critical points $\mathscr{C} = \{x \in D ; \text{grad } U(x) = 0\}$ consists of finite number of connected components K_1, \ldots, K_i (each of which is called compactum) such that, for arbitrary two points $x, y \in K_i$, there is an

Received July 12, 1993. Revised June 23, 1995.

absolutely continuous function $\phi \in C_{01}^{x,\psi}(K_i)$ satisfying $\int_0^1 \|\dot{\phi}(t)\|^2 dt < \infty$; (A₂) grad $U \neq 0$ on ∂D .

Here grad means the Riemannian gradient, $\|\cdot\| = \sqrt{g(\cdot, \cdot)}$ is the Riemannian norm and

$$C_{0T}^{x,y}(F) = \{ \phi \in C([0, T], F) ; \phi(0) = x, \phi(T) = y \}, x, y \in F, T > 0, \}$$

for an open or closed set F.

Introduce a quantity V_0 by

(1.2)
$$V_0 = \max_{x \in \mathscr{C}} \inf_{\phi \in C^{x,\partial D}} \max_{t \in [0,1]} \{ U(\phi(t)) - U(x) \},$$

where $C^{x,F} = \bigcup_{y \in F} C^{x,y}_{01}(\bar{D})$. By virtue of the theory of Freidlin and Wentzell [FW], one may expect

(1.3)
$$\lim_{\varepsilon \downarrow 0} \varepsilon^2 \log E_x[\tau^{\varepsilon}] = V_0, \quad x \in \mathcal{Q},$$

for a certain subdomain Ω of D. Indeed, one can see in [FW, Chapter 4] that, if the dynamical system determined by $-\frac{1}{2}$ grad U has a unique stable equilibrium position O and the domain D is attracted to O, (1.3) holds for $\Omega = D$. However, it is not clear whether (1.3) holds or not in case that D contains more than one compacta, although their theory [FW, Chapter 6] determines the exponential rates in terms of quasi-potentials and $\{\partial D\}$ -graphs. In the present paper, by applying their results, we shall determine the subdomain Ω of D directly in terms of the potential U rather than the quasi-potentials in such a manner that (1.3) holds for all $x \in \Omega$ while the left hand side (LHS) of (1.3) is strictly less than V_0 for $x \in D \setminus \Omega$.

Let $\{\bar{x}_t(x) ; t \ge 0, x \in \bar{D}\}$ be the flow determined by $-\frac{1}{2}$ grad U, i.e., $\bar{x}_t = \bar{x}_t(x)$ is a unique solution of the ordinary differential equation (ODE):

(1.4)
$$\frac{d\bar{x}_t}{dt} = -\frac{1}{2} \operatorname{grad} U(\bar{x}_t), \quad \bar{x}_0 = x.$$

We denote the ω -limit set of a point $x \in \overline{D}$ and the domain of the attraction of a connected open or closed set F in \overline{D} with respect to this flow, respectively, by $\omega(x)$ and $\mathcal{D}(F)$: if $\overline{x}_t(x) \in \overline{D}$ for all t > 0,

$$\omega(x) = \{ y \in D ; \bar{x}_{t_n}(x) \to y \text{ for some sequence } t_n \to \infty \},\$$

otherwise $\omega(x) = \emptyset$, and $\mathcal{D}(F) = \{x \in \overline{D}; \omega(x) \subset F, \omega(x) \neq \emptyset\}$. Set $\mathbf{K} = \{K_1, \ldots, K_l\}$. \mathbf{K}_s and \mathbf{K}_u stand for the set of all stable compacta and that of all unstable ones, respectively, with respect to the flow mentioned above. Every nonempty ω -limit set is connected and consists of critical points of U. Namely, if $\omega(x) \neq \emptyset$, then we have $\omega(x) \subset K_i$ for some $K_i \in \mathbf{K}$. (See, e.g., Palis and de Melo [PD].)

For every stable compactum K_i , we define a valley $\mathscr{V}(K_i)$ containing K_i in D. To do this, we set, for compact subsets F_1 , F_2 of \overline{D} ,

(1.5a)
$$U(F_1) = \min_{x \in F_1} U(x),$$

(1.5b)
$$U_{F_1}(F_2) = \max_{x \in F_1} \inf_{\phi \in C^{x,F_2}} \max_{t \in [0,1]} \{ U(\phi(t)) - U(x) \}.$$

Then, $\mathscr{V}(K_i)$ is a connected component of $\{x \in D ; U(x) < U(K_i) + U_{K_i}(\partial D)\}$ containing K_i . We denote the depth of valley $\mathscr{V}(K_i)$ by Depth $\mathscr{V}(K_i)$: Depth $\mathscr{V}(K_i) = \sup_{x,y \in \mathscr{V}(K_i)} \{U(x) - U(y)\}$. Notice that Depth $\mathscr{V}(K_i) > 0$ for all $K_i \in \mathbf{K}_s$ and that (1.2) is equivalent to $\max_{K_i \in \mathbf{K}_s}$ Depth $\mathscr{V}(K_i) = V_0$.

Let us define the domain Ω mentioned above in (1.3). If there is no stable compactum in D, we put $\Omega = D$. In the case of $\#\mathbf{K}_{s} \geq 1$, we define $\Omega = \bigcup_{k=0}^{\infty} \Omega_{k,0} \cap D$ by preparing subsets $\Omega_{k,j}$ and $\Omega_{k,j}^{(1)}$, $k, j = 0, 1, \ldots$, of D in the following manner. First, we write $\Omega_{0,0} = \emptyset$ and

$$Q_{0,0}^{(1)} = \bigcup_{K_i \in \mathbf{K} \text{s.Depth } \mathscr{V}(K_i) = V_0} \overline{\mathscr{V}(K_i)}.$$

Then, for each fixed $k = 0, 1, \ldots$, with noting that each $\Omega_{k,0}^{(1)}$, $k = 1, 2, \ldots$, is defined below from $\{\Omega_{k-1,j}\}_{j=0,1,\ldots}$, we construct $\Omega_{k,j}$ and $\Omega_{k,j}^{(1)}$, $j = 1, 2, \ldots$, by using induction on j as following:

$$\begin{split} & \Omega_{k,j} = \Omega_{k,j-1}^{(1)} \cup \bigcup_{K_i \in \mathbf{K}_u, K_i \cap \overline{\mathcal{Q}_{k,j-1}^{(1)}} \neq \emptyset} K_i, \quad j = 1, 2, \dots, \\ & \Omega_{k,j}^{(1)} = D \cap \mathcal{D}(\Omega_{k,j}), \qquad \qquad j = 1, 2, \dots. \end{split}$$

Finally, for $k=1,2,\ldots$ and $j=0,\ {\it \Omega}_{k,0}$ and ${\it \Omega}_{k,0}^{(1)}$ are defined by

$$\begin{split} \mathcal{Q}_{k,0} &= \bigcup_{j=0}^{\infty} \mathcal{Q}_{k-1,j}, \\ \mathcal{Q}_{k,0}^{(1)} &= \mathcal{Q}_{k,0} \cup \bigcup_{K_{i} \in \mathbf{K}_{i}, \overline{\mathcal{V}(K_{i})} \cap \mathcal{Q}_{k,0} \neq \emptyset} \overline{\mathcal{V}(K_{i})}. \end{split}$$

Here one notices that $\Omega_{k,j} \subset \Omega_{k,j+1}$ and $\Omega_{k,0} \subset \Omega_{k+1,0}$ for $k, j = 0,1,\ldots$ and that $\Omega_{k+1,0} = \Omega_{k,\mathbf{*K}_u}$ for $k = 0,1,\ldots$ and $\Omega = \Omega_{\mathbf{*K}_s,0} \cap D$. We also note that Ω is closed in D since every $\Omega_{k,0}, k = 1,2,\ldots$, is compact.

Now we formulate our main result.

THEOREM 1. We have

(1.6)
$$\lim_{\varepsilon \downarrow 0} \varepsilon^2 \log E_x[\tau^{\varepsilon}] = V_0$$

for all $x \in \Omega$. When $x \notin \Omega$, the LHS of (1.6) is strictly less than V_0 .

The proof essentially consists of two parts. In Section 2, Freidlin-Wentzell's quasi-potentials will be characterized by valleys of the potential U and the flow determined by $-rac{1}{2}$ grad U. Then, the set arOmega will be expressed in terms of valleys and quasi-potentials. We shall also show that the assumption (\mathbf{A}) in [FW, p.169] is fulfilled, which guarantees the existence of the limit in (1.6). In Sections 3 and 4, we shall recall that the limit in (1.6) can be represented by using Freidlin-Wentzell's quasi-potentials and $\{\partial D\}$ -graphs, and get the results by calculating the $\{\partial D\}$ -graphs together with the estimates of quasi-potentials derived in Section 2. The main tool is the $\{\partial D\}$ -graph with partially reversed arrows. Moreover two problems concerning the value of the LHS of (1.6) for $x \in D \setminus \Omega$ will be considered in Section 5. Namely, we shall show that, if the valley \mathscr{V} is a bottom one in the sense that $\min_{x \in \mathcal{V}} U(x) = \min_{K_i \in \mathbf{K}_i} U(K_i)$, the LHS of (1.6) is equal to the depth of \mathscr{V} for every $x \in \mathscr{V}$, and represent the values of the LHS of (1.6) for all x $\in D$ directly in terms of $U(x), x \in D$, when \mathcal{M} is one-dimensional Euclidean space. We notice that the technique in this paper is also applicable to getting the asymptotic behavior of the distribution, $P_x(x^{\varepsilon}_{\tau^{\varepsilon}_D} \in A)$, $A \subset \partial D$, of the exit position of x_t^{ϵ} from the boundary. (See [Su1] for details.)

This result will be applied in the collaborative papers [Su1], [Su2] to investigate metastable behaviors for a class of diffusion processes $\{x_t^{\epsilon}\}$ of gradient type.

2. Properties of quasi-potentials

The action functional S_T is defined on $C([0, T], \mathcal{M}), T \ge 0: S_T(\phi) = \frac{1}{2} \int_0^T \|\dot{\phi}(t) - b(\phi(t))\|^2 dt$ if $\phi \in C([0, T], \mathcal{M})$ is absolutely continuous, and $S_T(\phi) = +\infty$ otherwise. In particular, for an absolutely continuous $\phi \in C([0, T], \bar{D})$,

(2.1)
$$S_T(\phi) = \frac{1}{2} \int_0^T \|\dot{\phi}(t) + \frac{1}{2} \operatorname{grad} U(\phi(t))\|^2 dt.$$

Moreover we define

(2.2a)
$$V_D(x, y) = \inf\{S_T(\phi); \phi \in C_{0T}^{x,y}(\bar{D}), T \ge 0\}, x, y \in \bar{D},$$

which is called quasi-potential. We also denote, for compact subsets F_1 , F_2 of D,

(2.2b)
$$V_D(x, F_2) = \inf_{y \in F_2} V_D(x, y),$$

(2.2c)
$$V_D(F_1, y) = \inf_{y \in F_1} V_D(x, y),$$

(2.2d)
$$V_D(F_1, F_2) = \inf_{x \in F_1, y \in F_2} V_D(x, y).$$

We state three lemmas without proofs: Lemmas 2.1 and 2.3 are written as a comment after [FW, Chapter 6, Lemma 1.1] and Lemma 5.2 in [FW, Chapter 6], respectively, and Lemma 2.2 can be shown by straightforward arguments.

LEMMA 2.1. $V_D(x, y)$ is continuous for $x, y \in \overline{D}$. In particular, we have the following:

- (i) $V_D(x, y) < \infty$ for all $x, y \in \overline{D}$;
- (ii) the maps $x \mapsto V_D(x, F)$ and $y \mapsto V_D(F, y)$ are both continuous for every compact subset F of \overline{D} .

LEMMA 2.2. Let us suppose that compact subsets F_1 , F_2 and \mathcal{F} of \overline{D} are mutually disjoint and have the property that every trajectory in \overline{D} connecting F_1 and F_2 traverses \mathcal{F} ; i.e., for every $\phi \in C([0,1], \overline{D})$ satisfying $\phi(0) \in F_1$ and $\phi(1) \in F_2$, there exists $t \in (0,1)$ so that $\phi(t) \in \mathcal{F}$. Then, we have $V_D(F_1, F_2) = \inf_{x \in \mathcal{F}} \{V_D(F_1, x) + V_D(x, F_2)\}$.

LEMMA 2.3. If α is an unstable compactum K_i or a regular point x of U, then either there exists a stable compactum K_j such that $V_D(\alpha, K_j) = 0$ or $V_D(\alpha, \partial D) = 0$.

The next lemma is an easy consequence of the assumption (A_2) .

LEMMA 2.4. We have $V_D(x, y) = V_D(y, x) = 0$ for arbitrary two points x, y belonging to the same compactum K_i .

Proof. From (A_2) , there is an absolutely continuous $\phi \in C_{01}^{x,y}(K_i)$ such that $S_1(\phi) < +\infty$, where we recall grad $U \equiv 0$ on K_i . If one sets $\phi(t) = \phi(t/T)$, T > 0, then $S_T(\phi) \leq S_1(\phi) / T$. This immediately verifies $V_D(x, y) = 0$ by letting

 $T \rightarrow \infty$

142

The following two lemmas establish basic relations between the quasipotential and the depth of the valley. Recall (1.5) for the notation $U_{F_1}(F_2)$.

LEMMA 2.5. For all compact subsets F of \overline{D} , we have

(2.3) $V_D(x, F) \ge U_{\{x\}}(F), \quad x \in D,$

(2.4)
$$V_D(K_i, F) \ge U_{K_i}(F), \quad K_i \in \mathbf{K}.$$

In particular, if K_i is stable and satisfies $F \cap \mathscr{V}(K_i) = \emptyset$, then $V_D(K_i, F) \ge U_{K_i}(\partial D)$.

Proof. We shall prove only (2.4) since (2.3) is obtained in a quite parallel manner. Let $x_0 \in K_i$ be fixed arbitrarily. For $\delta > 0$, (2.2) and Lemma 2.4 verify the existence of an absolutely continuous $\phi \in C([0, T], \overline{D}), T \ge 0$, so that $\phi(0) = x_0, \phi(T) \in F$ and

$$V_{\mathcal{D}}(K_i, F) \geq S_{\mathcal{T}}(\phi) - \delta_i$$

From (1.5), one can find $0 \le T_0 \le T$ satisfying

$$U(\phi(T_0)) - U(\phi(0)) \ge U_{(x_0)}(F).$$

On the other hand, with the help of the definition (2.1) of the action functional $S_T(\phi)$ and the gradient condition (A_1) , we have

$$S_T(\phi) \ge \int_0^{T_0} g(\dot{\phi}(t), \operatorname{grad} U(\phi(t))) dt$$
$$= U(\phi(T_0)) - U(\phi(0)).$$

From these estimates, we obtain

$$V_D(K_i, F) \geq U_{\{x_0\}}(F)$$

by letting $\delta \downarrow 0$. Since it holds for every $x_0 \in K_i$, (2.4) is now derived.

COROLLARY 2.6. We have U(x) = U(y) for arbitrary two points x, y belonging to the same compactum.

Proof. If x, y are belonging to the same compactum, one has $V_D(x, y) = V_D(y, x) = 0$ from Lemma 2.4. By applying Lemma 2.5, this implies $U_{(x)}(\{y\}) =$

 \Box

 $U_{\{y\}}(\{x\}) = 0$, which is equivalent to U(x) = U(y).

LEMMA 2.7. Let each of α and β be a point of \overline{D} or a compactum in **K**. Then we have

(2.5)
$$V_D(\alpha, \beta) - V_D(\beta, \alpha) = U(\beta) - U(\alpha).$$

In particular, if $V_p(\alpha, \beta) = 0$, then $V_p(\beta, \alpha) = U(\alpha) - U(\beta)$.

Proof. We shall treat only the case where both of α and β are compacta, because the other cases are shown similarly. Write $\alpha = K_i$ and $\beta = K_j$. For an arbitrary $\delta > 0$, there exists an absolutely continuous $\phi \in C([0, T], \overline{D}), T \ge 0$, such that $\phi(0) \in K_i, \phi(T) \in K_j$ and

$$V_D(K_i, K_j) \geq S_T(\phi) - \delta.$$

Put $\psi(t) = \phi(T - t)$, $0 \le t \le T$. Then, we have

$$S_T(\phi) - S_T(\phi) = \int_0^T g(\dot{\phi}(t), \operatorname{grad} U(\phi(t))) dt$$
$$= U(\phi(T)) - U(\phi(0)).$$

On the other hand, since $\psi(0) \in K_j$ and $\psi(T) \in K_i$, $V_D(K_j, K_i) \leq S_T(\phi)$. Hence, by letting $\delta \downarrow 0$, we get

$$V_D(K_i, K_j) - V_D(K_j, K_i) \ge U(K_j) - U(K_i).$$

By reversing the symbols K_i and K_j , it holds that

$$V_D(K_i, K_j) - V_D(K_j, K_i) \le U(K_j) - U(K_i),$$

and now (2.5) is obtained.

The next lemma gives an important property of regular points.

LEMMA 2.8. Let $x \in D$ be a regular point of U, namely, grad $U(x) \neq 0$ and suppose $\bar{x}_t(x) \in \bar{D}$ for $0 \leq t \leq T$. Then, we have $V_D(x, y) > 0$ for every point $y \in \bar{D} \setminus \{\bar{x}_t(x); 0 \leq t \leq T\}$ such that $U(y) > U(\bar{x}_T(x))$. Recall that $\bar{x}_t(x)$ is the solution of the ODE (1.4).

Proof. Set $\rho_0 = \inf_{0 \le t \le T} \rho(\bar{x}_t(x), y) > 0$, where $\rho(\cdot, \cdot)$ denotes the Riemannian distance on \mathcal{M} . From Lemma 2.1 of [FW, Chapter 4], we know that

https://doi.org/10.1017/S0027763000006036 Published online by Cambridge University Press

$$I_{T'} = \inf\{S_{T'}(\phi) ; \phi \in C([0, T'], \mathcal{M}), \phi(0) = x, \max_{0 \le t \le T'} \rho(\bar{x}_t(x), \phi(t)) > \rho_0/2\} > 0$$

for every $0 < T' \leq T$. Since $I_{T'}$ is a non-increasing function of T',

$$\inf\{S_{T'}(\phi) ; \phi \in C^{x,y}_{0T'}(\bar{D}), 0 \le T' \le T\} \ge I_T > 0.$$

Let $0 < T_1 < T_2 < T$ satisfy $U(y) > U(\bar{x}_{T_1}(x))$. Then, by using the same argument of Lemma 2.2 in [FW, Chapter 4], one can find a > 0 such that $S_{T'}(\phi) \ge a(T' - T_2)$ for every $T' > T_2$ and $\phi \in C([0, T'], \bar{D})$ with $\phi(0) = x$ and $U(\phi(t)) \ge U(\bar{x}_{T_1}(x))$ during $0 \le t \le T'$. Hence, combining this with Lemma 2.5, we obtain

$$\inf\{S_{T'}(\phi) ; \phi \in C_{0T'}^{x,y}(\bar{D}), T' \ge T\} \ge \min\{a(T - T_2), U(y) - U(\bar{x}_{T_1}(x))\} > 0$$

and the proof is completed.

COROLLARY 2.9. If x satisfies $\omega(x) = \emptyset$ and F is a compact subset of \overline{D} satisfying $\omega(y) \neq \emptyset$ for all $y \in F$, then $V_D(x, F) > 0$.

Proof. Let $T = \inf\{t > 0; \bar{x}_t(x) \notin \bar{D}\}$. If one denotes

(2.6)
$$\mathcal{F} = \{ z \in \overline{D} ; \delta/2 \le \inf_{0 \le t \le T} \rho(\overline{x}_t(x), z) \le \delta \}$$

for sufficiently small $\delta > 0$, three compact subsets $\{x\}$, F and \mathcal{F} of \overline{D} are mutually disjoint. From Lemma 2.8, we can obtain $\inf_{z \in \mathcal{F}} V_D(x, z) > 0$, where we use a sufficiently smooth function \tilde{U} on a neighborhood of \overline{D} satisfying $\tilde{U} = U$ on \overline{D} . Hence, since every trajectory in \overline{D} connecting x and F traverses \mathcal{F} , by applying Lemma 2.2 we get

$$V_D(x, F) = \inf_{z \in \mathcal{F}} \{V_D(x, z) + V_D(z, F)\}$$

$$\geq \inf_{z \in \mathcal{F}} V_D(x, z)$$

$$> 0.$$

COROLLARY 2.10. If $x \in K_i$ and $y \notin K_i$, then either $V_D(x, y) > 0$ or $V_D(y, x) > 0$.

Proof. From Lemma 2.5, it suffices to show the case where U(x) = U(y). Let T > 0 satisfy $\bar{x}_t(y) \in \bar{D}$ for $0 \le t \le T$. By choosing a sufficiently small $\delta > 0$, we can suppose that $\{y\}$, $\{x\}$ and \mathcal{F} are mutually disjoint, where we define \mathcal{F} by (2.6) in which x should be replaced by y. For 0 < T' < T Lemmas 2.5 and 2.8 imply, respectively,

$$\inf_{\substack{z \in \mathscr{F}: U(z) \le U(\bar{x}_{T'}(y)) \\ \inf_{z \in \mathscr{F}: U(z) > U(\bar{x}_{T'}(y))}} V_D(z, x) \ge U(x) - U(\bar{x}_{T'}(y)) > 0,$$

Hence, combining these estimates with Lemma 2.2, we obtain

$$V_D(y, x) = \inf_{z \in \mathcal{F}} \{ V_D(y, z) + V_D(z, x) \} > 0.$$

We define a subdomain $\tilde{\Omega}$ of D in terms of quasi-potentials. Set $\tilde{\Omega} = D$ if there is no stable compactum. In the case of $\#\mathbf{K}_{s} \geq 1$, determine $\tilde{\mathcal{Q}}_{k}^{(1)}$, $k = 0, 1, \ldots$, and $\tilde{\Omega}_{k}$, $k = 1, 2, \ldots$, inductively, by

$$\begin{split} \tilde{\mathcal{Q}}_{0}^{(1)} &= \bigcup_{K_{i} \in \mathbf{K}_{S} \cdot \mathrm{Depth} \ \forall (K_{i}) = V_{0}} \overline{\mathcal{V}(K_{i})}, \\ \tilde{\mathcal{Q}}_{k} &= \{ x \in \bar{D} \ ; \ V_{D}(x, \ \tilde{\mathcal{Q}}_{k-1}^{(1)}) = 0 \}, \quad k = 1, 2, \dots, \\ \tilde{\mathcal{Q}}_{k}^{(1)} &= \tilde{\mathcal{Q}}_{k} \ \cup \bigcup_{K_{i} \in \mathbf{K}_{S} \cdot \overline{\mathcal{V}(K_{i})} \cap \hat{\mathcal{Q}}_{k} \neq \emptyset} \overline{\mathcal{V}(K_{i})}, \quad k = 1, 2, \dots \end{split}$$

We remark that Lemma 2.1 (ii) implies the compactness of the sets $\tilde{\Omega}_k$ and $\tilde{\Omega}_k^{(1)}$. Noting that the sequence $\{\tilde{\Omega}_k\}_{k=1,2,\dots}$ is not decreasing and that $\tilde{\Omega}_{k_0} = \tilde{\Omega}_{k_0+1} = \cdots$ for $k_0 \geq \# \mathbf{K}_s$, we define $\tilde{\Omega} = \tilde{\Omega}_{k_0} \cap D$.

PROPOSITION 2.11. We have $\Omega = \tilde{\Omega}$.

Proof. If there is no stable compactum in D, the statement is obvious. So we assume $\# \mathbf{K}_{s} \geq 1$. Claim that $\mathcal{Q}_{1,0} = \tilde{\mathcal{Q}}_{1}$. It is obvious that $\mathcal{Q}_{1,0} \subset \tilde{\mathcal{Q}}_{1}$. In order to prove $\mathcal{Q}_{1,0} \supset \tilde{\mathcal{Q}}_{1}$, it is sufficient to show $V_{D}(K_{i}, \tilde{\mathcal{Q}}_{0}^{(1)}) > 0$ for every compactum K_{i} in $D \setminus \mathcal{Q}_{1,0}$. Indeed, let $x \in D \setminus \mathcal{Q}_{1,0}$ be a regular point. Then, if $\omega(x) = \emptyset$, we know $V_{D}(x, \tilde{\mathcal{Q}}_{0}^{(1)}) > 0$ from Corollary 2.9, and, if $\omega(x) \subset K_{i}$ and $V_{D}(x, \tilde{\mathcal{Q}}_{0}^{(1)}) = 0$, by using a similar argument to Corollary 2.9 or 2.10 we get $V_{D}(\bar{x}_{T}(x), \tilde{\mathcal{Q}}_{0}^{(1)}) = 0$ for all T > 0 from Lemmas 2.1, 2.2 and 2.8 and, consequently, $V_{D}(K_{i}, \tilde{\mathcal{Q}}_{0}^{(1)}) = 0$ from Lemma 2.1. First, suppose that $K_{i} \in \mathbf{K}$ satisfies $U(K_{i}) = \min\{U(K_{j}); K_{i} \subset D \setminus \mathcal{Q}_{1,0}\}$. For a stable compactum $K_{i} \subset D \setminus \mathcal{Q}_{1,0}$, one has $V_{D}(K_{i}, \tilde{\mathcal{Q}}_{0}^{(1)}) \geq 0$ pepth $\mathcal{V}(K_{i}) > 0$ from $\mathcal{Q}_{0}^{(1)} = \tilde{\mathcal{Q}}_{0}^{(1)}$ and $K_{i} \cap \tilde{\mathcal{Q}}_{0}^{(1)} = \emptyset$. If K_{i} is unstable, there is an open neighborhood G of K_{i} such that $\omega(y) = \emptyset$, which implies $V_{D}(Y_{i}, \tilde{\mathcal{Q}}_{0}^{(1)}) > 0$ from Corollary 2.9, for all $y \in G \setminus K_{i}: U(y) \leq U(K_{i})$. Hence, by a parallel method to Corollary 2.10 with using Lemmas 2.1, 2.2 and 2.5, $V_{D}(K_{i}, \tilde{\mathcal{Q}}_{0}^{(1)}) > 0$ is obtained. Next, take $K_{i} \in \mathbf{K}$ such that $V_{D}(K_{j}, \tilde{\mathcal{Q}}_{0}^{(1)}) > 0$ for all $K_{j} \subset D \setminus \mathcal{Q}_{1,0}$.

 $U(K_i) < U(K_i)$. Then, one can find an open neighborhood G of K_i such that every $y \in G \setminus K_i : U(y) \leq U(K_i)$ satisfies either $\omega(y) = \emptyset$ or $\omega(y) \subset K_i$ for some $K_j \subset D \setminus \Omega_{1,0} : U(K_j) < U(K_i)$, namely, $V_D(y, \tilde{\Omega}_0^{(1)}) > 0$ from Lemma 2.8. Lemmas 2.1, 2.2 and 2.5 also verify $V_D(K_i, \tilde{\Omega}_0^{(1)}) > 0$. Hence, we obtain $\Omega_{1,0} = \tilde{\Omega}_1$ by induction.

Since one can show that $\Omega_{k,0} = \tilde{\Omega}_k$ implies $\Omega_{k+1,0} = \tilde{\Omega}_{k+1}$ for $k = 1, 2, \ldots$, by using the methods explained above, the proof is immediately concluded by induction.

3. Summaries of Freidlin and Wentzell's results

We recall Freidlin-Wentzell's $\{\partial D\}$ -graph. (See also [FW, Chapter 6].) Let L be a finite set and let W be a subset of L. A graph consisting of arrows $\alpha \rightarrow \beta$ ($\alpha \in L \setminus W$, $\beta \in L$, $\alpha \neq \beta$) is called a W-graph on L if it satisfies the following conditions:

- (1) every $\alpha \in L \setminus W$ is the initial point of exactly one arrow;
- (2) there are no closed cycles in the graph.

We note that condition (2) can be replaced by the next one:

(2') for every $\alpha \in L \setminus W$ there exists a sequence of arrows leading from it to some $\beta \in W$.

We denote by $G^{L}(W)$ the set of *W*-graphs on *L* and, for $\alpha \in L \setminus W$ and $\beta \in W$, $G^{L}_{\alpha\beta}(W)$ stands for the set of *W*-graphs on *L* each of which contains the sequence of arrows leading from α to β . For $\alpha \in L \setminus W$, we set, if $\# [L \setminus W] \ge 2$,

$$G^{L}(\alpha \not\rightarrow W) = G^{L}(W \cup \{\alpha\}) \cup \bigcup_{\beta \in L \setminus W, \beta \neq \alpha} G^{L}_{\alpha\beta}(W \cup \{\beta\})$$

and, if $\# [L \setminus K] = 1$, $G^{L}(\alpha \nrightarrow W) = \emptyset$.

Let us define

(3.1)
$$W_D = \min_{g \in G^{\mathbf{K}^*}(\partial D)} \sigma(g),$$

(3.2)
$$M_D(x) = \min_{g \in G^{\mathbf{K}^* \cup (x)}(x \to \{\partial D\})} \sigma(g), \quad x \in D,$$

(3.3)
$$M_D(K_i) = \min_{g \in G^{\mathbf{K}^*}(K_i \to (\partial D))} \sigma(g), \quad K_i \in \mathbf{K},$$

where $\mathbf{K}^* = \{K_1, \ldots, K_l, \partial D\}$ and

$$\sigma(g) = \sum_{(\alpha \to \beta) \in g} V_D(\alpha, \beta)$$

for a graph g. From Lemma 2.4 and Corollary 2.10, our system satisfies the assumption (A) in [FW, p.169]. Hence, under the assumptions $(A_1) - (A_3)$, we have the next theorems stated in [FW, Chapter 6, §5].

THEOREM 3.1. Let us assume $\# \mathbf{K}_{s} \geq 1$. We have

(3.4)
$$W_D = \min_{g \in G^{K^*_{s(\partial D)}}} \sigma(g)$$

(3.5)
$$W_D = \min_{g \in G^{K^*_{\mathbb{S}^{\cup}(x)}}(\partial D)} \sigma(g), \quad \text{for } x \in D,$$

(3.6)
$$M_D(x) = \min_{g \in G^{K^*_{\mathbb{S}^{\cup}(x)}}(x \to (\partial D))} \sigma(g), \quad \text{for } x \in D,$$

(3.7)
$$M_D(K_i) = \min_{g \in G^{\mathbf{K}^*_{\mathbf{S}(K_i \to \mathbf{S}(\partial D))}} \sigma(g), \quad \text{for } K_i \in \mathbf{K}_{\mathbf{S}},$$

where $\mathbf{K}_{s}^{*} = \mathbf{K}_{s} \cup \{\partial D\}$.

THEOREM 3.2. We have

$$\lim_{\varepsilon \downarrow 0} \varepsilon^2 \log E_x[\tau^{\varepsilon}] = W_D - M_D(x)$$

uniformly in x belonging to every compact subset of D.

Remark 3.3. Theorem 3.2 guarantees the existence of the limit in the LHS of (1.6).

4. Proof of Theorem 1

In this section we shall show Theorem 1. By combining Theorem 3.2 with Proposition 2.11, the next theorem immediately verifies Theorem 1.

THEOREM 4.1. We have

(4.1) $W_D - M_D(x) = V_0, \quad x \in \tilde{\Omega},$

$$(4.2) W_D - M_D(x) < V_0, \quad x \notin \Omega.$$

Let us suppose that there is no stable compactum in D. Fix an arbitrary $x \in D$. For $g \in G^{\mathbf{K}^* \cup \{x\}}(x \not\rightarrow \{\partial D\})$ attaining the minimum in the right hand side (RHS) of (3.2), we consider a $\{\partial D\}$ -graph on $\mathbf{K}^* \cup \{x\}$ derived from g by exchanging one arrow starting from x with an arrow $(x \rightarrow \partial D)$. Since $V_D(x, \partial D) =$

0, from Lemma 5.3 in [FW, Chapter 6] we obtain $W_D - M_D(x) = 0$ and this completes the proof of Theorem 4.1 when $\# \mathbf{K}_s = 0$. Therefore we assume $\# \mathbf{K}_s \ge 1$ throughout the rest of this section.

For a graph g in $G^{\mathbf{K}_{s}^{*}}\{\partial D\}$, $G^{\mathbf{K}_{0}^{*}}\{\partial D\}$, $G^{\mathbf{K}_{s}^{*}}(K_{i} \rightarrow \{\partial D\})$ or $G^{\mathbf{K}_{0}^{*}}(K_{i} \rightarrow \{\partial D\})$, we introduce a notation $K_{i} \xrightarrow{g} K_{j}$ for $K_{i}, K_{j} \in \mathbf{K}_{0}^{*}$ if g contains a sequence of arrows leading from K_{i} to K_{j} ; we also use the notation $K_{i} \xrightarrow{g} K_{j}$ if g does not contain such a sequence of arrows. Here, taking the formulae (3.5) and (3.6) into account, we set $K_{0} = \{x_{0}\}$ ($x_{0} \in \overline{D}$), $K_{l+1} = \partial D$, $\mathbf{K}_{0}^{*} = \mathbf{K}_{s} \cup \{K_{0}\} \cup \{K_{l+1}\}$. Let g be a $\{\partial D\}$ -graph in $G^{\mathbf{K}_{s}^{*}}\{\partial D\}$ on \mathbf{K}_{s}^{*} and $K_{i} \in \mathbf{K}_{s}$. For a sequence of

Let g be a $\{\partial D\}$ -graph in $G^{\mathbf{K}_s^*}\{\partial D\}$ on \mathbf{K}_s^* and $K_i \in \mathbf{K}_s$. For a sequence of arrows $(K_i \to K_{i_1}), (K_{i_1} \to K_{i_2}), \ldots, (K_{i_n} \to \partial D) \in g$, we set

$$\mathbf{n} = \min\{p \ge 0; K_{i_{p+1}} \not\subset \mathcal{V}(K_i)\},\$$

where we write $K_{i_0} = K_i$ and $K_{i_{n+1}} = \partial D$ simply. Then, we call K_{i_n} the last compactum of g in a valley $\mathscr{V}(K_i)$ from K_i . For a graph g in $G^{\mathbf{K}^*_s}(K_i \xrightarrow{\to} {\partial D})$, there is a unique compactum (except ∂D) which does not become the initial point of any arrows. We call it the end compactum of g.

LEMMA 4.2. Let a $\{\partial D\}$ -graph $g \in G^{\mathbf{K}^*_s}\{\partial D\}$ attain the minimum in the RHS of (3.4). Then, for each valley \mathcal{V} , the last compactum of g in \mathcal{V} does not depend on any particular choice of stable compacta in \mathcal{V} .

Proof. Suppose that there exist more than one last compact of g in $\mathscr{V} = \mathscr{V}(K_i)$, $K_i \in \mathbf{K}_s$. Let K_i be a last compactum. We consider a connected compact subdomain $\mathscr{V}_{\gamma} = \{x \in \mathscr{V}; U(x) \leq \gamma\}$ of \mathscr{V} for $\max_{x \in \mathscr{V} \cap \mathscr{C}} U(x) < \gamma < U(K_i) + U_{K_i}(\partial D)$, and set

$$\begin{split} & \mathcal{V}_{\gamma}^{(1)} = \{ x \in \mathcal{V}_{\gamma}; \text{ there exists } K_{j} \in \mathbf{K}_{\mathrm{s}} \text{ in } \mathcal{V} \text{ such that } K_{j} \xrightarrow{g} K_{\mathrm{i}} \text{ and } V_{D}(x, K_{j}) = 0 \}, \\ & \mathcal{V}_{\gamma}^{(2)} = \{ x \in \mathcal{V}_{\gamma}; \text{ there exists } K_{j} \in \mathbf{K}_{\mathrm{s}} \text{ in } \mathcal{V} \text{ such that } K_{j} \xrightarrow{g} K_{\mathrm{i}} \text{ and } V_{D}(x, K_{j}) = 0 \}. \end{split}$$

Then, since both $\mathcal{V}_{\tau}^{(1)}$ and $\mathcal{V}_{\tau}^{(2)}$ are non-empty closed subsets of \mathcal{V}_{τ} and Lemma 2.3 varifies $\mathcal{V}_{\tau}^{(1)} \cup \mathcal{V}_{\tau}^{(2)} = \mathcal{V}_{\tau}$, we have $\mathcal{V}_{\tau}^{(1)} \cap \mathcal{V}_{\tau}^{(2)} \neq \emptyset$; i.e., there exist $x_{1} \in \mathcal{V}_{\tau}$ and $K_{j_{0}}, K_{j_{1}} \in \mathbf{K}_{s}$ in \mathcal{V}_{τ} so that $K_{j_{0}} \xrightarrow{g} K_{i}, K_{j_{1}} \xrightarrow{g} K_{i}$ and that $V_{D}(x_{1}, K_{j_{0}}) = V_{D}(x_{1}, K_{j_{1}}) = 0$. From Lemmas 2.2 and 2.7, one knows

(4.3)
$$V_D(K_{j_1}, K_{j_0}) \leq V_D(K_{j_1}, x_1) + V_D(x_1, K_{j_0})$$
$$= U(x_1) - U(K_{j_1})$$
$$\leq \gamma - U(K_{j_1}).$$

Let K_i be the last compactum of g in \mathscr{V} from K_{i_1} . For a sequence of arrows $(K_{i_1} \rightarrow K_{i_2})$

 K_{j_2}), $(K_{j_2} \to K_{j_3})$, ..., $(K_{j_{n-1}} \to K_j)$, $(K_j \to K_{j_{n+1}}) \in g$, \tilde{g} denotes a $\{\partial D\}$ -graph obtained from g by replacing these n arrows with n arrows $(K_j \to K_{j_{n-1}})$, ..., $(K_{j_2} \to K_{j_1})$, $(K_{j_1} \to K_{j_0})$. Since Lemma 2.5 verifies $V_D(K_j, K_{j_{n+1}}) \ge U_{K_j}(\partial D)$, by using Lemma 2.7 and (4.3) we have

$$\begin{aligned} \sigma(\tilde{g}) &- \sigma(g) \\ &= \sum_{k=1}^{n-1} \{ V_D(K_{j_{k+1}}, K_{j_k}) - V_D(K_{j_k}, K_{j_{k+1}}) \} + V_D(K_{j_1}, K_{j_0}) - V_D(K_{j_n}, K_{j_{n+1}}) \\ &\leq U(K_{j_1}) - U(K_{j_1}) + \gamma - U(K_{j_1}) - U_{K_j}(\partial D) \\ &= \gamma - \{ U(K_{j_1}) + U_{K_j}(\partial D) \} \\ &< 0, \end{aligned}$$

where $K_{j_n} = K_j$. But this contradicts the assumption that g attains the minimum in the RHS of (3.4).

PROPOSITION 4.3. We have

$$(4.4) W_D - M_D(x_0) \ge V_0$$

for all $x_0 \in \tilde{\Omega}$.

Proof. Let a $\{\partial D\}$ -graph $g \in G^{\mathbf{K}_{s}^{*}}\{\partial D\}$ attain the minimum in the RHS of (3.4) and be fixed throughout the proof. Consider $K_{*} \in \mathbf{K}_{s}$ satisfying $U_{K_{*}}(\partial D) = V_{0}$ and the last compactum K_{i} of g in the valley $\mathcal{V}(K_{*})$. For a sequence of arrows $(K_{*} \to K_{i_{1}}), (K_{i_{1}} \to K_{i_{2}}), \ldots, (K_{i_{n-1}} \to K_{i}), (K_{i} \to K_{i_{n+1}}) \in g$, we define $g_{0} \in G^{\mathbf{K}_{s}^{*}}(K_{*} \to \{\partial D\})$ from g by deleting these n + 1 arrows and adding n arrows $(K_{i} \to K_{i_{n-1}}), \ldots, (K_{i_{2}} \to K_{i_{1}}), (K_{i_{1}} \to K_{*})$. Then, Lemmas 2.5 and 2.7 imply

$$\sigma(g) - \sigma(g_0) = \sum_{k=1}^{n} \{V_D(K_{i_{k-1}}, K_{i_k}) - V_D(K_{i_k}, K_{i_{k-1}})\} + V_D(K_i, K_{i_{n+1}})$$

$$\geq U(K_i) - U(K_*) + U_{K_i}(\partial D)$$

$$= V_0,$$

where $K_{i_0} = K_*$ and $K_{i_n} = K_i$. Since Lemma 4.2 proves $g_0 \in G^{K_s^*}(K_i \nleftrightarrow \{\partial D\})$ for all stable compacta $K_i \subset \mathcal{V}(K_*)$, one obtains the estimate

$$(4.5) W_D - M_D(K_i) \ge V_0$$

for all stable compacta K_i satisfying Depth $\mathcal{V}(K_i) = V_0$. On the other hand, for every $x_0 \in \tilde{\mathcal{Q}}_1$, there is a stable compactum K_i , Depth $\mathcal{V}(K_i) = V_0$, so that $V_D(x_0, K_i) = 0$. This implies $M_D(x_0) \leq M_D(K_i)$ and therefore the estimate (4.4) holds for every $x_0 \in \tilde{\mathcal{Q}}_1$.

https://doi.org/10.1017/S0027763000006036 Published online by Cambridge University Press

MAKOTO SUGIURA

For a stable compactum $K_i \subset \tilde{\Omega}_2 \setminus \tilde{\Omega}_1$ there exist a point $x_1 \in \overline{\mathcal{V}(K_i)} \cap \tilde{\Omega}_1$ and stable compacta $K_{j_0} \subset \tilde{\Omega}_1, K_{j_1} \subset \mathcal{V}(K_i)$ such that $V_D(x_1, K_{j_0}) = V_D(x_1, K_{j_1}) = 0$. Note that Lemmas 2.2 and 2.5 imply

(4.6)
$$V_D(K_{j_1}, K_{j_0}) = U_{K_{j_1}}(\partial D).$$

Since Depth $\mathscr{V}(K_{j_0}) = V_0$, one can construct $g_0 \in G^{\mathbf{K}^*_s}(K_{j_0} \twoheadrightarrow \{\partial D\})$ from the $\{\partial D\}$ -graph g (fixed at the top of the proof) such that

$$\sigma(g) - \sigma(g_0) \ge V_0$$

by the previous methods. Then, define $g_1 \in G^{\mathbf{K}_s^*}(K_i \to \{\partial D\})$ from g_0 in the following manner: if $K_{j_1} \xrightarrow{g_0} K_*$, set $g_1 = g_0$; otherwise, g_1 is defined by exchanging marrows $(K_{j_1} \to K_{j_2}), (K_{j_2} \to K_{j_3}), \ldots, (K_{j_{m-1}} \to K_j), (K_j \to K_{j_{m+1}})$ in g_0 (also in g), with m arrows $(K_j \to K_{j_{m-1}}), \ldots, (K_{j_2} \to K_{j_1}), (K_{j_1} \to K_{j_0})$, where K_* and K_j respectively denote the end compactum of g_0 and the last compactum of g in $\mathcal{V}(K_i)$. Using Lemmas 2.5, 2.7 and (4.6), we have

$$\sigma(g_0) - \sigma(g_1) \ge U(K_j) - U(K_{j_1}) + U_{K_j}(\partial D) - U_{K_{j_1}}(\partial D) = 0.$$

With the help of Lemma 4.2, the estimate (4.5) is verified for every stable K_i in $\tilde{\Omega}_2$. For $x_0 \in \tilde{\Omega}_2$, choose a stable compactum K_i in $\tilde{\Omega}_2$ such that $V_D(x_0, K_i) = 0$. Then, we have $M_D(x_0) \leq M_D(K_i)$. Hence, (4.4) is obtained for all $x_0 \in \tilde{\Omega}_2$.

By using the above arguments inductively, one can show the estimate (4.4) for all $x_0 \in \tilde{Q}_{k+1}$, $k \ge 1$, which concludes the proof.

Proof of Theorem 4.1. Fix an arbitrary $x_0 \in D$ and write $K_0 = \{x_0\}, K_{l+1} = \{\partial D\}$ and $\mathbf{K}_0^* = \mathbf{K}_s^* \cup \{K_0\} (= \mathbf{K}_s \cup \{x_0, \partial D\})$. We suppose that $g \in G^{\mathbf{K}_0^*}(x_0 \neq \{\partial D\})$ attains the minimum of $M_D(x_0)$ in the RHS of (3.6) and that $K^* \in \mathbf{K}_0 (= \mathbf{K}_s \cup \{K_0\})$ is the end compactum of g.

First, we consider the case where $K^* = \{x_0\} \notin \mathbf{K}_s$. If there is a stable compactum K_i such that $V_D(x_0, K_i) = 0$, one can suppose that K_i is the last compactum. Indeed, the graph $\tilde{g} \in G^{\mathbf{K}_0^*}(x_0 \nleftrightarrow \{\partial D\})$ constructed from g by exchanging one arrow starting from K_i with an arrow $(x_0 \to K_i)$ satisfies $\sigma(\tilde{g}) \leq \sigma(g)$ and K_i is the last compactum of \tilde{g} . If $V_D(x_0, K_i) > 0$ for all $K_i \in \mathbf{K}_0$, Lemma 2.3 implies $V_D(x_0, \partial D) = 0$. Since one obtains a $\{\partial D\}$ -graph $\tilde{g} \in G^{\mathbf{K}_0^*}\{\partial D\}$, which satisfies $\sigma(\tilde{g}) = \sigma(g)$, by adding an arrow $(x_0 \to \partial D)$ to g, one has $W_D \leq M_D(x_0)$ from Theorem 3.1. Combining this with Lemma 5.3 in [FW, Chapter 6], we conclude $W_D - M_D(x_0) = 0$, where we remark $x_0 \notin \tilde{Q}$.

Next, we suppose $K^* \in \mathbf{K}_{s}$ and claim

$$(4.7) W_D - M_D(x_0) \le U_{K^*}(\partial D).$$

For $\delta > 0$, F_1 denotes the connected component of $\{x \in \overline{D}; U(x) \leq U(K^*) + U_{K^*}(\partial D) + \delta\}$ containing K^* . Set

$$F_1^{(1)} = \{x \in F_1 \text{ ; there exists } K_i \in \mathbf{K}_s^* \text{ so that } K_i \xrightarrow{g} \partial D \text{ and } V_D(x, K_i) = 0\},\$$

$$F_1^{(2)} = \{x \in F_1 \text{ ; there exists } K_i \in \mathbf{K}_s^* \text{ so that } K_i \xrightarrow{g} K^* \text{ and } V_D(x, K_i) = 0\}.$$

Since $F_1^{(1)}$ and $F_1^{(2)}$ are non-empty closed subsets of F_1 and satisfy $F_1^{(1)} \cup F_1^{(2)} = F_1$ from Lemma 2.3, one can find $x_1 \in F_1^{(1)} \cap F_1^{(2)}$ and K_{i_0} , $K_{i_1} \in \mathbf{K}_s^*$ such that $K_{i_0} \xrightarrow{g} \partial D$, $K_{i_0} \xrightarrow{g} K^*$ and that $V_D(x_1, K_{i_0}) = V_D(x_1, K_{i_1}) = 0$. Then,

$$V_D(K_{i_1}, K_{i_0}) \le U(K^*) + U_{K^*}(\partial D) + \delta - U(K_{i_1})$$

by the same methods as (4.3). For $(K_{i_1} \to K_{i_2})$, $(K_{i_2} \to K_{i_3})$,..., $(K_{i_n} \to K^*) \in g$, $g_0 \in G^{\mathbf{K}_0^*} \{\partial D\}$ denotes a $\{\partial D\}$ -graph constructed from g by deleting these narrows and adding n + 1 arrows $(K^* \to K_{i_n})$,..., $(K_{i_2} \to K_{i_1})$, $(K_{i_1} \to K_{i_0})$. From Lemma 2.7, we get

(4.8)
$$\sigma(g_0) - \sigma(g) = \sum_{k=1}^n \{V_D(K_{i_{k+1}}, K_{i_k}) - V_D(K_{i_k}, K_{i_{k+1}})\} + V_D(K_{i_1}, K_{i_0}) \le U_{K^*}(\partial D) + \delta,$$

where $K_{i_{n+1}} = K^*$. Hence, (3.5) in Theorem 3.1 verifies (4.7) by letting $\delta \downarrow 0$.

Finally, we show the assertions in Theorem 4.1. Since $U_{K^*}(\partial D) \leq V_0$, (4.1) is obtained immediately by combining (4.7) with Proposition 4.3. We move to the second assertion (4.2). To do this, let $x_0 \notin \tilde{\Omega}$ and suppose $V_D(x_0, K_j) = 0$ for some $K_j \in \mathbf{K}_s^*$ since the other cases have been shown. Furthermore, from (4.7) one can suppose $U_{K^*}(\partial D) = V_0$ and, in particular, $K^* \subset \bar{\Omega}$. It suffices to construct $\tilde{g} \in G^{\mathbf{K}_0^*}(K^* \to \{\partial D\})$ satisfying

(4.9)
$$\sigma(\tilde{g}) < \sigma(g).$$

Indeed, for $\tilde{g} \in G^{\mathbf{K}_{0}^{*}}(K^{*} \to \{\partial D\})$, there is a $\{\partial D\}$ -graph $\tilde{g}_{0} \in G^{\mathbf{K}_{0}^{*}}\{\partial D\}$ such that $\sigma(\tilde{g}_{0}) - \sigma(\tilde{g}) \leq V_{0}$ by using a parallel argument to the proof of (4.8). Together with (4.9), we get $\sigma(\tilde{g}_{0}) - \sigma(g) < V_{0}$ and therefore (4.2) from Theorem 3.1. For a sequence of arrows $(x_{0} \to K_{j_{1}}), (K_{j_{1}} \to K_{j_{2}}), \ldots, (K_{j_{m}} \to K^{*}) \in g$, set

$$\mathbf{m} = \min\{p \ge 0 ; K_{j_{p+1}} \subset \Omega\},\$$

where $K_{j_0} = \{x_0\}$ and $K_{j_{m+1}} = K^*$. If $\mathbf{m} = 0$, we know $V_D(x_0, K_{j_1}) > 0$ from $x_0 \notin \tilde{Q}$ and $K_{j_1} \subset \tilde{Q}$, and $V_D(x_0, K_j) = 0$ for some $K_j \in \mathbf{K}_s^*$. Then, the graph $\tilde{g} \in \mathcal{S}$

 $G^{\mathbf{K}_{0}^{*}}(K^{*} \rightarrow \{\partial D\})$ derived from g by exchanging an arrow $(x_{0} \rightarrow K_{j_{1}})$ with $(x_{0} \rightarrow K_{j})$ satisfies (4.9). Let $\mathbf{m} \geq 1$. Note that from Lemma 2.2 one has

$$V_D(K_{j_m}, K_{j_{m+1}}) = \inf_{\substack{y \in \partial \forall (K_{j_m})}} \{V_D(K_{j_m}, y) + V_D(y, K_{j_{m+1}})\} > U_{K_{j_m}}(\partial D),$$

since Lemma 2.5 and $\overline{\psi(K_{j_m})} \cap \tilde{\Omega} = \emptyset$ imply $\inf_{y \in \partial \psi(K_{j_m})} V_D(K_{j_m}, y) \ge U_{K_{j_m}}(\partial D)$ and $\inf_{y \in \partial \psi(K_{j_m})} V_D(y, K_{j_{m+1}}) > 0$ respectively. For $0 < \delta' < V_D(K_{j_m}, K_{j_{m+1}}) - U_{K_{j_m}}(\partial D)$, we denote by F_2 the connected component of $\{x \in \overline{D}; U(x) \le U(K_{j_m}) + U_{K_{j_m}}(\partial D) + \delta'\}$ which contains K_{j_m} and set

$$F_2^{(1)} = \{x \in F_2; \text{ there exists } K_i \in \mathbf{K}_s^* \text{ so that } K_i \xrightarrow{g} K_{j_m} \text{ and } V_D(x, K_i) = 0\},\$$

$$F_2^{(2)} = \{x \in F_2; \text{ there exists } K_i \in \mathbf{K}_s^* \text{ so that } K_i \xrightarrow{g} K_{j_m} \text{ and } V_D(x, K_i) = 0\}.$$

Since $F_2^{(1)}$ and $F_2^{(2)}$ are non-empty closed subsets of F_2 and satisfy $F_2^{(1)} \cup F_2^{(2)} = F_2$ from Lemma 2.3, one can find $x_2 \in F_2^{(1)} \cap F_2^{(2)}$ and $K_{i'_0}$, $K_{i'_1} \in \mathbf{K}_s^*$ so that $K_{i'_0} \stackrel{g}{\to} K_{j_m}$, $K_{i'_1} \stackrel{g}{\to} K_{j_m}$ and that $V_D(x_2, K_{i'_0}) = V_D(x_2, K_{i'_1}) = 0$. Then, we get

 $V_D(K_{i_1'}, K_{i_0'}) \leq U(K_{j_m}) + U_{K_{j_m}}(\partial D) + \delta' - U(K_{i_1'})$

in a similar manner to (4.3). For $(K_{i'_1} \to K_{i'_2})$, $(K_{i'_2} \to K_{i'_3})$, ..., $(K_{i'_{h'}} \to K_{j_m}) \in g$, \tilde{g} denotes a graph obtained from g by replacing these n' + 1 arrows with n' + 1 arrows $(K_{j_m} \to K_{i'_{h'}})$, ..., $(K_{i'_2} \to K_{i'_1})$, $(K_{i'_1} \to K_{i'_0})$. By Lemma 2.7, one can easily prove that $\tilde{g} \in G^{\mathbf{K}^*_0}(K^* \to \{\partial D\})$ satisfies (4.9).

5. Further results

One can easily know that $W_D - M_D(x)$, $x \in D \setminus \Omega$, is not determined generally by $U_{(x)}(\partial D)$, $U_{(x)}(K_i)$, Depth $\mathcal{V}(K_i)$, etc., even if x belongs to some valley $\mathcal{V} \subset \Omega$. However, for the bottom valley $\mathcal{V}(K_i)$, one can show that $W_D - M_D(x)$ coincides with the depth of valley $\mathcal{V}(K_i)$ for $x \in \mathcal{V}(K_i)$ in a similar manner to Theorem 1. Namely, we have the next proposition.

PROPOSITION 5.1. Let a stable compactum K_i satisfy $U(K_i) = \min\{U(K_j); K_j \in \mathbf{K}_s\}$. Then,

$$\lim_{\varepsilon \downarrow 0} \varepsilon^2 \log E_x[\tau^{\varepsilon}] = \text{Depth } \mathscr{V}(K_t)$$

for all $x \in \mathscr{V}(K_i)$.

Proof. From Theorem 3.2 and Lemma 4.2, it is sufficient to show $W_D - M_D(K_i) = \text{Depth } \mathcal{V}(K_i)$. However, we have $W_D - M_D(K_i) \geq \text{Depth } \mathcal{V}(K_i)$ by using the same arguments as Proposition 4.3. Let $g \in G^{\mathbf{K}_{s} \cup (\partial D)}(K_i \rightarrow \{\partial D\})$ attain the minimum of $M_D(K_i)$ in the RHS of (3.7). We denote the end compactum of g by $K^* \in \mathbf{K}_s$. Then, one can easily show that $U_{K_i}(K^*) \leq U_{K_i}(\partial D)$ in a similar manner to Lemma 4.2. In particular, $U_{K^*}(\partial D) \leq \text{Depth } \mathcal{V}(K_i)$. Hence, the proof is completed immediately from (4.7).

For one-dimensional Euclidean space, one can calculate $W_D - M_D(x)$ for all $x \in D$. Set $D = (d_1, d_2)$ and define $U^*(x)$, $x \in D$, by

$$U^{*}(x) = \begin{cases} \max_{x \in \overline{\mathcal{V}(K_{i})}} U(x), & x \in \mathcal{V}(K_{i}), \\ U(x), & x \notin \bigcup_{i=1}^{l} \mathcal{V}(K_{i}) \end{cases}$$

Recall Ω defined in Section 1. Let \mathcal{V}_k^+ be the deepest valley at the right side of \mathcal{V}_{k-1}^+ satisfying $\min_{x \in \mathcal{V}_k^+} U(x) < \min_{x \in \mathcal{V}_{k-1}^+} U(x)$ and let \mathcal{V}_k^- be that at the left side of \mathcal{V}_{k-1}^- satisfying $\min_{x \in \mathcal{V}_k^-} U(x) < \min_{x \in \mathcal{V}_{k-1}^-} U(x)$ for $k = 1, 2, \ldots$, where we write $\mathcal{V}_0^+ = \mathcal{V}_0^- = \Omega$ simply. Set $V_k^+ = \text{Depth } \mathcal{V}_k^+$, $V_k^- = \text{Depth } \mathcal{V}_k^-$ and $\sigma_k^+ = \sup\{x ; x \in \mathcal{V}_k^+\}$, $\sigma_k^- = \inf\{x ; x \in \mathcal{V}_k^-\}$ for $k = 0, 1, \ldots$. We remark that they satisfy the following:

$$d_{1} \leq \sigma_{k_{1}}^{-} < \sigma_{k_{1}-1}^{-} < \cdots < \sigma_{0}^{-} < \sigma_{0}^{+} < \cdots < \sigma_{k_{2}-1}^{+} < \sigma_{k_{2}}^{+} \leq d_{2},$$

$$V_{k_{1}}^{-} \leq \cdots \leq V_{1}^{-} < V_{0}, V_{0} > V_{1}^{+} \geq \cdots \geq V_{k_{2}}^{+},$$

where $k_1, k_2 \ge 0$ are chosen so that, respectively,

$$\min_{x \in \psi_{k_1}^-} U(x) = \min_{x \in \bigcup_{K_i \in K_s} K_i \cap (d_1, \sigma_0^-)} U(x), \ \min_{x \in \psi_{k_2}^+} U(x) = \min_{x \in \bigcup_{K_i \in K_s} K_i \cap (\sigma_0^+, d_2^-)} U(x).$$

With these notations in mind, we define $V^*(x)$, $x \in D$, by

$$V^{*}(x) = \begin{cases} [V_{k_{1}}^{-} + U^{*}(x) - U(\sigma_{k_{1}}^{-})] \lor 0, & x \in (d_{1}, \sigma_{k_{1}}^{-}], \\ [V_{k_{-1}}^{-} + U^{*}(x) - U(\sigma_{k_{-1}}^{-})] \lor V_{k}^{-}, & x \in (\sigma_{k}^{-}, \sigma_{k_{-1}}^{-}], \ k = 1, \dots, k_{1}, \\ V_{0} & x \in (\sigma_{0}^{-}, \sigma_{0}^{+}), \\ [V_{k_{-1}}^{+} + U^{*}(x) - U(\sigma_{k_{-1}}^{+})] \lor V_{k}^{+}, & x \in [\sigma_{k_{-1}}^{+}, \sigma_{k}^{+}), \ k = 1, \dots, k_{2}, \\ [V_{k_{2}}^{+} + U^{*}(x) - U(\sigma_{k_{2}}^{+})] \lor 0, & x \in [\sigma_{k_{2}}^{+}, d_{2}). \end{cases}$$

Now we state the next proposition without proof since it is quite simple.

PROPOSITION 5.2. We have

MAKOTO SUGIURA

$$\lim_{\varepsilon \downarrow 0} \varepsilon^2 \log E_x[\tau^{\varepsilon}] = V^*(x)$$

uniformly in x belonging to every compact subset of D.

ACKNOWLEDGEMENT. The author wishes to thank Professor T. Funaki for his valuable suggestions and kind encouragements.

REFERENCES

- [FW] M. I. Freidlin and A. D. Wentzell, "Random perturbations of dynamical systems," Springer-Verlag, Berlin Heidelberg New York, 1984.
- [PD] J. Palis, Jr. and W. de Melo, "Geometric theory of dynamical systems, An introduction," Springer-Verlag New York, 1982.
- [Su1] M. Sugiura, Limit theorems related to the small parameter exit problems and the singularly perturbed Dirichlet problems, preprint, 1994.
- [Su2] M. Sugiura Metastable behaviors of diffusion processes with small parameter, J. Math. Soc. Japan, 47 (1995) 755-788.

Graduate School of Polymathematics Nagoya University Nagoya 464-01 Japan sugiura@math.nagoya-u.ac.jp