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EXPONENTIAL ASYMPTOTICS IN THE SMALL

PARAMETER EXIT PROBLEM

MAKOTO SUGIURA

1. Introduction

Let M be a d-dimensional Riemannian manifold of class C°° with Riemannian

metric g — (gtJ) and let D be a connected domain in M having a non-empty

smooth boundary 3D and a compact closure D. Suppose that b e £(M) —

{C°°-vector fields on M)> ε > 0, are given and that {bε} converges uniformly to

b ^ 3ί(M) on D' as ε I 0 for some neighborhood D' of D. Consider the diffusion

process (x*, Px) on D' with a small parameter ε > 0 generated by

2

( l . i ) t = YΔ + b6>

where Δ is the Laplace-Beltrami operator on M. Uniqueness of the process

requires some boundary condition on dD\ However boundary conditions are not

mentioned since the process is considered only before the time when it leaves a

small neighborhood of D. In this paper, we shall study the asymptotic behavior of

the expectation of the first exit time τ from the domain D\ i.e.,

under the following assumptions:

(Ax) (gradient condition) there exists a potential function U ^ C°°(D) such that

b = — -y grad U on D

(A2) the set of critical points % — {x ^ D grad U(x) = 0} consists of finite

number of connected components Kv . . . , Kι (each of which is called

compactum) such that, for arbitrary two points x, y ^ Kf, there is an
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138 MAKOTO SUGIURA

absolutely continuous function φ €= C^iK^ satisfying J || φ(t) \\ dt < °°

(A3) grad UΦ 0 on &D.

Here grad means the Riemannian gradient, || || = y/g{-, •) is the Riemannian norm

and

O / O = ί 0 G C([0, 71, 70; 0(0) = x, φ(T) = y}} x,y£LF, T > 0,

for an open or closed set F.

Introduce a quantity Vo by

(1.2) V0 = max inf max {U(φ(t}) - U(x)},
x e ^ φeCx>dD telθ,l]

where CXt — U y e F C^" CD). By virtue of the theory of Freidlin and Wentzell

[FW], one may expect

(1.3) lime2 log £ x [ r β ] = Vo, x e β,
ε I 0

for a certain subdomain ,0 of D. Indeed, one can see in [FW, Chapter 4] that, if the

dynamical system determined by — ~κ grad U has a unique stable equilibrium

position 0 and the domain D is attracted to 0, (1.3) holds for Ω — D. However, it

is not clear whether (1.3) holds or not in case that D contains more than one com-

pacta, although their theory [FW, Chapter 6] determines the exponential rates in

terms of quasi-potentials and {dD}-graphs. In the present paper, by applying

their results, we shall determine the subdomain Ω of D directly in terms of the

potential U rather than the quasi-potentials in such a manner that (1.3) holds for

all x ^ Ω while the left hand side (LHS) of (1.3) is strictly less than Vo for x e

D\Ω.
I

Let {xt(x) ;t>0,x^D}be the flow determined by — y g r a d U, i.e., xt =

xt(x) is a unique solution of the ordinary differential equation (ODE):

dxt 1
(1.4) —jj- = - g-grad U(xt), x0 = x.

We denote the ω-limit set of a point x ^ D and the domain of the attraction of a

connected open or closed set F in D with respect to this flow, respectively, by

ω{x) and ® (F) : if xt(x) e D for all t > 0,

ω(x) = {y e D;xt (x) —• y for some sequence tn —» °°},
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EXPONENTIAL ASYMPTOTICS IN THE EXIT PROBLEM 139

otherwise ω(x) = 0 , and ®(F) = {x e Z); ω(.r) c F , ω(x) Φ 0} . Set K =

{ϋ^, . . . , if,}. K s and Ku stand for the set of all stable compacta and that of all

unstable ones, respectively, with respect to the flow mentioned above. Every non-

empty ω-Yimϊί set is connected and consists of critical points of U. Namely, if

ω(x) Φ 0 , then we have ω{x) c: K{ for some Kt €= K. (See, e.g., Palis and de

Melo [PD].)

For every stable compactum Kit we define a valley Y(K) containing K{ in D.

To do this, we set, for compact subsets Fv F2 of D,

(1.5a) U(F,) = min U(x),

(1.5b) UF (F2) = max inf max W{φ{t)) - U(x)}.
1 x<=Fι φec

x'F2 ίetθ.1]

Then, Y(K{) is a connected component of {x ^ D U(x) < U(K) + Uκ(dD)}

containing Kt. We denote the depth of valley Y(Kf) by Depth Y(Kt) : Depth

Y(Ki) = supXιyey{Ki){U(x) - U(y)}. Notice that Depth Y(Kt) > 0 for all K{ e

K s and that (1.2) is equivalent to max^. e K s Depth Y(Kt) = VQ.

Let us define the domain Ω mentioned above in (1.3). If there is no stable

compactum in D, we put Ω = D. In the case of # K S > 1, we define Ω~

U^=o Ωk>0 Π D by preparing subsets Ωkj and Ωktί, k, j = 0,1,. . . , of D in the fol-

lowing manner. First, we write Ωoo = 0 and

U ΫTΪQ.
,eKs.Deph r u q 7

Then, for each fixed k = 0 , 1 , . . ., with noting that each Ωkt0, k = 1 , 2 , . . . , is de-

fined below from î A;-i,;^;=o,i,...» w e construct ΩkJ and ΩkJ, j = 1,2,. . ., by using

induction on j as following:

ΩkJ = ~Ωk

πΐ1 u u___ κi9 y = i , 2 , . . . ,
vφ 0

ύkj ~~ *-* •' -^ vAίΛ>; / , 7 = 1 , 2 , . . . .

Finally, for /c — 1,2, . . . and = 0, flA>0 and β A > 0 are defined by

oo

Here one notices that ,O M c β Λ j + 1 and β Λ > 0 cz β f c + 1 0 for A, = 0 ,1 , . . . and that

Ωk+lι0 = βyk,#κu ^ o r ^ ~ 0>l> a n c* Ό = ^#κ s,o fϊ ΰ . We also note that β is

closed in D since every ί ? ^ , /c = 1,2, . . . , is compact.
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140 MAKOTO SUGIURA

Now we formulate our main result.

THEOREM 1. We have

(1.6) l i m ε 2 l o g £ J r ε ] = Vo

ε I 0

for all x e Ω. When x&Ω, the LHS of (1.6) is strictly less than Vo.

The proof essentially consists of two parts. In Section 2, Freidlin-WentzelΓs

quasi-potentials will be characterized by valleys of the potential U and the flow

determined by — y grad U. Then, the set Ω will be expressed in terms of valleys

and quasi-potentials. We shall also show that the assumption (A) in [FW, p. 169]

is fulfilled, which guarantees the existence of the limit in (1.6). In Sections 3 and

4, we shall recall that the limit in (1.6) can be represented by using Freidlin-

WentzelΓs quasi-potentials and {dD} -graphs, and get the results by calculating

the {dD}-graphs together with the estimates of quasi-potentials derived in Section

2. The main tool is the {dD}-graph with partially reversed arrows. Moreover two

problems concerning the value of the LHS of (1.6) for x ^ D\Ω will be consi-

dered in Section 5. Namely, we shall show that, if the valley Ύ is a bottom one in

the sense that minX(=yU(x) = m i n ^ e K s U(Kj), the LHS of (1.6) is equal to the

depth of Ψ for every x ^ Y, and represent the values of the LHS of (1.6) for all x

^ D directly in terms of U(x), i e f l , when M is one-dimensional Euclidean

space. We notice that the technique in this paper is also applicable to getting the

asymptotic behavior of the distribution, Px(x?s £ i ) , A c dD, of the exit position

of x) from the boundary. (See [Sul] for details.)

This result will be applied in the collaborative papers [Sul], [Su2] to investi-

gate metastable behaviors for a class of diffusion processes {xt} of gradient type.

2. Properties of quasi-potentials

The action functional Sτ is defined on C([0, 7] , M) > T > 0 : Sτ(φ) =

1 Γτ

o" I \\φ(t) - b(φ(t)) f dt if φ e C([0, 71, M) is absolutely continuous,

and Sτ(φ) = + oo otherwise. In particular, for an absolutely continuous φ ^

C([ofl,5),

(2.1) Sτ^=\l Wφ(t) +jgraάU(φ(t))fdt.
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EXPONENTIAL ASYMPTOTICS IN THE EXIT PROBLEM 1 4 1

Moreover we define

(2.2a) VD(x, y) = inf{SΓ(0) φ e C*?(D), T>0), x,y^D,

which is called quasi-potential. We also denote, for compact subsets Flf F2 of D,

(2.2b) VD(x, F2) = inf VD(x, y),
y*F2

(2.2c) VD(F19y) = inf VD(x,y),
yeFx

(2.2d) VD(F,, F2) = inf V0(x, y).
XGFvyeF2

We state three lemmas without proofs: Lemmas 2.1 and 2.3 are written as a com-

ment after [FW, Chapter 6, Lemma 1.1] and Lemma 5.2 in [FW, Chapter 6], re-

spectively, and Lemma 2.2 can be shown by straightforward arguments.

LEMMA 2.1. VD(x, y) is continuous for x, y ^ D. In particular, we have the

following:

(i) VD(x, y) < °° for all x, y e D;

(ii) the maps x >-» VD(x> F) and y *~* VD(F, y) are both continuous for every compact

subset F ofD.

LEMMA 2.2. Let us suppose that compact subsets Flf F2 and ^ of D are

mutually disjoint and have the property that every trajectory in D connecting Fλ and F2

traverses 2F i.e., for every φ ^ C([0, l], D) satisfying 0(0) ^ F x and 0(1) ^ F2,

there exists t e (0,1) so that φ(t) G f . Then, we have VD(FV F2) = inίx&s?{VD(Fv

x) + VD(pc,F2)}.

LEMMA 2.3. If a is an unstable compactum Ki or a regular point x of U, then

either there exists a stable compactum K} such that VD(a, Kj) — 0 or VD(a, dD) = 0.

The next lemma is an easy consequence of the assumption (A2).

LEMMA 2.4. We have VD(x, y) = VD(y, x) = 0 for arbitrary two points x, y

belonging to the same compactum Kv

Proof From (A2), there is an absolutely continuous 0 ^ C^iK^ such that

Sλ(φ) < + °° , where we recall grad U = 0 on Kr If one sets ψ(t) = φ(t/T),

T > 0, then Sτ(ψ) < Sx(φ)/T. This immediately verifies VD(x, y) = 0 by letting
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Γ—co. •

The following two lemmas establish basic relations between the quasi-

potential and the depth of the valley. Recall (1.5) for the notation UF (F2).

LEMMA 2.5. For all compact subsets F of D, we have

(2.3) VD(x,F) > U{X}(F), i G ΰ ,

(2.4) VD(Ki9F) > UK(F), fff€=K.

In particular, if K{ is stable and satisfies F Π V(Kt) = 0 , then VD(Kif F) >

uKi(dD).

Proof. We shall prove only (2.4) since (2.3) is obtained in a quite parallel

manner. Let x0 ^ K{ be fixed arbitrarily. For <5 > 0, (2.2) and Lemma 2.4 verify

the existence of an absolutely continuous 0 ^ C([0, T\yD), T>0, so that

0(0) = x0, 0(7) e F and

VD(Kt, F) > Sτ(φ) - δ.

From (1.5), one can find 0 < To < T satisfying

U(φ(T0)) - U(φ(0)) > U{XQ}(F).

On the other hand, with the help of the definition (2.1) of the action functional

Sτ(φ) and the gradient condition (A^, we have

Sτ(φ) > f °g(φ(t), grad U(φ(t)))dt

- U(φ(T0)) - £7(0(0)).

From these estimates, we obtain

VD(K,, F) > U{X<))(F)

by letting δ 1 0. Since it holds for every x0 ^ Kt, (2.4) is now derived. O

COROLLARY 2.6. We have U(x) = U(y) for arbitrary two points xf y belonging

to the same compactum.

Proof If x, y are belonging to the same compactum, one has VD(x> y) =

Vϋ(y> x) = 0 from Lemma 2.4. By applying Lemma 2.5, this implies U{x}({y}) =
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U{y}({x}) = 0, which is equivalent to U(x) = U(y). •

LEMMA 2.7. Let each of a and β be a point of D or a compactum in K. Then we

have

(2.5) VD(a, β) - VD(β, a) = U(β) - U(a).

In particular, ifVD(a, β) = 0, then VD(β, a) = U(a) - U(β).

Proof We shall treat only the case where both of a and β are compacta, be-

cause the other cases are shown similarly. Write a — K{ and β = K}. For an

arbitrary δ > 0, there exists an absolutely continuous φ ^ C([0, T], D), T > 0,

such that 0(0) e Kif φ(T) e K} and

VD(Ki9 K,) > Sτ(φ) - δ.

Put φ(t) = φ(T - f), 0 < t < T. Then, we have

Sτ(φ) - Sτ(ψ) = Γ g(φ(t)9 grad U(φ(f)))dt

On the other hand, since 0(0) e Ks and 0(7) e ^ . , VpίA,-, ^ , ) < Sτ(φ). Hence,

by letting δ I 0, we get

VD(Kit K) - VD%, Kt) > U(K,) ~ UiK).

By reversing the symbols K{ and Kj, it holds that

VD(Ki9 Ks) - VD(Kj9 K) < U(Kj) - U(Kt)9

and now (2.5) is obtained. D

The next lemma gives an important property of regular points.

LEMMA 2.8. Let x ^ D be a regular point of U, namely, grad U(x) Φ 0 and

suppose xt(x) G D for 0 < t < T. Then, we have VD(xy y) > 0 for every point y ^

D\ {χt(x) 0 < / < T) such that U(y) > U(xτ(x)). Recall that xt(x) is the solu-

tion of the ODE (1.4).

Proof Set p0 = inίQ<t<τ p(xt(x), y) > 0, where p ( , •) denotes the Rieman-

nian distance on M. From Lemma 2.1 of [FW, Chapter 4], we know that
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Ir = inf{Sr (0) φ e C([0, r ] , M), 0(0) = x, max p(pct(x), φ(t)) > po/2} > 0
0<t<Tr

for every 0 < T' < T. Since ITr is a non-increasing function of 7",

inf{S r (0) 0 e CO

X

Γ"(5), 0 < Γ' < T) > Iτ > 0.

Let 0 < 7\ < Γ2 < Γ satisfy U(y) > U(xτ (x)). Then, by using the same argu-

ment of Lemma 2.2 in [FW, Chapter 4], one can find a > 0 such that 5Γ,(0) i>

αCΓ - Γ2) for every T > T2 and 0 e C([0, Γ '], D) with 0(0) = x and

U(φ(t)) > U(xτ(x)) during 0 < t < Tr. Hence, combining this with Lemma 2.5,

we obtain

i n f { S r ( 0 ) 0 e C o i ϊ ( 5 ) , Γ>T}> min{a(T - T2), U(y) - U(xTi(x))} > 0

and the proof is completed. O

COROLLARY 2.9. // x satisfies ω(x) — 0 and F is a compact subset of D

satisfying ω(y) Φ 0 for all y ̂  F, then VD(x, F) > 0.

Proof Let T = inίit > 0 xt(x) <έ D). If one denotes

(2.6) & = {Z<Ξ D δ/2 < inf ρ(xt(x)y z) < δ}
0<t<T

for sufficiently small δ > 0, three compact subsets {x}, F and ^ of D are mutual-

ly disjoint. From Lemma 2.8, we can obtain inf^^l/pCr, £) > 0, where we use a

sufficiently smooth function U on a neighborhood of D satisfying U — U on β .

Hence, since every trajectory in D connecting x and F traverses 3", by applying

Lemma 2.2 we get

VD{x, F) = inf {VD(x, z) + VD(z, F)}

> inf VD(x, z)

>0. D

COROLLARY 2.10. // x ^ Kt and y £ Kif then either VD(x,y)>0 or

VD(y} x) > 0.

Proof From Lemma 2.5, it suffices to show the case where U(x) = U(y).

Let T > 0 satisfy xt(y) ^ D for 0 < t < T. By choosing a sufficiently small <5 >

0, we can suppose that {y}, {x} and & are mutually disjoint, where we define 2F

by (2.6) in which x should be replaced by y. For 0 < Tr < T Lemmas 2.5 and 2.8
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imply, respectively,

inf VD(z, x) > U(x) - U(xτ,(y)) > 0,
&U()<U(())

inf _ VD(y, z) > 0.
ze2F:U(z)>U(xτ,(y))

Hence, combining these estimates with Lemma 2.2, we obtain

VD(y, x) = inf {VD(y, z) + VD(z, x)} > 0. „
z&& I I

We define a s u b d o m a i n Ω of D in t e r m s of q u a s i - p o t e n t i a l s . Set Ω = D if

•e is no stable compactum. In the case (

k = 0 , 1 , . . . , and Ωkf k = 1 , 2 , . . . , induct ive ly, by

there is no stable compactum. In the case of # K S > 1 , determine Ωk ,

" = U f (Kt),
K tΞKs Depth Y(K,) = V0

Ωk= { x e D; VD(x, ΩZI) = 0 ) , ft = 1,2,...,

i), ft = 1,2

We remark that Lemma 2.1 (ii) implies the compactness of the sets Ωk and Ωk .

Noting that the sequence {Ωk}k=lι2t... is not decreasing and that Ωko = Ωko+ι = •

for k0 > # Ks, we define Ω = Ωko Π Z).

PROPOSITION 2.11. We have Ω = Ω.

Proof. If there is no stable compactum in D, the statement is obvious. So we

assume # K s > 1. Claim that Ωlι0 — i 2 r It is obvious that Ωι>0 c β j . In order to

prove i21>0 ^ ^2^ it is sufficient to show VD(Kif Ωo ) > 0 for every compactum Kt

in D \ β 1 0 . Indeed, let x e D\Ωi0 be a regular point. Then, if ω(j ) = 0 , we

know VD(x, Ω(

0

Ώ) > 0 from Corollary 2.9, and, if ωCr) c ^ and ^ ( x , β ^ ) = 0,

by using a similar argument to Corollary 2.9 or 2.10 we get VD(xτ(x), Ωo ) = 0

for all T> 0 from Lemmas 2.1, 2.2 and 2.8 and, consequently, VD(Kt, Ωo ) = 0

from Lemma 2.1. First, suppose that K{ G K satisfies ί / ^ ) = minίί/Ciίy) K} c

D\Ωlt0}. For a stable compactum ϋΓf c D\Ωίt0, one has ^(ULJ, β^ ) > Depth

rCPQ > 0 from Ω™ = Ω™ and ift Π fl^ = 0 . If ϋΓf is unstable, there is an

open neighborhood G of K{ such that ω(y) = 0 , which implies VD(y,ΩQ ) > 0

from Corollary 2.9, for all y e G\Kt:U(y) < U(Kt). Hence, by a parallel

method to Corollary 2.10 with using Lemmas 2.1, 2.2 and 2.5, VD(KV Ω(

o

l)) > 0 is

obtained. Next, take Kt ^ K such that 1^0^, Ω™) > 0 for all ϋΓy c D\Ωί>0:
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U(Kj) < U{K). Then, one can find an open neighborhood G of K{ such that

every y ^ G\K(: U(y) < U{Kt) satisfies either ω(y) = 0 or ω(y) a Kf for

some K, c D\Ω1>0: U(Kj) < C/(ϋQ, namely, VD(y, Ω™) > 0 from Lemma 2.8.

Lemmas 2.1, 2.2 and 2.5 also verify VD(Kif Ωo ) > 0. Hence, we obtain Ω10 = Ωγ

by induction.

Since one can show that Ωk0 = Ωk implies Ωk+1>0 = Ωk+ι for k — 1,2,. . ., by

using the methods explained above, the proof is immediately concluded by induc-

tion. D

3. Summaries of Freidlin and WentzelΓs results

We recall Freidlin-Wentzell's idD) -graph. (See also [FW, Chapter 6].) Let L

be a finite set and let FT be a subset of L. A graph consisting of arrows a~+ β

(a e L\W, β e L, a Φ β) is called a W-graph on Z, if it satisfies the following

conditions:

(1) every a ^ L\Wis the initial point of exactly one arrow;

(2) there are no closed cycles in the graph.

We note that condition (2) can be replaced by the next one:

(20 for every a ^ L\ W there exists a sequence of arrows leading from it

to some β G W.

We denote by GL(W) the set of W-graphs on L and, for a e L\ W and β e W,

Gαi8(H0 stands for the set of FΓ-graphs on L each of which contains the sequence

of arrows leading from a to β. For a ^ L\ W, we set, if # [L\ FF] > 2,

WO = GL(W U {α» U U GL

aβ(W U

and, if #[L\K\ = 1, G L ( α - ^ WO = 0.

Let us define

(3.1) WD= min σ(^
^eGK*{9D}

(3.2) MD(x) = min
g^GK*ϋ{x\x^idD))

(3.3) Mp(iί,) = min σ(g), K{ e K,

where K* = {^,..., Kh dD) and
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for a graph g. From Lemma 2.4 and Corollary 2.10, our system satisfies the

assumption (A) in [FW, p. 169]. Hence, under the assumptions (A^-iA^, we have

the next theorems stated in [FW, Chapter 6, §5].

THEOREM 3.1. Let us assume # K S > 1. We have

(3.4) WD= min σ(g),
g^GKs{dD)

(3.5) WD = min σ(g), for x e Z),
g^GK%U{x){dD)

(3.6) MD(x) = +min σ(g), forx^D,
geG

K*U{x\x^{dD))

(3.7) MD{K) = min σ(g), forKt e K s,

where K* = K8 U {9Z)}.

THEOREM 3.2. W

ε2
lim ε2 log £ J τ ε ] = WD - MD(x)

uniformly in x belonging to every compact subset of D.

Remark 3.3. Theorem 3.2 guarantees the existence of the limit in the LHS

of (1.6).

4. Proof of Theorem 1

In this section we shall show Theorem 1. By combining Theorem 3.2 with

Proposition 2.11, the next theorem immediately verifies Theorem 1.

THEOREM 4.1. We have

(4.1) WD~MD(x) = Vo, x<Ξ Ω,

(4.2) WD~ MD(x) < Vo, xέΩ.

Let us suppose that there is no stable compactum in D. Fix an arbitrary x ^

D. For g^ G (x~^ {dD}) attaining the minimum in the right hand side

(RHS) of (3.2), we consider a {dD}-graph on K U {x} derived from g by ex-

changing one arrow starting from x with an arrow Or—» dD). Since VD(x, dD) =
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0, from Lemma 5.3 in [FW, Chapter 6] we obtain WD — MD(x) = 0 and this com-

pletes the proof of Theorem 4.1 when # K s = 0. Therefore we assume # K s > 1

throughout the rest of this section.

For a graph g in GK*{dD}, GKHdD), Gκ:(Kt-+{dD}) or GK\κ^ {dD}),

we introduce a notation Kt —> Kj for Kif Kj ^ Ko if g contains a sequence of

arrows leading from Kt to Ki we also use the notation K{ -* Kj if g does not con-

tain such a sequence of arrows. Here, taking the formulae (3.5) and (3.6) into

account, we set Ko = {χQ} (x0 e D), Ki+ι = dD, Ko* = K s U {Ko} U {Kι+1}.

Let g be a {dD}-graph in G s{dD} on K s and K{ e Ks. For a sequence of

arrows (K{ — Kh), (Kh -^ ΛΓ<a),..., (iί lw -> 9Z?) e ^ we set

where we write K{ = K{ and if, = dD simply. Then, we call K{ the last com-

pactum of g in a valley Y(K() from ϋΓ,. For a graph g in G s(Ki-^ {dD}), there

is a unique compactum (except dD) which does not become the initial point of any

arrows. We call it the end compactum of g.

LEMMA 4.2. Let a {dD} - graph g ^ G s{dD} attain the minimum in the RHS

o/(3.4). Then, for each valley Y, the last compactum of g inY does not depend on any

particular choice of stable compacta in Y.

Proof Suppose that there exist more than one last compacta of g in Y =

Y(Ki), Ki ^ Ks. Let Kx be a last compactum. We consider a connected compact

subdomain Yr= {x^Y; U(x) < γ} of Y for m a x x € ^ U(x) < γ < U(Kt) +
Uκ(dD), and set

Y™ = {X(Ξ<Vr; there exists Kj e K s in Y such that K,1*K{ and VD(x, K) = 0},

Yf = {x (= Yγ there exists K, e K s in Y such that K^KX and VD(x, Kj) = 0}.

Then, since both Yr and Yr are non-empty closed subsets of Yr and Lemma 2.3

varifies Y™ U Y™ = fr, we have f^ Π r^2 ) Φ 0 i.e., there exist xx e f r and

2ζ,o, ί y i e K s in Yγ so that K ^ Kv K ^ Ki and that V^ί^, ΐC; o) = VD(xv K})

= 0. From Lemmas 2.2 and 2.7, one knows

(4.3) VD(KJit Kjo) < VD(Kh, xθ + VD(xlf Kjo)

= u(xλ) - mκh)

<γ-U(Kh).

Let Ki be the last compactum of g in Y from Kj. For a sequence of arrows (Kj —>
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K,), (KJ2-*KJ3), . . . , (KJn_^K ) y (K^KJn+) <Ξg,g denotes a {3D}-graph

obtained from g by replacing these n arrows with n arrows (ϋίj —» KJn J,..., Gfî

- > # ; i ) , (Kh-*KJo). Since Lemma 2.5 verifies VD(Kjt Kjn+) > UκXdD), by using

Lemma 2.7 and (4.3) we have

σ(g) - σ(g)

= 2 { w w *,; - vD(κit, κ,j) + vD(κh, κh) - vD(κJn, κ,j

< u(κh) - u(κj + r - u(κh) - uκ(dD)
+ uκ(dD)}

where Kjn = Ky But this contradicts the assumption that g attains the minimum

in the RHS of (3.4). D

PROPOSITION 4.3. We have

(4.4) WD - MD(x0) > Vo

for all x0 ^ Ω.

Proof. Let a {dD}-graph g e GK*{dD} attain the minimum in the RHS of

(3.4) and be fixed throughout the proof. Consider K* €= Ks satisfying Uκ (dD) =

Vo and the last compactum K x of g in the valley ΎiK*). For a sequence of arrows

(**-*,,), (Kh-*Kt), . . . , (K^Kt), (K^KtJtΞg, we define £0 e

G s(K*-'4» {9ΰ}) from ^ by deleting these n + 1 arrows and adding ft arrows

(K^K^),..., (Ki2-+Kt), (K^K*). Then, Lemmas 2.5 and 2.7 imply

~ σ(g0) = Σ { ^ ( ^ A lf Kik) - VD(Kik, Kik_)
k~l

) - U(K*) + UκXdD)

where Kh = K* and Kiχ = Kv Since Lemma 4.2 proves g0 e GK s*(iί !-^ {5Z)}) for

all stable compacta X, c "(/(ii^), one obtains the estimate

(4.5) WD - MD(Kt) > Vo

for all stable compacta Kt satisfying Depth V(K) = Vo. On the other hand, for ev-

ery x0 G β 1 ? there is a stable compactum Kif Depth Y(Kt) = Vo, so that VD(x0,

Kt) = 0. This implies MD(x0) < MD(Kt) and therefore the estimate (4.4) holds for

every x0 e β^
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For a stable compactum K{ ci'Ω2\Ωί there exist a point xx ^ ViK^ Π Ωx

and stable compacta KJQ c β ^ j ^ c V(Kt) such that V^C^, i^o) = VD(xlf

Kj^ = 0. Note that Lemmas 2.2 and 2.5 imply

(4.6) Wv^0) = U

Since Depth f ( i ζ o) = VQ, one can construct £ 0 e GK*CK; o ^ {3D}) from the

ί9Z)}-graph g" (fixed at the top of the proof) such that

σig) - σ{g0) > Vo

by the previous methods. Then, define gx €= G s(Ki->^ {dD}) from g0 in the fol-

lowing manner: if Kji -^ K%, set gλ — g0 otherwise, £Ί is defined by exchanging m

arrows (*,, - tf,2), (*,, - j y , . . . , ( X ^ - X p , (ϋΓ, - # , _ ) in ^ 0 (also in g),

with m arrows CRj —• ί ι ; w 2 ) , . . ., (KJ2 —+ Kjχ), (Kji —* Kjo), where K* and Kj re-

spectively denote the end compactum of g"0 and the last compactum of g in (^

Using Lemmas 2.5, 2.7 and (4.6), we have

σ(g0) ~ σ(gι) > U(K$ - U(Kh) + Uκ(dD) - UκΛdD)

= 0.

With the help of Lemma 4.2, the estimate (4.5) is verified for every stable K{ in

Ω2. For x0 G Ω2, choose a stable compactum Kt in Ω2 such that VD(x0, K^) = 0.

Then, we have MD(x0) < MD(Kt). Hence, (4.4) is obtained for all x0 e Ω2.

By using the above arguments inductively, one can show the estimate (4.4) for

all x0 Ξί Ωk+ί, k ^ 1, which concludes the proof. EH

Proof of Theorem 4 . 1 . F i x an a r b i t r a r y xQ ^ D and w r i t e if0 = ί r 0 } , Kι+1

= {dD} and K * = K * U {Ko}(= K s U {χ0, dD}). We s u p p o s e t h a t g e GK°*(x 0

-^ {9Z)}) a t t a i n s the minimum of MD(x0) in the RHS of (3.6) and t h a t K* e K o ( =

K s U {iί0}) is the end compactum of g.

First, we consider the case where K = {x0} £ Ks. If there is a stable com-

pactum Kj such that VD(x0, Kj) = 0, one can suppose that Kt is the last compac-

turn. Indeed, the graph g^ G °(xo-^> {dD}) constructed from g by exchanging

one arrow starting from K{ with an arrow (x0 —> K) satisfies σ(^) < σ(g) and K{

is the last compactum of g. If VD(x0, Kt) > 0 for all Kt ^ Ko, Lemma 2.3 implies

VD(x0, dD) — 0. Since one obtains a {dD}-graph g^ G °{dD}, which satisfies

σ(g) — σ(g), by adding an arrow (xo~+dD) to g, one has WD < MD(x0) from

Theorem 3.1. Combining this with Lemma 5.3 in [FW, Chapter 6], we conclude WD

— MD(xQ) — 0, where we remark x0 <έ Ω.

Next, we suppose K ^ K s and claim
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(4.7) WD-MD(x0) < Uκ*(dD).

For δ > 0, Fx denotes the connected component of {x e D U(x) < U(K ) +

Uκ*(dD) + δ} containing K*. Set

F™ = {x <= F x there exists ^ e Ks* so that ^ -^ 92) and V^U, ^ ) = 0},

F/^ = {x e F x there exists ^ e Ks* so that K^ K* and t^Cr, ^ ) = 0}.

Since Fλ and F x are non-empty closed subsets of F1 and satisfy i<\ U ί\ =

F x from Lemma 2.3, one can find xx ^ Fx Π Fx and ϋΓfo, ifti ^ K s such that

Kio-^ dD, Kio-^K* and that VD(xl9 Kt) = VD(xv Kt) = 0° Then,

VD(Kh, Kio) < IKK*) + Uκ*(dD) +δ- U(Kh)

b y t h e s a m e m e t h o d s a s ( 4 . 3 ) . F o r (K{ - > K t , ) , (K{ - > # , . ) , . . . , (K{ -+ K * ) e # ,
| ^ * 1 2 2 3 «

g0 ^ G °{dD) denotes a (9Z)}-graph constructed from g by deleting these n

arrows and adding n + 1 arrows (i£ —• K{ ) , . . . , ( ^ —̂  -f, )> ( ^ ~^ K{). From

Lemma 2.7, we get

(4.8) σ(&) - σ(g)

= Σ {V.ίϋΓ^, ^ Λ ) - VD(Kit, Kik+)} + ^ ( J f ^ Kio)
k = \

< Uκ*(dD) + δ,

where ϋΓ/n+i = ίΓ*. Hence, (3.5) in Theorem 3.1 verifies (4.7) by letting δ I 0.

Finally, we show the assertions in Theorem 4.1. Since Uκ*(dD) < Vo, (4.1) is

obtained immediately by combining (4.7) with Proposition 4.3. We move to the

second assertion (4.2). To do this, let x0 & Ω and suppose VD(x0, Kj) = 0 for

some Kj G K s since the other cases have been shown. Furthermore, from (4.7) one

can suppose Uκ*(dD) = Vo and, in particular, K <z Ω. It suffices to construct

g e GK°*(ίί*-^ {dD}) satisfying

(4.9) σ(g) < σ(g).

Indeed, for g^ GK°*(iΓ*^ {dD}), there is a {&D}-graph ^ 0 e GK*{dD} such

that (JC^ O) — σ(g) < Vo by using a parallel argument to the proof of (4.8).

Together with (4.9), we get (j(gQ) ~~ dig) < Fo and therefore (4.2) from Theorem

3.1. For a sequence of arrows (XQ-^KJ, (K^- +KJJ,. . . , (KJm-> K*) e ^, set

m = min{^ > 0 Kjp+i c β} ,

where Kj = {x0} and ^ = -K" . If m = 0, we know VD(x0, K^ > 0 from x0 £

Ω and iΓ; c fl, and V^teo, iζ) = 0 for some UΓ, e Ks*. Then, the graph g e
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G °(K -» {dD}) derived from g by exchanging an arrow (xo~* K}) with (x0-

Kj) satisfies (4.9). Let m > 1. Note that from Lemma 2.2 one has

> UκΛdD),

since Lemma 2.5 and Y(K}J Π Ω — 0 imply ir

and mί^dViKιJVD(y, Kjm+) > 0 respectively. For 0 < δ' < VD(Kim, Kjm+) -

Uκ (dD), we denote by F2 the connected component of (j e f l ; U(x)

< U(KJm) + UKjm(dD) + δ'} which contains Kjn and set

F2 = {x ^ F2; there exists K{ e K s so that i ^ -7^ iί ; m and Vi)(x, Kt) = 0},

F 2

2 ) = lz e F 2 there exists K{ e K* so that K^ Kjm and V^te, ϋί,) = 0}.

Since F 2 and F2 are non-empty closed subsets of F2 and satisfy F2 Ό F2 =2

F 2 from Lemma 2.3, one can find x2 ^ F2 Π F 2 and ϋΓt ,, ϋΓ̂  ^ K s so that ίfΓ

-^ iζ m , Ki{-^Kjn and that V^,^, X/δ) = V^U,, iίΓi) = 0. Then, we get

VD(Ki{9 Kv) < U(KJm) + UKjβD) +δ'- IKK,)

in a similar manner to (4.3). For (Ki{-+Kv), (K^-* Kt,),. . ., (Ktζι,->Kjn) e ^ ,

^ denotes a graph obtained from g by replacing these n' + 1 arrows with wr + 1

arrows (Kjm—* K^),. . ., (K^-^ K{)f {K^—^K^. By Lemma 2.7, one can easily

prove that £ e GK°*(ϋΓ*-^ {9Z>}) satisfies (4.9). D

5. Further results

One can easily know that WD — MD(x), x €= D\Ω, is not determined general-

ly by U{x)(dD), U{x)(Ki), Depth Y(Kj), etc., even if x belongs to some valley

Y <£Ω. However, for the bottom valley Y(Kt), one can show that WD — MD(x)

coincides with the depth of valley Y(K() for x ^ Y(K{) in a similar manner to

Theorem 1. Namely, we have the next proposition.

PROPOSITION 5.1. Let a stable compactum K{ satisfy U(K) = minίt/CK,) Kj

e Ks}. Then,

lim ε2 log Ex[τε] = Depth Y(Kt)

for all x e r ( ^ . ) .
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Proof. From Theorem 3.2 and Lemma 4.2, it is sufficient to show WD —

MD(Kt) = Depth rCfiy. However, we have WD - MD(K} > Depth Ψ(Kt) by us-

ing the same arguments as Proposition 4.3. Let g e G sU (Kt-^ {dD}) attain

the minimum of MD(Ki) in the RHS of (3.7). We denote the end compactum of g by

K G Ks. Then, one can easily show that UK{(K ) < Uκ(dD) in a similar man-

ner to Lemma 4.2. In particular, Uκ*(dD) < Depth Ύ(K). Hence, the proof is

completed immediately from (4.7). Π

For one-dimensional Euclidean space, one can calculate WD — MD(x) for all

x G D. Set D = (dv d2) and define £/*Cr), x e D, by

x^ u;= 1yαg.

Recall β defined in Section 1. Let Yk be the deepest valley at the right side of

Ύ\_x satisfying min :ce1/+ U(x) < min j c e r ^_ i £/(x) and let Ύ~k be that at the left

side of y^-i satisfying minX G i /- U(x) < min a. e r-_ i ί/(x) for /c = 1,2, . . . , where

we write f 0

+ = V~ = β simply. Set V/ = Depth f̂ ", 7A" = Depth Y~ and σ*+ =

supίx j ; e f £}, σΛ~ = inftr x e y^} for A = 0,1, . . . . We remark that they

satisfy the following:

d2,

v~< < v- < vOf vQ > v: > - > v+,

where kly A:2 > 0 are chosen so that, respectively,

min U(x) = min U(x), min U(x) = min U(x).

U*(x)

With these notations in mind, we define V (x), x G D, by

V 0, x G (dl9 σ~],
1 7 A- l '

^ * t e ) = 1 ̂ o ^ ^ (σ0", O ,

[Vk\ + i7*(x) - C/(σfc

+

2)] V 0, x G [σA

+

2, d 2).

Now we state the next proposition without proof since it is quite simple.

., klf

PROPOSITION 5.2. We have
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lim ε2 log £ J r ε ] = V*(x)
ε | 0

uniformly in x belonging to every compact subset of D.
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