M. Sugiura
Nagoya Math. J.
Vol. 144 (1996), 137—-154

EXPONENTIAL ASYMPTOTICS IN THE SMALL
PARAMETER EXIT PROBLEM

MAKOTO SUGIURA

1. Introduction

Let Jl be a d-dimensional Riemannian manifold of class C~ with Riemannian
metric g = (g,]) and let D be a connected domain in 4 having a non-empty
smooth boundary 0D and a compact closure D . Suppose that b° € X() =
{C”-vector fields on M}, € > 0, are given and that {b°} converges uniformly to
b€ X)) on D" as € | 0 for some neighborhood D’ of D. Consider the diffusion
process (z;, P,) on D’ with a small parameter ¢ > 0 generated by

2

(1.1) 5£5=%A+bi

where A is the Laplace-Beltrami operator on J{. Uniqueness of the process
requires some boundary condition on 0D’. However boundary conditions are not
mentioned since the process is considered only before the time when it leaves a
small neighborhood of D. In this paper, we shall study the asymptotic behavior of
the expectation of the first exit time 7° from the domain D; i.e.,

o =inf{t > 0;x €D},
under the following assumptions:
(A,) (gradient condition) there exists a potential function U € C”(D) such that
b= “%grad Uon D;

(A,) the set of critical points € = {x € D ; grad U(x) = 0} consists of finite
number of connected components K, ..., K, (each of which is called
compactum) such that, for arbitrary two points x, y € K,, there is an
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1
absolutely continuous function ¢ € C,,"(K,) satisfying f I ¢ IFat < o ;
0

(A) grad U+ 0 on 0D.

Here grad means the Riemannian gradient, || . || = vg(','i is the Riemannian norm
and

CoA(F)={peCU0, T, F;¢00) =x,¢(D =y}, x,ysF, T>0,

for an open or closed set F.
Introduce a quantity V, by
(1.2) V,=max inf max {U@@®)) — U},
re€ ¢ecroD telol]
where C*F = U,er Coi?(D). By virtue of the theory of Freidlin and Wentzell
[FW], one may expect
(1.3) lime’log E,[z1 = V,, z€ R,

elo
for a certain subdomain £2 of D. Indeed, one can see in [FW, Chapter 4] that, if the
1
dynamical system determined by — ggrad U has a unique stable equilibrium

position O and the domain D is attracted to O, (1.3) holds for £ = D. However, it
is not clear whether (1.3) holds or not in case that D contains more than one com-
pacta, although their theory [FW, Chapter 6] determines the exponential rates in
terms of quasi-potentials and {@D}-graphs. In the present paper, by applying
their results, we shall determine the subdomain £ of D directly in terms of the
potential U rather than the quasi-potentials in such a manner that (1.3) holds for
all x € £ while the left hand side (LHS) of (1.3) is strictly less than V, for x €
D\ Q.

_ 1
Let {Z,(x) ;t = 0, x € D} be the flow determined by — Egrad U ie, I, =

Z,(x) is a unique solution of the ordinary differential equation (ODE):

& _ 1

(1.4) g = — g erad uiz), ©,==x.

We denote the w-limit set of a point x € D and the domain of the attraction of a
connected open or closed set F in D with respect to this flow, respectively, by
w(x) and D(F) : if Z,(x) € D for all t > 0,

w@ ={ye D_;;Etn(x) — y for some sequence £, — 0},
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otherwise w(x) = @ , and D(F) = {x € D;w(x) CF, w(x) # 0}. Set K=
{K,,..., K}. K and K, stand for the set of all stable compacta and that of all
unstable ones, respectively, with respect to the flow mentioned above. Every non-
empty w-limit set is connected and consists of critical points of U. Namely, if
w(x) # @, then we have w(x) C K; for some K, € K. (See, e.g., Palis and de
Melo [PD].)

For every stable compactum K, we define a valley ¥ (K,) containing K; in D.
To do this, we set, for compact subsets F;, F, of D,

(1.5a) U(F) = min U(x),
ZeF
(1.5b) Uy, (F) =max inf max {U(p(®)) — Un)}.

Z€F, gec®F2 telo1]

Then, ¥ (K,)) is a connected component of {x € D; U(x) < U(K)) + Uy (0D)}
containing K;. We denote the depth of valley ¥ (K,) by Depth¥ (K, : Depth
Y (K;) = sup, ey, U@ — U(y)}. Notice that Depth ¥ (K;) > 0 for all K; €
K, and that (1.2) is equivalent to maxg g, Depth ¥ (K)) =V,

Let us define the domain £ mentioned above in (1.3). If there is no stable
compactum in D, we put 2 = D. In the case of #K, =1, we define 2=
U'l—o 20 N D by preparing subsets £, ; and Q,:,lj), k,7=0,1,..., of D in the fol-
lowing manner. First, we write £,, = @ and

Q5 = U V(K,).
K,€Ks.Depth ¥ (K) =V,
Then, for each fixed kK = 0,1,..., with noting that each .Q,:,lé, k=1,2,..., is de-
fined below from {2,_,;},_,, , we construct 2, and .Q,f;, 7=1,2,..., by using
induction on j as following:
Q, =95 U Uu K, j=12,...,
K€K, K,NQY +0
20 =DnaK,), i=12,....

Finally, for k = 1,2,... and j = 0, £2,, and 9;‘; are defined by

1)

=0, U U V(K).

KKV (K)NQ,# 0

Here one notices that £,, € £2,,,, and £, < £,,,, for k,7=0,1,... and that
Qiiro= Qux, for k=0,1,. .. and = Qg , N D. We also note that &2 is
closed in D since every £, ,, k = 1,2,..., is compact.
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Now we formulate our main result.

THEOREM 1. We have

(1.6) lim ¢*log E,[7°] = V,

elo

forallx € Q. When x & 8, the LHS of (1.6) is strictly less than V.

The proof essentially consists of two parts. In Section 2, Freidlin-Wentzell’s
quasi-potentials will be characterized by valleys of the potential U and the flow

1
determined by — o grad U. Then, the set £ will be expressed in terms of valleys

and quasi-potentials. We shall also show that the assumption (A) in [FW, p.169]
is fulfilled, which guarantees the existence of the limit in (1.6). In Sections 3 and
4, we shall recall that the limit in (1.6) can be represented by using Freidlin-
Wentzell's quasi-potentials and {0D}-graphs, and get the results by calculating
the {0D}-graphs together with the estimates of quasi-potentials derived in Section
2. The main tool is the {0D}-graph with partially reversed arrows. Moreover two
problems concerning the value of the LHS of (1.6) for x € D\ 2 will be consi-
dered in Section 5. Namely, we shall show that, if the valley ¥ is a bottom one in
the sense that min,., U(z) = ming ., U(K)), the LHS of (1.6) is equal to the
depth of ¥ for every x € ¥, and represent the values of the LHS of (1.6) for all x
€ D directly in terms of U(x), x € D, when M is one-dimensional Euclidean
space. We notice that the technique in this paper is also applicable to getting the
asymptotic behavior of the distribution, Pz(x:f) € A), A C dD, of the exit position
of xf from the boundary. (See [Sul] for details.)

This result will be applied in the collaborative papers [Sul], [Su2] to investi-
gate metastable behaviors for a class of diffusion processes {xf} of gradient type.

2. Properties of quasi-potentials
The action functional S; is defined on C([0, T, M), T=0: S, (¢) =
T .

';—_]0‘ lé®d — @) IPdt it ¢ € CU0, T1, M) is absolutely continuous,

and S;(¢) = + oo otherwise. In particular, for an absolutely continuous ¢ €

c(lo 11, D),

T
(2.1) Sp(p) = %fo ¢ + %grad Up®) I dt.
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Moreover we define
(2.22) Vo(z, y) =inf{S,(¢) ;¢ € CLI(D), T>0}), z,y€<D,

which is called quasi-potential. We also denote, for compact subsets F;, F, of D,

(2.2b) Volx, Fy) = inf Vy(x,y),
YEF,

(2.2¢) Vpo(F, y) = inf V,(z, y),
yeF,

(2.2d) Vo(F,, F,) = inf V,(x,wy.
ZXEF|yeF,

We state three lemmas without proofs: Lemmas 2.1 and 2.3 are written as a com-
ment after [FW, Chapter 6, Lemma 1.1] and Lemma 5.2 in [FW, Chapter 6], re-
spectively, and Lemma 2.2 can be shown by straightforward arguments.

Lemma 2.1, Vy(x, y) is continuous for x, y € D. In particulay, we have the
following:
i) Vplx,y) <o forallx,y € D;
(i) the maps x> Vy(x, F) and y = V,(F, y) ave both continuous for every compact
subset F of D.

LEMMA 2.2, Let us suppose that compact subsets F,, F, and F of D are
mutually disjoint and have the property that every trajectory in D connecting F , and F,
traverses F ; i.e., for every ¢ € C([0,1], D) satisfying $(0) € F, and ¢(1) € F,,
there exists t € (0,1) so that ¢(t) € F. Then, we have V,(F,, F,) = inf,.,{V,(F,,
x) + Vy(x, F)}.

Lemma 2.3, If a is an unstable compactum K, ov a regular point x of U, then
either there exists a stable compactum K, such that Vy(a, K;) = 0 or Vy(a, 0D) = 0.

The next lemma is an easy consequence of the assumption (4,).

LEmMA 2.4, We have Vy(x, y) = V) (y, ) = 0 for arbitrary two points x, y
belonging to the same compactum K,

Proof. From (A,), there is an absolutely continuous ¢ € Cy,"(K,) such that

S, () < + oo where we recall grad U= 0 on K, If one sets ¢(t) = ¢t/ T),
T > 0, then S;(¢) < S,(¢) /T. This immediately verifies V,(z, y) = 0 by letting
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The following two lemmas establish basic relations between the quasi-
potential and the depth of the valley. Recall (1.5) for the notation Uy (F3).

LEMMA 2.5. For all compact subsets F of D, we have
(2.3) Vplx, F) 2 U, (F), €D,
(2.4) Vo (K, F) = UK‘_(F), K, € K.
In particular, if K; is stable and satisfies F N V(K) = 0, then V,(K, F) =
UKi(GD).

Proof. We shall prove only (2.4) since (2.3) is obtained in a quite parallel
manner. Let x, € K, be fixed arbitrarily. For d > 0, (2.2) and Lemma 2.4 verify
the existence of an absolutely continuous ¢ € C([0, 71, D), T =0, so that
#(0) = x,, ¢(T) € F and

Vpo(K,, F) =2 S;(¢) — 0.

From (1.5), one can find 0 £ T, < T satisfying
Up(Ty)) — U(g(0) = U, (F).
On the other hand, with the help of the definition (2.1) of the action functional
Sr(4) and the gradient condition (4,), we have
5:@) = [ g0, grad UG D)t

= U(@(TY) — U(g(0)).

From these estimates, we obtain
VoK, F) 2 Ug,,(F)

by letting d | 0. Since it holds for every x, € K;, (2.4) is now derived. O

COROLLARY 2.6. We have U(x) = U(y) for arbitrary two points X, y belonging
to the same compactum.

Proof. 1f x, y are belonging to the same compactum, one has Vj(x, y) =
V,(y, £) =0 from Lemma 2.4. By applying Lemma 2.5, this implies U, ({y}) =
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U,,({z}) = 0, which is equivalent to U(x) = Uly). ]

LEmMA  2.7. Let each of a and B be a point of D or a compactum in K. Then we
have
(2.5) Vola, B) — V,(B, @) = UPB) — Ula).
In particular, if Vp(a, B) = 0, then V,(8, @) = Ula) — U(B).

Proof. We shall treat only the case where both of & and 8 are compacta, be-
cause the other cases are shown similarly. Write @ = K; and B = K, For an

arbitrary 0 > 0, there exists an absolutely continuous ¢ € C([0, T1, D), T = 0,
such that ¢(0) € K;, ¢(T) € K, and

Vp(K,, K) = S;(¢) — 0.
Put ¢() = ¢(T — 1), 0 < t < T. Then, we have

T
S, (@) — S,(g) = f 26D, grad U(G(D))dt
= U$(D)) — US0)).

On the other hand, since ¢(0) € K, and ¢(T) € K,, V,(K,, K,) < S;(¢). Hence,
by letting 8 | 0, we get

VoK, K) — V,y(K, K) = UK) — UK).
By reversing the symbols K; and Kj, it holds that
VK, K) — V,(K,, K,) < UK, — UK),
and now (2.5) is obtained. L]

The next lemma gives an important property of regular points.

Lemma  2.8. Let x € D be a regular point of U, namely, grad U(x) # 0 and
suppose T,(x) € D for 0 <t < T. Then, we have Volx, y) > 0 for every point y €
D\{z,(x) ;0 <t < T} such that Uly) > U(Z(x)). Recall that Z,(x) is the solu-
tion of the ODE (1.4).

Proof. Set p, = infy<, <7 0(Z,(x), y) > 0, where p(+, ) denotes the Rieman-
nian distance on . From Lemma 2.1 of [FW, Chapter 4], we know that
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I, =inf{S,.(¢) ;¢ € CUO, T'1, M), $(0) =z, max o(Z,(x), () > 0,/2} >0
0<t<T

for every 0 < 77 < T. Since I;. is a non-increasing function of 77,
inf{S; (¢); 9 € Cop(D), 0SS T < T} 21, >0.

Let 0 <7, < T, < T satisfy U(y) > U(Z; (x)). Then, by using the same argu-
ment of Lemma 2.2 in [FW, Chapter 4], one can find @ > 0 such that S, (@) =
a(T" — T,) for every T'> T, and ¢ € C([0, T'], D) with ¢(0) ==z and
Ulgp(1)) = U(z, (x)) during 0 < t < T’. Hence, combining this with Lemma 2.5,
we obtain

inf(Sy () ; ¢ € CZD), T/ > T) 2 min(a(T— T,), U — U@ @) >0

and the proof is completed. t

COROLLARY 2.9, If x satisfies w(x) = @ and F is a compact subset of D
satisfying w(y) # @ forally € F, then V,(x, F) > 0.

Proof. Let T = inf{t > 0; £,(x) & D}. If one denotes

(2.6) F={z2€D;06/2< inf o), 2 <5}

0<t<T
for sufficiently small 8 > 0, three compact subsets {x}, F and & of D are mutual-
ly disjoint. From Lemma 2.8, we can obtain inf,.5V,(x, 2) > 0, where we use a
sufficiently smooth function Uon a neighborhood of D satisfying U= Uon D.
Hence, since every trajectory in D connecting x and F traverses %, by applying
Lemma 2.2 we get

Vplx, F) = inf {V,(z, 2) + V,(2, F)}

z2eF

> inf V,(z, 2)
zeF

> 0. U

CoroLLary 2.10. If x € K, and y €K, then either Vy(xz,y) >0 or
Vy(y, 2 > 0.

Proof. From Lemma 2.5, it suffices to show the case where U(x) = U(y).
Let T > 0 satisfy Z,(y) € D for 0 < t < T. By choosing a sufficiently small § >
0, we can suppose that {y}, {x} and # are mutually disjoint, where we define &
by (2.6) in which x should be replaced by y. For 0 < T/ < T Lemmas 2.5 and 2.8
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imply, respectively,

inf Vy(z, ) =2 Ulx) — U () >0,

2eF U@ U@ @)

inf Voly, 2 > 0.

26F:U@D>UTp @)
Hence, combining these estimates with Lemma 2.2, we obtain

Vo(y, x) = inf {V,(y, 2) + V,(z, ©)} > 0.
z2eF D

We define a subdomain £ of D in terms of quasi-potentials. Set Q=Dif
there is no stable compactum. In the case of #K =1, determine Q;C“,
k=0,1,..., and .Qk, k=1,2,..., inductively, by
D TN
= U Yv(K,),

K.€Ks'Depth v (K) =V,
Q=eD;V,x, ) =0, k=12,...,
Q) =0, u U Yv(K), k=1.2,....

KeKsVE)NQ,+ 0

iel}

P N

We remark that Lemma 2.1 (ii) implies the compactness of the sets .Qk and Q:CD.

Noting that the sequence {2,},_,, is not decreasing and that Qk,, = .QkoH =
for ko = #K,, we define 2 =0, N D.

PropOSITION 2.11. We have 2 = Q.

Proof. 1f there is no stable compactum in D, the statement is obvious. So we
assume # K, > 1. Claim that 2,, = £, It is obvious that £,, C £,. In order to
prove £,, 2 2,, it is sufficient to show V, (K, Q") > 0 for every compactum K,
in D\ Q,,. Indeed, let £ € D\ Q,, be a regular point. Then, if w(x) = 0, we
know V,(x, £) > 0 from Corollary 2.9, and, if w(z) € K, and V,(z, &) =0,
by using a similar argument to Corollary 2.9 or 2.10 we get V, (z, (0, .Q;D) =0
for all T> 0 from Lemmas 2.1, 2.2 and 2.8 and, consequently, V,(K,, .Q((,U) =0
from Lemma 2.1. First, suppose that K; € K satisfies U(K,) = min{U(K)) ; K, C
D\ Q,,}. For a stable compactum K, C D\ Q,,, one has V,(K,, le)) = Depth
V(K) >0 from 2,° =0 and K, N @) = @ . If K, is unstable, there is an
open neighborhood G of K; such that w(y) = @, which implies V,(y, 29 >0
from Corollary 2.9, for all y € G\K,: U(y) < U(K,). Hence, by a parallel
method to Corollary 2.10 with using Lemmas 2.1, 2.2 and 2.5, V,(K,, .Q((,U) >0is
obtained. Next, take K, € K such that V,(Kj, Q(()D) >0 for all K;©D\Q,,:
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U(K;)) < U(K)). Then, one can find an open neighborhood G of K; such that
every ¥y € G\ K;: U(y) < U(K,) satisfies either w(y) = @ or w(y) < K, for
some K, € D\ 2,,: UKK) < U(K,), namely, V,(y, @) > 0 from Lemma 2.8.
Lemmas 2.1, 2.2 and 2.5 also verify V,(K;, Q) > 0. Hence, we obtain Q,,= 9,
by induction.

Since one can show that 2, , = Q, implies 2,,,, = @, for k=1,2,..., by
using the methods explained above, the proof is immediately concluded by induc-

tion. ]

3. Summaries of Freidlin and Wentzell’s results

We recall Freidlin-Wentzell's {0D}-graph. (See also [FW, Chapter 6].) Let L
be a finite set and let W be a subset of L. A graph consisting of arrows a— f3
(e L\W,B €L, a+p)is called a W-graph on L if it satisfies the following
conditions:

(1) every a@ € L\ W is the initial point of exactly one arrow;

(2) there are no closed cycles in the graph.

We note that condition (2) can be replaced by the next one:
(2") for every @ € L\ W there exists a sequence of arrows leading from it
to some B € W.
We denote by G*(W) the set of W-graphs on L and, for « € L\ W and 8 € W,
GCL,H(W) stands for the set of W-graphs on L each of which contains the sequence
of arrows leading from a to 8. For « € L\ W, we set, if # [L\ W] = 2,

Gla»W) =G WU ta) U U  GL,(WU )

BEL\W B+
and, if #[L\K] =1, G*(a» W) = 4.
Let us define

(3.1) W,= min o(g),
gecX* op)

(3.2) M,(x) = min olg, z€D,
26XV (2 taDy)

(3.3) My(K) = min o(g), K, €K,
£ 6% (kD)

where K* = {K,,..., K,, 8D} and
U(g) = 2 Vp(ay ;8)

(a—B)eg
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for a graph g From Lemma 2.4 and Corollary 2.10, our system satisfies the
assumption (A) in [FW, p.169]. Hence, under the assumptions (4,)-(4,), we have
the next theorems stated in [FW, Chapter 6, §5].

THEOREM 3.1. Let us assume # K, = 1. We have

(3.4) W, = min a(g),
g€G (8D}

(3.5) W,= min o(g)), forx € D,
geGK*;um(aD)

(3.6) M,(x) = min o(g), forx €D,
gEGK§U(I)(1-ﬂ(0D))

(3.7) M,(K) = min  o(g), forK, €K,

K*
gEG S(K~{aD})

where K = K, U {oD}.

THEOREM 3.2. We have

lim ¢’ log E_[7°] = W, — M, (x)

elo
uniformly in T belonging to every compact subset of D.

Remark 3.3. Theorem 3.2 guarantees the existence of the limit in the LHS
of (1.6).

4. Proof of Theorem 1

In this section we shall show Theorem 1. By combining Theorem 3.2 with
Proposition 2.11, the next theorem immediately verifies Theorem 1.

THEOREM 4.1. We have
(4.1) W, - Myx) =V, x4,
(4.2) W, — My(x) <V, x&Q.

Let us suppose that there is no stable compactum in D. Fix an arbitrary x €
D. For g € G¥"V (¢ (D)) attaining the minimum in the right hand side

(RHS) of (3.2), we consider a {#D}-graph on K™ U {z} derived from g by ex-
changing one arrow starting from x with an arrow (x— 8D). Since V,(x, D) =
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0, from Lemma 5.3 in [FW, Chapter 6] we obtain W, — M,(x) = 0 and this com-
pletes the proof of Theorem 4.1 when # K, = 0. Therefore we assume # K, >1
throughout the rest of this section.

For a graph g in GK:{GD}, GKg{ﬁD}, GK:(K,—** {oD}) or GK{"(K,»* {oD}),
we introduce a notation K,—g'K, for K, K; € K;‘ if g contains a sequence of
arrows leading from K, to K;; we also use the notation K, K; if g does not con-
tain such a sequence of arrows. Here, taking the formulae (3.5) and (3.6) into
account, we set K, = {z,} (z, € D) , K. = 0D, K; =K, U {K} U {K,,).

Let g be a {0D}-graph in G* (8D} on K and K, € K,. For a sequence of
arrows (K;— K;), (K, — K,),..., (K, — 0D) € g, we set

n=min{p = 0; K, ZV(K)},

where we write K; = K, and K; = 0D simply. Then, we call K, the last com-
pactum of g in a valley V' (K,) from K,. For a graph g in ¥ (K -» {0D}), there
is a unique compactum (except D) which does not become the initial point of any
arrows. We call it the end compactum of g.

Lemma 4.2, Let a {0D}-graph g € G™ (0D} attain the minimum in the RHS
of (3.4). Then, for each valley V', the last compactum of g in "V does not depend on any
particular choice of stable compacta in Y/ .

Proof. Suppose that there exist more than one last compacta of g in ¥ =
Y (K,), K, € K. Let K; be a last compactum. We consider a connected compact
subdomain ¥, ={x € ¥ ; Ux) < 1} of ¥ for maXeyny Ul <7 < UK) +
Ug,(0D), and set

(1)

= {z €¥,; there exists K, € K, in ¥ such that K, K, and V,(x, K,) =0},
= {x € ¥,; there exists K, € K in ¥ such that K,~» K, and V,(z, K,) = 0}.

(2)

Then, since both “1/ " and ‘1/ are non-empty closed subsets of ¥, and Lemma 2.3
<1) @ ey @

varifies ¥, U ¥, =1 we have Vv, NY, #+ @, ie, there exist ; € ¥, and
K, K; € K,in ¥, so that Kfo K, Kjl—f* K, and that V,(z,, Kio) =V, (z, Kh)
= 0. From Lemmas 2.2 and 2.7, one knows
(4.3) VoK, K;) < Vp(K;, ) + Vp(z,, K;)

= Uy — U(K;)

<r—UK,).

Let K| be the last compactum of g in ¥ from K; . For a sequence of arrows (K; —
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K), K,—K),..., &, _—K), (K;—K, )Eg, g denotes a {0D}-graph
obtained from g by replacing these # arrows with » arrows (K;— K, ),..., (K,
—K), (K;, = K,). Since Lemma 2.5 verifies V,(K;, K; ) = Uy (D), by using
Lemma 2.7 and (4.3) we have

0@ — o9
=S W&, K,) — VK, K, )} + V(K,
k=1

< UK,) — UKy + 1 — UK,) — Uy (3D)
=7 — {UK) + U, (3D}
<0,

K,) - V,(K,, K, )

In+1

where K; = K ;. But this contradicts the assumption that g attains the minimum
in the RHS of (3.4). O

ProrosiTION  4.3.  We have
(4.4) Wy, — My(x)) =V,

for all x, € £.

Proof. Let a {0D}-graph g € G™{3D} attain the minimum in the RHS of
(3.4) and be fixed throughout the proof. Consider K, € K| satisfying Uy (3D) =
V, and the last compactum K; of g in the valley ¥ (Ky). For a sequence of arrows
(Ky— K,), (K, — K;), ..., K —K) (K,—K, )Eg we define g €
GK:(K*—*’ {0D}) from g by deleting these # + 1 arrows and adding # arrows
K;i— K, ..., (K,— K,), (K, = K,). Then, Lemmas 2.5 and 2.7 imply

o(g) —o(gy) = é {VD(K";,-U Kik) - VD(Kik, Kik—l)} + Vo (K, Ki,m)
> U(K) — UK,) + Uy (aD)
= VO,

where K; = K, and K; = K;. Since Lemma 4.2 proves g, € G*(K, - {aD}) for
all stable compacta K, C ¥ (K,), one obtains the estimate

(4.5) W, — My(K) =V,

for all stable compacta K; satisfying Depth ¥ (K;) = V,. On the other hand, for ev-
ery x, € £,, there is a stable compactum K;, Depth ¥ (K,) = V,, so that V,(x,,
K;) = 0. This implies M,(x,) < M,(K,) and therefore the estimate (4.4) holds for
every x, € Q,.
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For a stable compactum K, € £,\ £, there exist a point z, € ¥ (K) N 2,
and stable compacta K; © Q, K, € V(K)) such that Vy(z, K;) = V,(x,,
K;) = 0. Note that Lemmas 2.2 and 2.5 imply

(4.6) Vo(K,, K,) = Uy, (D).

Since Depth ¥ (K;) = V,, one can construct g, € GK:(KIQ—'“ {0D}) from the
{0D}-graph g (fixed at the top of the proof) such that

o —oalgy =2V,

by the previous methods. Then, define g; € GK:(K,-—H {0D}) from g, in the fol-
lowing manner: if Kjlﬂ K, set g, = g,; otherwise, g, is defined by exchanging m
arrows (K; = K,), (K, 2 K,),..., (K, —K;), (K;— K, )ing, (alsoin g),

Tm-1 Im+1
with m arrows (K;— K, ),..., (K;,— K;), (K; = K,), where K, and K; re-

Im-17"
spectively denote the end compactum of g, and the last compactum of g in ¥ (KX)).

Using Lemmas 2.5, 2.7 and (4.6), we have

o(g) —o(g) 2 UKy — UK,) + Uy (dD) — Uy, (0D)
=0.

With the help of Lemma 4.2, the estimate (4.5) is verified for every stable K; in
Q, For x, € 2,, choose a stable compactum K, in @, such that V,(z,, K,) = 0.
Then, we have My (x,) < M,(K,). Hence, (4.4) is obtained for all z, € £,.

By using the above arguments inductively, one can show the estimate (4.4) for
all z, € 2,,,, k = 1, which concludes the proof. J

Proof of Theorem 4.1. Fix an arbitrary x, € D and write K, = {z}, K,,,
= {0D} and K = K U {K,} (= K, U {x,, 0D}). We suppose that g € GK(T(:::0
- {@D}) attains the minimum of M,(z,) in the RHS of (3.6) and that K~ € K, (=
K, U {K}}) is the end compactum of g.

First, we consider the case where K* = {x,} € K,. If there is a stable com-
pactum K; such that V,(x,, K,) = 0, one can suppose that K; is the last compac-
tum. Indeed, the graph g € GKg(xo—"* {0D}) constructed from g by exchanging
one arrow starting from K, with an arrow (z,— K,) satisfies 6(g) < 0(g) and K;
is the last compactum of §. If V,(x,, K;) > 0 for all K, € K,, Lemma 2.3 implies
V,(x,, D) = 0. Since one obtains a {dD}-graph g € GKg{aD}, which satisfies
0(8) = o(g), by adding an arrow (z,— 0D) to g, one has W, < M,(z,) from
Theorem 3.1. Combining this with Lemma 5.3 in [FW, Chapter 6], we conclude W,
— M,(x,) = 0, where we remark x, € 2.

Next, we suppose K*e K, and claim
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(4.7) W, — M, (x,) < Ugx(3D).

For 6 > 0, F, denotes the connected component of {x € D; U(x) < UK™) +
U,+(8D) + 6} containing K ™. Set
<1>_{ x € F,; there exists K; EK sothatK-’@DandV(x K) = 0},
F? = {z € F,; there exists K, € K so that K, K™ and V,(z, K,) = 0}.

Since F,m and F,” are non-empty closed subsets of F, and satisfy Fm U F(Z) =

F, from Lemma 2.3, one can find z, € F," N F(Z) and K;, K; € K such that
K, 5 oD, K, 5 K* and that V,(z,, K,) = V,(z,, K,) = 0. Then,

VoK, , K,) < U(K)+UK*(6D)+5—U(K)

by the same methods as (4.3). For (K — K, ) (K — K, ) (K — K" e g,
b, € G*(3D} denotes a (AD}- graph constructed from g by deletmg these #

arrows and adding # + 1 arrows (K™ — K),... K,—K), (K —K,). From
Lemma 2.7, we get
(4.8) o(g,) — a(g)

= Z WK, , K,) — Vy(K,, K, )} + Vy(K,, K,)

< K*(aD) + 8,

where K,.m1 = K* Hence, (3.5) in Theorem 3.1 verifies (4.7) by letting 6 § 0.
Finally, we show the assertions in Theorem 4.1. Since Ug«(0D) < V,, (4.1) is
obtained immediately by combining (4.7) with Proposition 4.3. We move to the
second assertion (4.2). To do this, let x, & £ and suppose V,(z,, K;) =0 for
some K; € K: since the other cases have been shown. Furthermore, from (4.7) one
can suppose Ug+(@D) = V, and, in particular, K* C . It suffices to construct

g€ G (K* - {aD}) satisfying
(4.9) (@) < o(g).

Indeed, for § € GK{{(K*-*+ {0D}), there is a {0D}-graph g, € G**{aD} such

that 0(g ) — 0(2) <V, by using a parallel argument to the proof of (4.8).

Together with (4.9), we get 0(g,) — 0(g) < V, and therefore (4.2) from Theorem

3.1. For a sequence of arrows (z,— K;), (K; = K,),..., (K, — K" € g set
m = min{p = 0;K, < 0},

where K; = {z,} and K; = K* 1f m =0, we know V,(z,, K;) >0 from z, &
£ and K, 2, and V,(x, K) =0 for some K, € K Then, the graph g €
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G (K* - {(3D)) derived from & by exchanging an arrow (z,— K,) with (z,—
K)) satisfies (4.9). Let m = 1. Note that from Lemma 2.2 one has
VoK, , K, )= inf V(K ,9) +V,(y, K, )}

vedaV (K; ) m

> Uy, (D),

since Lemma 2.5 and ¥(K, ) N Q= @ imply inf,cop i, , Vo (K; , ¥) 2 Uy (0D)
and inf,csy 4 ,Vp(, K;,,) >0 respectively. For 0< 8 <V,(K, ,K; ) —

Uy, (0D), we denote by F, the connected component of {x € D; U(x)
< U(K,)) + Ui, (8D) + &'} which contains K; and set

F," = {z € F,; there exists K, € K so that K, K; and V,(z, K,) = 0},

F,” = {z € F,; there exists K, € K" so that K, > K; and V,(z, K,) = 0}.

Since FZ(D and F;Z) are non-empty closed subsets of F, and satisfy F;l) u FZ(Z) =

F, from Lemma 2.3, one can find x, € F;D n FZ(Z) and K;, K;, € K so that K,
% K, , K, = K, and that V,(z,, K;) = V,(z, K,) = 0. Then, we get

V,(K,, K,) < UK,) + U, D) + & — U(K,)

in a similar manner to (4.3). For (K, —K,), (K,— K;)),..., (K, —~K, ) € g,
& denotes a graph obtained from g by replacing these #” + 1 arrows with " + 1
arrows (K;, = K;),..., (K,— K;), (K;— K;). By Lemma 2.7, one can easily
prove that § € G¥(K*— {8D)) satisfies (4.9). ]

5. Further results

One can easily know that W, — M,(z), £ € D\ 2, is not determined general-
ly by U, (@@D), U,(K,), Depth ¥ (K;), etc., even if x belongs to some valley
Y & 2. However, for the bottom valley ¥ (K,), one can show that W, — M,(x)
coincides with the depth of valley ¥ (K;) for x € ¥ (K,) in a similar manner to
Theorem 1. Namely, we have the next proposition.

ProposiTION  5.1.  Let a stable compactum K; satisfy U(K,) = min{U(K)) ; K;
€ K}, Then,

lim ¢° log E,[7°] = Depth ¥ (X))

glo

forallz € ¥ (K).
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Proof. From Theorem 3.2 and Lemma 4.2, it is sufficient to show W, —
M,(K,) = Depth ¥ (K,). However, we have W, — M,(K,) = Depth ¥ (K}) by us-
ing the same arguments as Proposition 4.3. Let g € GKS‘MD)(K,—"> {0D}) attain
the minimum of M, (K,) in the RHS of (3.7). We denote the end compactum of g by
K* € K,. Then, one can easily show that UK‘(K*) < U, (@D) in a similar man-
ner to Lemma 4.2. In particular, Ugx(dD) < Depth ¥ (K,). Hence, the proof is
completed immediately from (4.7). ]

For one-dimensional Euclidean space, one can calculate W, — M, (x) for all
x € D.Set D = (d,, d,) and define U*(x), z € D, by

MaX, x5 Uk, x€Y(K),
Ux), x€ U V(K).

Recall £ defined in Section 1. Let “V,j be the deepest valley at the right side of
V., satisfying min, ., U(z) < min U(x) and let ¥, be that at the left

U*(z) = {

ze Y oy
side of ¥,_, satisfying min ., U(x) < min,ey, Ux) for k =1,2,..., where
we write ¥y = ¥, = Q simply. Set V,” = Depth¥;, V, = Depth ¥, and 0, =
suplz;z € ¥}), o, =inflz;x €¥,)} for k=0,1,.... We remark that they

satisfy the following:
d <o, <0, < <0, <o, <:<o0, <0, <d,
- - + +
Ve sV <V, V>V =22 V,
where k,, k, = 0 are chosen so that, respectively,

min U(x) = min U(x), min Ulx) = min Ux).
reVy TE Uk ek, KiN (d1,07) rev, z&Ug ek, Kin(0g,dy)

With these notations in mind, we define V*(2), z € D, by
([V,, + U@ — Ul )1 VO,  z€(d,o0.]),

WV, + U@ — U, DIV V, € (0,0, 1, k=1,..., k,
Vi) =1 v, z € (g, 0y),
Vo +U @ = U )IVV,, z€lo_,0), k=1,..., k,
v, + U*(x) — Ulo,)1 V0, x € lo;, dy).

Now we state the next proposition without proof since it is quite simple.

ProposiTiON  5.2. We have
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lim &’ log E,[7°] = V*(@)

elo

uniformly in x belonging to every compact subset of D.
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