THEORETICALPEARL
 Church numerals, twice!

RALF HINZE
Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Germany
(e-mail: ralf@informatik.uni-bonn.de)

Abstract

This pearl explains Church numerals, twice. The first explanation links Church numerals to Peano numerals via the well-known encoding of data types in the polymorphic λ-calculus. This view suggests that Church numerals are folds in disguise. The second explanation, which is more elaborate, but also more insightful, derives Church numerals from first principles, that is, from an algebraic specification of addition and multiplication. Additionally, we illustrate the use of the parametricity theorem by proving exponentiation as reverse application correct.

1 Introduction

Church (1941) devised the following scheme for representing natural numbers in the untyped λ-calculus: the natural number n is encoded by a function that applies its first argument n times to its second argument. Using a compositional style the first three natural numbers are defined

$$
\begin{aligned}
\left\ulcorner 0^{\urcorner}\right. & =\lambda \varphi \cdot i d \\
\left\ulcorner 1^{\urcorner}\right. & =\lambda \varphi \cdot \varphi \\
\left\ulcorner 2^{\urcorner}\right. & =\lambda \varphi \cdot \varphi \cdot \varphi .
\end{aligned}
$$

In general, we have $\left.{ }^{\ulcorner } n\right\urcorner=\lambda \varphi \cdot \varphi^{n}$ where φ^{n} is given by $\varphi^{0}=i d$ and $\varphi^{n+1}=\varphi \cdot \varphi^{n}$. Building upon this representation the successor function reads

$$
\text { succ } n=\lambda \varphi \cdot \varphi \cdot n \varphi .
$$

The following definitions of addition, multiplication, and exponentiation are due to Rosser.

$$
\begin{aligned}
m+n & =\lambda \varphi \cdot m \varphi \cdot n \varphi \\
m \times n & =m \cdot n \\
m \uparrow n & =n m
\end{aligned}
$$

Interestingly, multiplication is implemented by function composition and exponentiation by reverse function application. It is relatively straightforward to prove the definitions correct: succ $\ulcorner n\urcorner=\ulcorner n+1\urcorner,\ulcorner m\urcorner+\ulcorner n\urcorner=\ulcorner m+n\urcorner,\ulcorner m\urcorner \times\ulcorner n\urcorner=\ulcorner m n\urcorner$, and $\ulcorner m\urcorner \uparrow\ulcorner n\urcorner=\left\ulcorner m^{n}\right\urcorner-$ see Barendregt (1992) for an inductive proof.

The purpose of this pearl is to provide additional background and hopefully additional insights by deriving the Church numeral system in two different ways.

Though Church numerals were devised for the untyped λ-calculus, we will work in a typed setting: we use Girard's System F (Girard, 1972), also known as the polymorphic or second-order λ-calculus (Reynolds, 1974), augmented by inductive types (Mendler, 1991; Parigot, 1992). To avoid clutter, however, we usually omit type abstractions (written explicitly as $\Lambda A . e$) and type applications (written explicitly as $e[T]$).

2 Church numerals, first approach

The first derivation takes as a starting point the unary representation of the natural numbers, also known as the Peano numeral system:

$$
\text { data Nat }=\text { Zero } \mid \text { Succ Nat. }
$$

Here n is represented by ${ } n\urcorner=$ Succ n Zero, i.e. the successor function is applied n times to the constant zero. Arithmetic operations can be conveniently expressed in terms of the fold operator for Nat.

$$
\begin{array}{ll}
\text { fold } & : \forall N .(N \rightarrow N) \rightarrow N \rightarrow N a t \rightarrow N \\
\text { fold succ zero Zero } & =\text { zero } \\
\text { fold succ zero }(\text { Succ } n) & =\text { succ (fold succ zero } n)
\end{array}
$$

In essence, fold succ zero replaces Zero by zero, Succ by succ and evaluates the resulting term. The recursion scheme captured by fold is known as structural recursion over the natural numbers, which is an instance of a more general scheme called primitive recursion. The fold operator satisfies the following so-called universal property, which provides the central key for reasoning about fold (Bird \& de Moor, 1997; Hutton, 1999).

$$
h=\text { fold } \varphi a \Longleftrightarrow \begin{cases}h \text { Zero } & =a \\ h(\text { Succ } n) & =\varphi(h n)\end{cases}
$$

The universal property states that fold φa is the unique solution of the recursion equations on the right. A simple consequence of the property is the reflection law fold Succ Zero $=i d($ simply put $h=i d, a=$ Zero, and $\varphi=$ Succ $)$.

Addition, multiplication, and exponentiation are given by

$$
\begin{array}{ll}
(+),(\times),(\uparrow) & : \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
m+n & =\text { fold Succ } n m \\
m \times n & =\text { fold (add } n)\ulcorner 0\urcorner m \\
m \uparrow n & =\text { fold (mult } m)^{\ulcorner } 1^{\urcorner} n .
\end{array}
$$

Now, let us reinvent Church numerals using the Peano numerals as a starting point. For the sake of argument, assume that there are no data declarations so that we cannot introduce new constants. In this case, we can only treat Zero and Succ as variables and λ-abstract over them. Thus, Succ ${ }^{n}$ Zero becomes

$$
\lambda \text { succ. } \lambda \text { zero. succ }{ }^{n} \text { zero. }
$$

What is the type of this term? A possible choice is (Nat \rightarrow Nat $) \rightarrow N a t \rightarrow N a t$, but (Bool \rightarrow Bool $) \rightarrow$ Bool \rightarrow Bool works, as well. In fact, $(N \rightarrow N) \rightarrow N \rightarrow N$ is a
sensible type, for all N. This motivates the following type definition.

$$
\text { type Church }=\forall N .(N \rightarrow N) \rightarrow N \rightarrow N
$$

How are the types Nat and Church related? Ideally, they should be isomorphic since both represent the same set, the set of natural numbers. And, in fact, they are. The conversion maps are given by

$$
\begin{array}{ll}
\text { nat } & : \text { Church } \rightarrow \text { Nat } \\
\text { nat } c & = \\
\text { c Succ Zero } \\
\text { church } & : \\
\text { Nat } \rightarrow \text { Church } \\
\text { church } n & = \\
\lambda \text { succ zero .fold succ zero } n .
\end{array}
$$

The proof of nat \cdot church $=i d$ makes use of the universal property of fold.

$$
\begin{aligned}
& (\text { nat } \cdot \text { church }) n \\
= & \{\text { definition of nat and church }\} \\
= & (\lambda \text { succ zero .fold succ zero } n) \text { Succ Zero } \\
= & \{\beta \text {-conversion }\} \\
= & \text { fold Succ Zero } n \\
= & \{\text { reflection law }\}
\end{aligned}
$$

The reverse direction, church \cdot nat $=i d$, is more involving.

$$
=\quad \begin{aligned}
& (\text { church } \cdot \text { nat }) \text { c } \\
& \quad\{\text { definition of church and nat }\} \\
& \lambda \text { succ zero .fold succ zero (c Succ Zero })
\end{aligned}
$$

Now we are stuck. The universal property is not applicable since the arguments of fold, namely succ and zero, are unknowns. Instead we must apply the so-called parametricity condition of the type Church. Briefly, each polymorphic type gives rise to a general property that each element of the type satisfies (Wadler, 1989). For Church we obtain the following 'theorem for free'. Let xtimes: Church and let A and A^{\prime} be arbitrary types; then for all $\varphi: A \rightarrow A, \varphi^{\prime}: A^{\prime} \rightarrow A^{\prime}$, and $h: A \rightarrow A^{\prime}$

$$
h \cdot x \text { times }[A] \varphi=\text { xtimes }\left[A^{\prime}\right] \varphi^{\prime} \cdot h \Longleftarrow h \cdot \varphi=\varphi^{\prime} \cdot h .
$$

Intuitively, the type ensures that xtimes only composes its argument with itself: xtimes $\varphi=\varphi \cdot \ldots \cdot \varphi$. Thus, $h \cdot \varphi=\varphi^{\prime} \cdot h$ implies $h \cdot(\varphi \cdot \ldots \cdot \varphi)=\left(\varphi^{\prime} \cdot \ldots \cdot \varphi^{\prime}\right) \cdot h$. Setting xtimes $=c, \varphi=$ Succ, $\varphi^{\prime}=$ succ, and $h=$ fold succ zero, we have

$$
\begin{equation*}
\text { fold succ zero } \cdot \text { c Succ }=c \text { succ } \cdot \text { fold succ zero, } \tag{1}
\end{equation*}
$$

provided fold succ zero \cdot Succ $=$ succ \cdot fold succ zero. This equation, however, follows directly from the definition of fold. Using (1) we can complete the proof.

$$
\begin{aligned}
= & \{(1)\} \\
& \lambda \text { succ zero.c succ (fold succ zero Zero) }
\end{aligned}
$$

$$
\begin{aligned}
= & \{\text { definition of fold }\} \\
& \lambda \text { succ zero.c succ zero } \\
= & \{\eta \text {-conversion }\}
\end{aligned}
$$

The isomorphism suggests that a Church numeral is a fold in disguise as each numeral can be rewritten into the form λ succ zero.fold succ zero n for some n.

Functions on Nat are programmed using Zero, Succ, and fold. What are the corresponding operations on Church? For fold we calculate

$$
\begin{aligned}
& \text { fold } \varphi a n \\
= & \{\beta \text {-conversion }\} \\
& (\lambda s z \text {.fold } s z n) \varphi a \\
= & \{\text { definition of church }\} \\
& \text { church } n \varphi a .
\end{aligned}
$$

The encodings of the constructor functions Zero and Succ can be specified as follows.

$$
\begin{aligned}
\text { zero } & =\text { church Zero } \\
\text { succ }(\text { church } m) & =\text { church }(\text { Succ } m)
\end{aligned}
$$

Given this specification it is straightforward to derive zero $=\lambda s z . z$ and succ $c=$ $\lambda s z . s(c s z)$. To summarize, define the relation ' \sim ' by $n \sim c \Longleftrightarrow$ church $n=c$ $\Longleftrightarrow n=$ nat c, then

$$
\left.\begin{array}{rl}
\text { Zero } & \left.\sim \text { zero }={ }^{\ulcorner } 0\right\urcorner \\
\text { Succ } n & \sim \operatorname{succ} c \\
\text { fold } \varphi \text { a } n & =c \varphi a
\end{array}\right\} \Longleftarrow n \sim c .
$$

Using this correspondence we can mechanically transform functions on Nat into operations on Church. For instance, the structurally recursive definitions of addition, multiplication, and exponentiation give rise to the following operations on Church.

$$
\begin{array}{ll}
(+),(\times),(\uparrow) & : \quad \text { Church } \rightarrow \text { Church } \rightarrow \text { Church } \\
m+n & =\quad m \text { succ } n \\
m \times n & =m(n+)^{\ulcorner } 0^{\urcorner} \\
m \uparrow n & =n(m \times)^{\ulcorner } 1^{\urcorner}
\end{array}
$$

Comparing these definitions to the ones given in section 1 we see that we have found alternative implementations of ' + ', ' \times ', and ' \uparrow '. Or, to put it negatively, the correspondence of Church to Nat does not explain Rosser's implementation of the arithmetic operations.

3 Church numerals, second approach

Ready for a second go? This time we start from an algebraic specification of addition and multiplication, where a specification consists of a signature and properties that
the operations of the signature are required to satisfy. We consider the following five constants and operations.

0,1	$:$	\mathbb{N}
$(+),(\times)$	$:$	$\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$
nat	$:$	$\mathbb{N} \rightarrow$ Nat

Two points are worth noting. First, exponentiation is deliberately omitted from the signature - this design decision is clearly unmotivated and will be justified only later (see remark 1). Second, we include a so-called observer function, which maps elements of the new type \mathbb{N} to elements of Nat. Observer functions allow us to distinguish elements of the new type. If there were none, then the equational specification below could be trivially satisfied by setting $\mathbb{N}=()$; see Hughes (1995) for a more comprehensive discussion.

The set of natural numbers with addition and multiplication forms a commutative semiring, that is, $(\mathbb{N} ;+; 0)$ and $(\mathbb{N} ; \times ; 1)$ are commutative monoids, 0 is the zero of ' x ', and ' x ' distributes over ' + '. Interestingly, we will not require all of the laws. The following subset is sufficient for our purposes.

$$
\begin{gathered}
0+x=x=x+0 \\
(x+y)+z=x+(y+z) \\
0 \times x=0 \\
1 \times x=x=x \times 1 \\
(x \times y) \times z=x \times(y \times z) \\
(x+y) \times z=(x \times z)+(y \times z)
\end{gathered}
$$

In addition, we must determine nat.

$$
\begin{align*}
\text { nat } 0 & =\text { Zero } \tag{2}\\
\text { nat }(1+x) & =\text { Succ (nat } x) \tag{3}
\end{align*}
$$

The most straightforward way to represent values of type \mathbb{N} is by terms of the algebra. The data type Expr implements the term algebra of \mathbb{N}.

$$
\text { data Expr }=\text { Null } \mid \text { One } \mid \text { Expr }:+ \text { Expr } \mid \text { Expr }: \times \text { Expr }
$$

Each of the operations 0,1 , ' + ', and ' \times ' is simply implemented by the corresponding constructor: $0=$ Null, $1=$ One, $(+)=(:+)$, and $(\times)=(: \times)$. In other words, the operations do nothing. All the work is performed by the observer function nat, which can be seen as an interpreter for the arithmetic language. Let us derive its definition using the laws above. The first two cases are straightforward.

$$
\begin{aligned}
& \text { nat Null }=\text { Zero } \\
& \text { nat One }=\text { Succ Zero }
\end{aligned}
$$

It is tempting to set nat $(m:+n)=$ nat $m+n a t n$ with $(+)=$ fold Succ, but this equation does not follow immediately from the laws. Instead, we proceed by making
a further case distinction on m.

$$
\begin{array}{ll}
\text { nat }\left(\text { Null }:+a_{1}\right) & =\text { nat } a_{1} \\
\text { nat }\left(\text { One }:+a_{1}\right) & =\operatorname{Succ}\left(\text { nat } a_{1}\right) \\
\text { nat }\left((m:+n):+a_{1}\right) & =\text { nat }\left(m:+\left(n:+a_{1}\right)\right)
\end{array}
$$

Now we are stuck. There is no obvious way to simplify nat $\left((m: \times n):+a_{1}\right)$. Again, we help ourselves by making a further case distinction on m.

$$
\begin{array}{ll}
\text { nat }\left(\left(\text { Null }: \times a_{2}\right):+a_{1}\right) & =\text { nat } a_{1} \\
\text { nat }\left(\left(\text { One } \times a_{2}\right):+a_{1}\right) & =\text { nat }\left(a_{2}:+a_{1}\right) \\
\text { nat }\left(\left((m:+n): \times a_{2}\right):+a_{1}\right) & =\text { nat }\left(\left(m: \times a_{2}\right):+\left(\left(n: \times a_{2}\right):+a_{1}\right)\right) \\
\text { nat }\left(\left((m: \times n): \times a_{2}\right):+a_{1}\right) & =\text { nat }\left(\left(m: \times\left(n: \times a_{2}\right)\right):+a_{1}\right)
\end{array}
$$

The last case, nat ($m: \times n$), is an instance of the previous one (with $a_{1}=$ Null).

$$
\begin{array}{ll}
\text { nat }\left(\text { Null }: \times a_{2}\right) & =\text { Zero } \\
\text { nat }\left(\text { One }: \times a_{2}\right) & =\text { nat } a_{2} \\
\text { nat }\left((m:+n): \times a_{2}\right) & =\text { nat }\left(\left(m: \times a_{2}\right):+\left(n: \times a_{2}\right)\right) \\
\text { nat }\left((m: \times n): \times a_{2}\right) & =\text { nat }\left(m: \times\left(n: \times a_{2}\right)\right) .
\end{array}
$$

At this point the reader may wonder whether nat is really well-defined. Now, the case analysis is clearly exhaustive; termination can be established using a so-called polynomial interpretation of operations (Dershowitz \& Jouannaud, 1990).

$$
\begin{array}{rlrl}
\text { Null }_{\tau} & =2 & & m:+_{\tau} n \\
\text { One }_{\tau} & =2 m+n \\
& m: x_{\tau} n & =m^{2} n
\end{array}
$$

A multivariate polynomial $o p_{\tau}$ of n variables is associated with each n-ary operation $o p$. For each equation nat $l=\ldots$ nat $r \ldots$ we must then show that $\tau l>\tau r$ for all variables (ranging over positive integers) where τ is given by $\tau\left(o p e_{1} \ldots e_{n}\right)=$ $o p_{\tau}\left(\tau e_{1}\right) \ldots\left(\tau e_{n}\right)$.

Furthermore, it is worth noting that the implementation does not satisfy the specification. The laws only hold under observation, that is, $0+x=x$, for instance, is weakened to nat $(0+x)=$ nat x. As a consequence, Nat and Expr are not isomorphic. This is, however, typical of abstract types.

Remark 1

Why didn't we include exponentiation in the specification? The answer is simply that in this case the derivation no longer works: there is no way to simplify the call nat $\left(\left(\left(\left(a_{3}: \uparrow(n: \uparrow m)\right): \times a_{2}\right):+a_{1}\right)\right)$. Exponentiation lacks the property of associativity, which we used for rewriting nested additions and multiplications.

Let us now try to improve the efficiency of nat. For a start, we can avoid the construction and deconstruction of many terms if we specialize nat for $e:+a_{1}$ and $\left(e: \times a_{2}\right):+a_{1}$. We specify

$$
\begin{aligned}
\text { nat }_{1} \text { e } a_{1} & =\text { nat }\left(e:+a_{1}\right) \\
\text { nat }_{2} \text { e } a_{2} a_{1} & =\text { nat }\left(\left(e: \times a_{2}\right):+a_{1}\right) .
\end{aligned}
$$

Given this specification we can easily derive the following implementation.

```
nat \(_{1}\) Null \(=\lambda a_{1}\).nat \(a_{1}\)
nat \({ }_{1}\) One \(\quad=\lambda a_{1}\). Succ (nat \(a_{1}\) )
nat \(_{1}(m:+n)=\lambda a_{1}\). nat \(_{1} m\left(n:+a_{1}\right)\)
nat \(_{1}(m: \times n)=\lambda a_{1}\). nat \(_{2} m n a_{1}\)
nat \({ }_{2}\) Null \(=\lambda a_{2} a_{1}\).nat \(a_{1}\)
nat \({ }_{2}\) One \(\quad=\lambda a_{2} a_{1}\).nat \({ }_{1} a_{2} a_{1}\)
nat \(_{2}(m:+n)=\lambda a_{2} a_{1}\).nat \(_{2} m a_{2}\left(\left(n: \times a_{2}\right):+a_{1}\right)\)
\(n a t_{2}(m: \times n)=\lambda a_{2} a_{1}\). nat \(_{2} m\left(n: \times a_{2}\right) a_{1}\)
```

The rewriting opens up further opportunities for improvement. Note that the parameter a_{1} is eventually passed to nat in each case. Likewise, a_{2} is eventually passed to nat ${ }_{1}$. These observations suggest that we could try to advance the function calls and pass nat a_{1} instead of a_{1} and similarly nat a_{2} instead of a_{2}. The idea can be formalized as follows (the new observer functions are called $\underline{n a t}_{1}$ and nat \underline{t}_{2}).

$$
\begin{align*}
\underline{n a t}_{1} e \underline{a}_{1}=\text { nat }\left(e:+a_{1}\right) & \Longleftarrow \underline{a}_{1}=\text { nat } a_{1} \tag{4}\\
\underline{n a t}_{2} e \underline{a}_{2} \underline{a}_{1}=\text { nat }\left(e: \times a_{2}:+a_{1}\right) & \Longleftarrow \underline{a}_{1}=\text { nat } a_{1} \wedge \underline{a}_{2}=\underline{n a t}_{1} a_{2} \tag{5}
\end{align*}
$$

Note that the parameter \underline{a}_{2} equals $\underline{\text { nat }}_{1} a_{2}$ rather than nat ${ }_{1} a_{2}$ since we want to avoid dependencies on the 'old' code. Given this specification it is straightforward to derive the following implementation of $\underline{\text { nat }}_{1}$.

$$
\begin{array}{ll}
\underline{n a t}_{1} \text { Null } & =\lambda \underline{a}_{1} \cdot \underline{a}_{1} \\
\underline{n a t}_{1} \text { One } & =\lambda \underline{a}_{1} \cdot \text { Succ } \underline{a}_{1} \\
\underline{n a t}_{1}(m:+n) & =\lambda \underline{a}_{1} \cdot \underline{n a t}_{1} m\left(\underline{n a t}_{1} n \underline{a}_{1}\right) \\
\underline{n a t}_{1}(m: \times n) & =\lambda \underline{a}_{1} \cdot \underline{n a t}_{2} m\left(\underline{n a t}_{1} n\right) \underline{a}_{1}
\end{array}
$$

Let us calculate the definition of $\underline{n a t}_{2}$. We assume $\underline{a}_{1}=$ nat a_{1} and $\underline{a}_{2}=\underline{n a t}_{1} a_{2}$ and consider each of the four cases. Cases $e=$ Null and $e=$ One:

$$
\begin{aligned}
& \text { nat }_{2} \text { Null } \underline{a}_{2} \underline{a}_{1} \\
& \begin{aligned}
& \underline{\text { nat }}_{2} \text { One } \underline{a}_{2} \underline{a}_{1} \\
= & \{\text { assumptions and (5) \}} \\
= & \text { nat }\left(\text { One }: \times a_{2}:+a_{1}\right) \\
= & \{1 \times x=x\} \\
= & \quad \text { nat }\left(a_{2}:+a_{1}\right) \\
= & \left.\underline{a}_{1}=\text { nat } a_{1} \text { and }(4)\right\} \\
& \left\{a_{2} \underline{a}_{1}=\underline{a}_{1} \underline{n a t}_{1} a_{2}\right\} \\
& \underline{a}_{2} \underline{a}_{1} .
\end{aligned} \\
& \begin{array}{l}
=\quad\{\text { assumptions and }(5)\} \\
=\quad \text { nat }\left(\text { Null } \times a_{2}:+a_{1}\right) \\
=\quad \text { nat } 0 \times x=0 \text { and } 0+x=x\} \\
=\quad\left\{a_{1}=\text { nat } a_{1}\right\}
\end{array}
\end{aligned}
$$

Cases $e=m:+n$ and $e=m \times n$:

$$
\begin{aligned}
& =\frac{\text { nat }_{2}(m:+n) \underline{a}_{2} \underline{a}_{1}}{\{\text { assumptions and (5) \}}} \quad=\frac{\underline{n a t}_{2}(m: \times n) \underline{a}_{2} \underline{a}_{1}}{\{\text { assumptions and (5) \}}} \\
& \text { nat }\left((m:+n): \times a_{2}:+a_{1}\right) \\
& =\{(x+y) \times z=(x \times z)+(y \times z)=\{(x \times y) \times z=x \times(y \times z)\} \\
& \text { and }(x+y)+z=x+(y+z)\} \quad \text { nat }\left(m: \times\left(n: \times a_{2}\right):+a_{1}\right) \\
& \text { nat }\left(\left(m: \times a_{2}\right):+\left(\left(n: \times a_{2}\right):+a_{1}\right)\right) \quad=\quad\left\{\underline{a}_{1}=\text { nat } a_{1} \text { and }(5)\right\} \\
& =\quad\left\{\underline{a}_{2}=\underline{n a t}_{1} a_{2} \text { and (5) }\right\} \\
& \underline{n a t}_{2} m \underline{a}_{2}\left(\text { nat }\left(\left(n: \times a_{2}\right):+a_{1}\right)\right) \\
& =\{\text { assumptions and (5) }\} \\
& \underline{n a t}_{2} m \underline{a}_{2}\left(\underline{n a t}_{2} n \underline{a}_{2} \underline{a}_{1}\right) \\
& \text { nat }\left((m: \times n): \times a_{2}:+a_{1}\right) \\
& \underline{n a t}_{2} m\left(\underline{n a t}_{1}\left(n: \times a_{2}\right)\right) \underline{a}_{1} \\
& =\left\{\text { definition of } \underline{n a t}_{1}\right\} \\
& \underline{n a t}_{2} m\left(\underline{n a t}_{2} n\left(\underline{n a t}_{1} a_{2}\right)\right) \underline{a}_{1} \\
& =\quad\left\{\underline{a}_{2}=\underline{n a t}_{1} a_{2}\right\} \\
& \underline{n a t}_{2} m\left(\underline{n a t}_{2} n \underline{a}_{2}\right) \underline{a}_{1} .
\end{aligned}
$$

A final generalization step ${ }^{1}$ yields:

$$
\begin{array}{ll}
\underline{\text { nat }}_{2} \text { Null } & =\lambda \underline{a}_{2} \underline{a}_{1} \cdot \underline{a}_{1} \\
\underline{\text { nat }}_{2} \text { One } & =\lambda \underline{a}_{2} \underline{a}_{1} \cdot \underline{a}_{2} \underline{a}_{1} \\
\underline{\text { nat }}_{2}(m:+n) & =\lambda \underline{a}_{2} \underline{a}_{1} \cdot n a t_{2} m \underline{a}_{2}\left(\underline{n a t}_{2} n \underline{a}_{2} \underline{a}_{1}\right) \\
\underline{n a t}_{2}(m: \times n) & =\lambda \underline{a}_{2} \underline{a}_{1} \cdot \underline{n a t}_{2} m\left(\underline{n a t}_{2} n \underline{a}_{2}\right) \underline{a}_{1} .
\end{array}
$$

The code looks familiar. We are pretty close to Rosser's implementation of addition and multiplication. As a last step we simply remove the interpretative layer. Specifying 0,1 , ' + ', and ' x ' by

$$
\begin{array}{ll}
0 & =\underline{n a t}_{2} \text { Null } \\
1 & ={\underline{n a t_{2}}}_{2} \text { One } \\
{\underline{n a t_{2}}}_{2} m+\underline{n a t}_{2} n & \underline{n a t}_{2}(m:+n) \\
\underline{n a t}_{2} m \times \underline{n a t}_{2} n & =\underline{n a t}_{2}(m: \times n),
\end{array}
$$

we obtain the definitions given in section 1 . We have even derived the type of Church numerals: $\underline{n a t}_{2}$ has type $\forall N . \operatorname{Expr} \rightarrow(N \rightarrow N) \rightarrow N \rightarrow N(=$ Expr \rightarrow Church $)$. Interestingly, the type of $\underline{n a t}_{2}$ is more general than one would expect. By contrast, $\underline{n a t}_{1}$ has type Expr \rightarrow Nat \rightarrow Nat because of the occurrence of Succ in the equation for $\underline{n a t}_{1}$ One.

If we look at the derivation of $\underline{n a t}_{2}$, we notice that we have only used the algebraic properties of 0,1, ' + ', and ' \times ' but not the specification of nat. This observation motivates the following generalization of (4) and (5): Let A be an arbitrary type and let h :Church $\rightarrow A$ be an arbitrary function; then c : Church satisfies $R_{2}(c[A], c)$, where

$$
\begin{aligned}
& R_{0}(\underline{e}, e) \Longleftrightarrow \underline{e}=h e \\
& R_{1}(\underline{e}, e) \Longleftrightarrow \underline{e}^{\underline{a}}=h\left(e+a_{1}\right) \Longleftarrow R_{0}\left(\underline{a}_{1}, a_{1}\right) \\
& R_{2}(\underline{e}, e) \Longleftrightarrow \underline{a}_{2} \underline{a}_{1}=h\left(e \times a_{2}+a_{1}\right) \Longleftarrow R_{0}\left(\underline{a}_{1}, a_{1}\right) \wedge R_{1}\left(\underline{a}_{2}, a_{2}\right)
\end{aligned}
$$

[^0]This can be seen as the specification of Church numerals, from which we can derive the definitions of $0,1,{ }^{\prime}+$ ', and ' \times '. An important special case is obtained for $a_{2}=1$ and $a_{1}=0$:

$$
h c=c[A] \underline{a}_{2} \underline{a}_{1} \Longleftrightarrow \begin{cases}h 0 & =\underline{a}_{1} \tag{6}\\ h\left(1+a_{1}^{\prime}\right) & =\underline{a}_{2}\left(h a_{1}^{\prime}\right) .\end{cases}
$$

Note that the implication has been strengthened to an equivalence. Furthermore, note that (6) corresponds to the universal property of fold! Thus, using (6) we can derive the alternative definitions of ' + ', ' x ', and ' \uparrow ' given in section 2. Additionally, from the specification of nat, equations (2) and (3), we can immediately conclude that nat $c=c$ Succ Zero.

4 Exponentiation as reverse application

Rosser's definition of exponentiation seems to be peculiar. One property that sets it apart from the other operations is that it makes non-trivial use of polymorphism. Compare the definitions of ' + ', ' x ', and ' \uparrow ' (in this section we will be explicit about type abstractions and type applications-with the exception of id and ' \cdot '). Let $\bar{T}=T \rightarrow T$; then

$$
\begin{aligned}
m+n & =\Lambda N \cdot \lambda \varphi: \bar{N} \cdot m[N] \varphi \cdot n[N] \varphi \\
m \times n & =\Lambda N \cdot m[N] \cdot n[N] \\
m \uparrow n & =\Lambda N \cdot(n[\bar{N}])(m[N]) .
\end{aligned}
$$

Exponentiation is the only operation whose arguments are instantiated to two different types. This observation suggests that we cannot reasonably expect to derive exponentiation in an algebraic manner. Hence, we make do with proving its correctness. Now, it is straightforward to show that (omitting type arguments)

$$
\ulcorner m\urcorner \uparrow\ulcorner n\urcorner=\ulcorner n\urcorner\ulcorner m\urcorner=\underbrace{\ulcorner m\urcorner \cdot \ldots \cdot\ulcorner m\urcorner}_{n \text { times }}=\underbrace{\ulcorner m\urcorner \times \cdots \times\ulcorner m\urcorner}_{n \text { times }}=\left\ulcorner m^{n}\right\urcorner \text {. }
$$

But, can we also verify the correctness of ' \uparrow ' without making assumptions about the arguments? The answer is in the affirmative. In the sequel we show that the two definitions of exponentiation are equal using type-theoretic arguments only. The proof of $(n[\bar{N}])(m[N])=n$ [Church $\left.](m \times){ }^{1} 1\right\urcorner[N]$ proceeds in three major steps, each of which appeals to parametricity. Thus, the following can be seen as an instructive exercise in the use of the parametricity theorem.

$$
\begin{aligned}
& n[\text { Church }](m \times)\ulcorner 1\urcorner[N] f \\
= & \{\text { Lemma } 1\} \\
= & n[\overline{\bar{N}}](m[N] \cdot) \text { id } f \\
= & \{\text { define const a } b=a\} \\
= & n[\overline{\bar{N}}](m[N] \cdot) \text { id (const } f g) \\
= & \{\text { Lemma } 2\} \\
& n[\overline{\bar{N}}](m[N] \cdot)(\text { const } f) g
\end{aligned}
$$

$$
=\begin{gathered}
\{\text { Lemma } 3\} \\
\\
n[\bar{N}](m[N]) f
\end{gathered}
$$

Lemma 1 shows that applying a Church numeral to polymorphic arguments and instantiating the result is the same as first instantiating the arguments and then applying the numeral.

Lemma 1

Let xtimes: Church be a Church numeral, let T be a type, and let $\varphi:$ Church \rightarrow Church, $\varphi^{\prime}: \overline{\bar{T}} \rightarrow \overline{\bar{T}}$. Then

$$
\text { xtimes }[\text { Church }] \varphi a[T]=\text { xtimes }[\overline{\bar{T}}] \varphi^{\prime}(a[T]) \Longleftarrow \varphi b[T]=\varphi^{\prime}(b[T]) .
$$

Proof
The proposition is implied by the free theorem for Church with $A=$ Church and $A^{\prime}=\overline{\bar{T}}$. The types A and A^{\prime} suggest that $h:$ Church $\rightarrow \overline{\bar{T}}$ is type instantiation: $h=\lambda c . c[T]$. The premise of the free theorem is easily checked:

$$
\Longleftrightarrow \quad \begin{gathered}
h \cdot \varphi=\varphi^{\prime} \cdot h \\
\{\text { definition of } h\} \\
\varphi b[T]=\varphi^{\prime}(b[T])
\end{gathered}
$$

Lemma 2 expresses that postcomposition commutes with precomposition.

Lemma 2

Let xtimes: Church be a Church numeral, let T be a type, and let $\varphi, f, g: \bar{T}$. Then

$$
\text { xtimes }[\bar{T}](\varphi \cdot) f \cdot g=\text { xtimes }[\bar{T}](\varphi \cdot)(f \cdot g)
$$

Proof

Again, the proposition follows from the free theorem for Church with $A=A^{\prime}=\bar{T}$ and $h=(\cdot g)$. The premise of the free theorem holds unconditionally.

$$
\left.\begin{array}{ll}
& h \cdot(\varphi \cdot)=(\varphi \cdot) \cdot h \\
\Longleftrightarrow \quad\{\text { definition of } h\} \\
& (\varphi \cdot f) \cdot g=\varphi \cdot(f \cdot g) \\
\Longleftrightarrow \quad\left\{\text { associativity of }{ }^{\prime} \cdot\right\}
\end{array}\right\}
$$

Setting $f=i d$, we obtain as a simple consequence xtimes $[\bar{T}](\varphi \cdot)$ id $(g a)=$ xtimes $[\bar{T}](\varphi \cdot) g a$.

Lemma 3 relates function composition and composition of postcompositions.

Lemma 3

Let xtimes: Church be a Church numeral, let T be a type, and let $\varphi: \bar{T}$. Then

$$
\text { const }(\text { xtimes }[T] \varphi a)=\text { xtimes }[\bar{T}](\varphi \cdot)(\text { const a }) .
$$

Proof
We apply the free theorem for Church with $A=T$ and $A^{\prime}=\bar{T}$. The types more or less dictate that $h: T \rightarrow \bar{T}$ is const. It remains to verify the premise:

```
    const \(\cdot \varphi=(\varphi \cdot) \cdot\) const
\(\Longleftrightarrow \quad\{\) operator sections: \((a \times) b=a \times b\}\)
    const \((\varphi a) b=(\varphi \cdot\) const \(a) b\)
\(\Longleftrightarrow \quad\left\{\right.\) definition of \(\left.{ }^{\prime} \cdot\right\}\)
    const \((\varphi a) b=\varphi(\) const \(a b)\)
\(\Longleftrightarrow \quad\{\) definition of const \(\}\)
    \(\varphi a=\varphi a\)
```

Using parametricity, we can also show that the two definitions of addition (and the two definitions of multiplication) are equivalent. The proofs are left as instructive exercises to the reader.

5 Final remarks

Church numerals are not just an intellectual curiosity. They gain practical importance through their relationship to lists, the functional programmer's favourite data structure. It is well-known that representations of the natural numbers serve admirably as templates for list implementations (Okasaki, 1998). The vanilla list type, for instance, is based on the unary representation of the natural numbers.

$$
\begin{array}{ll}
\text { data Nat } & =\text { Zero } \mid \text { Succ Nat } \\
\text { data List } a & =\text { Nil } \mid \text { Cons } a(\text { List a) }
\end{array}
$$

The encoding of Nat using a polymorphic type is an instance of a general scheme for representing data types in System F discovered independently by Leivant (1983) and Böhm \& Berarducci (1985). If we apply the encoding to List, we obtain the continuation- or context-passing implementation of lists also known as the backtracking monad (Hughes, 1995; Hinze, 2001).

$$
\begin{array}{ll}
\text { type Church } & =\forall X .(X \rightarrow X) \rightarrow X \rightarrow X \\
\text { type Backtr } A & =\forall X .(A \rightarrow X \rightarrow X) \rightarrow X \rightarrow X
\end{array}
$$

The type Backtr has been reinvented quite a few times. It appears, for instance, in a paper about deforestation (Gill et al., 1993). The central theorem of the paper, foldr-build fusion, states that

$$
\begin{equation*}
\text { foldr cons nil }(\text { build } g)=g \text { cons nil, } \tag{7}
\end{equation*}
$$

where foldr is the fold operator for lists and build is given by

$$
\begin{aligned}
& \text { build } \quad:(\forall X .(A \rightarrow X \rightarrow X) \rightarrow X \rightarrow X) \rightarrow \text { List } A \\
& \text { build } g=g \text { Cons Nil } .
\end{aligned}
$$

Setting backtr $x=\lambda$ cons nil.foldr cons nil x we can rewrite (7) as backtr \cdot build $=i d$. In other words, the fusion theorem is a direct consequence of the fact that List A
and Backtr A are isomorphic. Unsurprisingly, the fusion theorem can be generalized to arbitrary data types, as well (Takano \& Meijer, 1995).

The second derivation of the Church numerals started from an algebraic specification of the natural numbers. Does this transfer to lists, as well? The answer is an emphatic "Yes!". The algebraic structure of the list type is that of a monad with zero and plus (Moggi, 1991; Wadler, 1990). Using the monad laws as a starting point the derivation goes through equally well, see Hughes (1986) and Hinze (2000). Interestingly, if we confine ourselves to the additive fragment (0 and ' + '), then we obtain Hughes's efficient sequence type (Hughes, 1986) - compare Hughes's implementation to the definition of nat ${ }_{1}$ in section 3. As an aside, exponentiation, in particular, Rosser's definition of ' \uparrow ' has no counterpart in the world of lists (the reverse application of two lists is not even typeable).

Apropos efficiency. Though inductive types and their encodings are isomorphic, they are not equivalent in terms of efficiency. Rosser's addition and multiplication, for instance, are constant time operations while the implementations based on folds take time linear in the size of their first argument (the same holds for the list operations). Conversely, projection functions such as predecessor (or head and tail in the case of lists) are constant time operations for inductive types while they take linear time for the polymorphic encodings.

Acknowledgements

I am grateful to Patricia Johann and to the anonymous referees for pointing out several typos and for valuable suggestions regarding presentation.

References

Barendregt, H. (1992) Lambda calculi with types. In: Abramsky, S., Gabbay, D. M. and Maibaum, T. (eds.), Handbook of Logic in Computer Science, Volume 2, Background: Computational Structures, pp. 118-309. Clarendon Press, Oxford.
Bird, R. and de Moor, O. (1997) Algebra of Programming. Prentice Hall Europe.
Böhm, C. and Berarducci, A. (1985) Automatic synthesis of typed λ-programs on term algebras. Theor. Comput. Sci. 39(2-3), 135-154.
Church, A. (1941) The Calculi of Lambda-Conversion. Annals of Mathematics Studies No. 6, Princeton University Press.
Dershowitz, N. and Jouannaud, J.-P. (1990) Rewrite systems. In: van Leeuwen, J. (ed.), Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 243320. Elsevier.

Gill, A., Launchbury, J. and Peyton Jones, S. L. (1993) A short cut to deforestation. FPCA '93: The Sixth International Conference on Functional Programming Languages and Computer Architecture, pp. 223-232. ACM Press.
Girard, J.-Y. (1972) Interprétation fonctionelle et élimination des coupures dans l'arithmétique d'ordre supérieur. PhD thesis, Université Paris VII.
Hinze, R. (2000) Deriving backtracking monad transformers. In: Wadler, P. (ed.), Proceedings 2000 International Conference on Functional Programming, pp. 186-197. Montreal, Canada.
Hinze, R. (2001) Prolog's control constructs in a functional setting - Axioms and implementation. Int. J. Foundations of Comput. Sci. 12(2), 125-170.

Hughes, J. (1995) The design of a pretty-printing library. In: Jeuring, J. and Meijer, E. (eds.), Advanced Functional Programming, First International Spring School on Advanced Functional Programming Techniques: Lecture Notes in Computer Science 925, pp. 53-96. Båstad, Sweden. Springer-Verlag.
Hughes, R. J. M. (1986) A novel representation of lists and its application to the function "reverse". Infor. Process. Lett. 22(3), 141-144.
Hutton, G. (1999) A tutorial on the universality and expressiveness of fold. J. Funct. Program. 9(4), 355-372.
Leivant, D. (1983) Reasoning about functional programs and complexity classes associated with type disciplines. Proceedings 24th Annual IEEE Symposium on Foundations of Computer Science, FOCS'83, pp. 460-469. Tucson, AZ. IEEE Press.
Mendler, N. P. (1991) Inductive types and type constraints in the second-order lambda calculus. Ann. Pure \& Appl. Logic, 51(1-2), 159-172.
Moggi, E. (1991) Notions of computation and monads. Infor. \& Computation 93(1), 55-92.
Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.
Parigot, M. (1992) Recursive programming with proofs. Theor. Comput. Sci. 94(2), 335-356.
Reynolds, J. (1974) Towards a theory of type structure. Proceedings, Colloque sur la Programmation: Lecture Notes in Computer Science 19, pp. 408-425. Springer-Verlag.
Takano, A. and Meijer, E. (1995) Shortcut deforestation in calculational form. Proceedings Seventh International Conference on Functional Programming Languages and Computer Architecture (FPCA'95), pp. 306-313. La Jolla, San Diego, CA. ACM Press.
Wadler, P. (1989) Theorems for free! Fourth International Conference on Functional Programming Languages and Computer Architecture (FPCA'89), pp. 347-359. London, UK. Addison-Wesley.
Wadler, P. (1990) Comprehending monads. Proceedings 1990 ACM Conference on LISP and Functional Programming, pp. 61-78. Nice, France. ACM Press.

[^0]: fresh variables, say, \underline{a}_{2} and \underline{a}_{1}.

