Canad. Math. Bull. Vol. **56** (3), 2013 pp. 477–490 http://dx.doi.org/10.4153/CMB-2012-019-6 © Canadian Mathematical Society 2012

Hypercyclic Abelian Groups of Affine Maps on \mathbb{C}^n

Adlene Ayadi

Abstract. We give a characterization of hypercyclic abelian group G of affine maps on \mathbb{C}^n . If G is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by n affine maps on \mathbb{C}^n has a dense orbit.

1 Introduction

Let $M_n(\mathbb{C})$ be the set of all square matrices of order $n \ge 1$ with entries in \mathbb{C} and $GL(n, \mathbb{C})$ be the group of all invertible matrices of $M_n(\mathbb{C})$. A map $f: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is called an *affine map* if there exist $A \in M_n(\mathbb{C})$ and $a \in \mathbb{C}^n$ such that f(x) = Ax + a, $x \in \mathbb{C}^n$. We let f = (A, a), and we call A the *linear part* of f. The map f is invertible if $A \in GL(n, \mathbb{C})$. Denote by MA (n, \mathbb{C}) the vector space of all affine maps on \mathbb{C}^n and $GA(n, \mathbb{C})$ the group of all invertible affine maps of MA (n, \mathbb{C}) .

Let \mathcal{G} be an abelian affine subgroup of $GA(n, \mathbb{C})$. For a vector $v \in \mathbb{C}^n$, we consider the orbit of \mathcal{G} through $v: \mathcal{G}(v) = \{f(v): f \in \mathcal{G}\} \subset \mathbb{C}^n$. Denote by \overline{E} the closure of a subset $E \subset \mathbb{C}^n$. The group \mathcal{G} is called *hypercyclic* if there exists a vector $v \in \mathbb{C}^n$ such that $\overline{\mathcal{G}(v)} = \mathbb{C}^n$. For an account of results and bibliography on hypercyclicity, we refer to the book [3] by Bayart and Matheron.

Let $n \in \mathbb{N}_0$ be fixed, denote by:

- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}, \mathbb{R}^* = \mathbb{R} \setminus \{0\} \text{ and } \mathbb{N}_0 = \mathbb{N} \setminus \{0\};$
- $\mathcal{B}_0 = (e_1, \ldots, e_{n+1})$ the canonical basis of \mathbb{C}^{n+1} and I_{n+1} the identity matrix of $\operatorname{GL}(n+1,\mathbb{C})$.

For each $m = 1, 2, \ldots, n + 1$, denote by

• $\mathbb{T}_m(\mathbb{C})$ the set of matrices over \mathbb{C} of the form

(1.1) $\begin{bmatrix} \mu & & 0 \\ a_{2,1} & \mu & \\ \vdots & \ddots & \ddots & \\ a_{m,1} & \cdots & a_{m,m-1} & \mu \end{bmatrix};$

• $\mathbb{T}_m^*(\mathbb{C})$ the group of matrices of the form (1.1) with $\mu \neq 0$.

Received by the editors March 21, 2011; revised October 12, 2011.

Published electronically July 27, 2012.

This work is supported by the research unit systèmes dynamiques et combinatoire: 99UR15-15.

AMS subject classification: **37C85**, 47A16.

Keywords: affine, hypercyclic, dense, orbit, affine group, abelian.

Let $r \in \mathbb{N}$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$ such that $n_1 + \cdots + n_r = n + 1$. In particular, $r \leq n+1$. Write

- $\mathcal{K}_{\eta,r}(\mathbb{C}) := \mathbb{T}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{T}_{n_r}(\mathbb{C})$. In particular if r = 1, then $\mathcal{K}_{\eta,1}(\mathbb{C}) = \mathbb{T}_{n+1}(\mathbb{C})$ and $\eta = (n + 1);$
- $\mathcal{K}^*_{\eta,r}(\mathbb{C}) := \mathcal{K}_{\eta,r}(\mathbb{C}) \cap \operatorname{GL}(n+1,\mathbb{C});$
- $u_0 = (e_{1,1}, \dots, e_{r,1}) \in \mathbb{C}^{n+1}$ where $e_{k,1} = (1, 0, \dots, 0) \in \mathbb{C}^{n_k}$, for $k = 1, \dots, r$, so $u_0 \in \{1\} \times \mathbb{C}^n$;
- $p_2: \mathbb{C} \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$, the second projection, defined by $p_2(x_1, \ldots, x_{n+1}) =$ $(x_2, \ldots, x_{n+1});$ • $e^{(k)} = (e_1^{(k)}, \ldots, e_r^{(k)}) \in \mathbb{C}^{n+1}$ where

$$e_j^{(k)} = \begin{cases} 0 \in \mathbb{C}^{n_j} & \text{if } j \neq k \\ e_{k,1} & \text{if } j = k \end{cases} \quad \text{for every } 1 \le j, k \le r;$$

• exp: $\mathbb{M}_{n+1}(\mathbb{C}) \longrightarrow \mathrm{GL}(n+1,\mathbb{C})$ is the matrix exponential map; set $\exp(M) = e^M$, $M \in M_{n+1}(\mathbb{C}).$

Define the map Φ : GA $(n, \mathbb{C}) \longrightarrow$ GL $(n + 1, \mathbb{C})$,

$$f = (A, a) \longmapsto \begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix}.$$

We have the composition formula

$$\begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Ab + a & AB \end{bmatrix}.$$

Then Φ is an injective homomorphism of groups. Write $G = \Phi(\mathcal{G})$, which is an abelian subgroup of $GL(n + 1, \mathbb{C})$.

Define the map Ψ : MA $(n, \mathbb{C}) \longrightarrow M_{n+1}(\mathbb{C})$,

$$f = (A, a) \longmapsto \begin{bmatrix} 0 & 0 \\ a & A \end{bmatrix}.$$

We can see that Ψ is injective and linear. Hence $\Psi(MA(n, \mathbb{C}))$ is a vector subspace of $M_{n+1}(\mathbb{C})$. We prove (see Lemma 2.8) that Φ and Ψ are related by the following property

$$\exp\Big(\Psi\big(\operatorname{MA}(n,\mathbb{C})\big)\Big) = \Phi\big(\operatorname{GA}(n,\mathbb{C})\big)$$

Let us consider the normal form of 9: By Proposition 2.1, there exists a $P \in$ $\Phi(GA(n,\mathbb{C}))$ and a partition η of (n + 1) such that

$$G' = P^{-1}GP \subset \mathcal{K}^*_{\eta,r}(\mathbb{C}) \cap \Phi(\operatorname{GA}(n,\mathbb{C})).$$

For such a choice of matrix *P*, we assume the following:

- $v_0 = Pu_0$. So $v_0 \in \{1\} \times \mathbb{C}^n$, since $P \in \Phi(GA(n, \mathbb{C}))$.
- $w_0 = p_2(v_0) \in \mathbb{C}^n$. We have $v_0 = (1, w_0)$.
- $\varphi = \Phi^{-1}(P) \in \mathrm{GA}(n, \mathbb{C}).$
- $g = \exp^{-1}(G) \cap \left(P(\mathcal{K}_{\eta,r}(\mathbb{C}))P^{-1}\right)$. If $G \subset \mathcal{K}_{\eta,r}^*(\mathbb{C})$, we have $P = I_{n+1}$ and $g = \exp^{-1}(G) \cap \mathfrak{K}_{\eta,r}(\mathbb{C}).$
- $g^1 = g \cap \Psi(MA(n,\mathbb{C}))$. This is an additive subgroup of $M_{n+1}(\mathbb{C})$ (because by Lemma 3.2, g is an additive subgroup of $M_{n+1}(\mathbb{C})$).
- $\mathbf{g}_{u}^{1} = \{Bu: B \in \mathbf{g}^{1}\} \subset \mathbb{C}^{n+1}, u \in \mathbb{C}^{n+1}.$
- $\mathfrak{q} = \Psi^{-1}(\mathfrak{g}^1) \subset \mathrm{MA}(n,\mathbb{C})$. Then \mathfrak{q} is an additive subgroup of $\mathrm{MA}(n,\mathbb{C})$ and we have $\Psi(\mathfrak{q}) = \mathfrak{g}^1$. By Corollary 2.12, we have $\exp(\Psi(\mathfrak{q})) = \Phi(\mathfrak{G})$.
- $\mathfrak{q}_{\nu} = \{f(\nu), f \in \mathfrak{q}\} \subset \mathbb{C}^n, \nu \in \mathbb{C}^n.$

For groups of affine maps on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}), the study of their dynamics was recently initiated for some classes from a different point of view (see for instance, [2, 4–6]). The purpose here is to give analogous results for linear abelian subgroups of $GL(n, \mathbb{C})$ [1, Theorem 1.1].

Our main results are the following.

Theorem 1.1 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$. Then the following are equivalent:

- (i) *G is hypercyclic;*
- (ii) the orbit $\mathfrak{G}(w_0)$ is dense in \mathbb{C}^n ;
- (iii) q_{w_0} is an additive subgroup dense in \mathbb{C}^n .

In the particular case where \mathcal{G} is an abelian subgroup of $GL(n, \mathbb{C})$, let $Q \in GL(n, \mathbb{C})$ such that $Q^{-1}\mathcal{G}Q \subset \mathcal{K}^*_{n'r'}(\mathbb{C})$ for some $r' \leq n$ and $\eta' = (n'_1, \ldots, n'_{r'}) \in \mathbb{N}^{r'}_0$ with $n'_1 + \cdots + n'_{r'} = n$ (Proposition 2.6). Write

- $u'_0 = (e'_{1,1}, \dots, e'_{r',1}) \in \mathbb{C}^n$ where $e'_{k,1} = (1, 0, \dots, 0) \in \mathbb{C}^{n'_k}$, for $k = 1, \dots, r'$; $v'_0 = Qu'_0$; $g' = \exp^{-1}(\mathcal{G}) \cap Q(\mathcal{K}_{\eta',r'}(\mathbb{C})) Q^{-1}$ and $g'_{\nu'_0} = \{f(\nu'_0), f \in g'\}$.

Corollary 1.2 ([1, Theorem 1.3]) *Let* \mathcal{G} *be an abelian subgroup of* $GL(n, \mathbb{C})$ *. Under* the notations above, the following properties are equivalent:

- (i) *G is hypercyclic*.
- (ii) $g'_{v'_{n}}$ is an additive subgroup dense in \mathbb{C}^{n} .

For a *finitely generated* abelian subgroup $\mathcal{G} \subset GA(n, \mathbb{R})$, let us introduce the following property. Consider the following rank condition on a collection of affine maps $f_1, \ldots, f_p \in \mathcal{G}$. Let $f'_1, \ldots, f'_p \in \mathfrak{q}$ be such that $e^{\Psi(f'_k)} = \Phi(f_k), k = 1, \ldots, p$. We say that f_1, \ldots, f_p satisfy the property \mathcal{D} if for every $(s_1, \ldots, s_p; t_2, \ldots, t_r) \in$ $\mathbb{Z}^{p+r-1}\setminus\{0\},\$

$$\operatorname{rank} \begin{bmatrix} \operatorname{Re}(f_1'(w_0)) & \cdots & \operatorname{Re}(f_p'(w_0)) & 0 & \cdots & 0\\ \operatorname{Im}(f_1'(w_0)) & \cdots & \operatorname{Im}(f_p'(w_0)) & 2\pi p_2(e^{(2)}) & \cdots & 2\pi p_2(e^{(r)})\\ s_1 & \cdots & s_p & t_2 & \cdots & t_r \end{bmatrix} = 2n+1.$$

For r = 1, this means that for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$,

$$\operatorname{rank} \begin{bmatrix} \operatorname{Re}(f_1'(w_0)) & \cdots & \operatorname{Re}(f_p'(w_0)) \\ \operatorname{Im}(f_1'(w_0)) & \cdots & \operatorname{Im}(f_p'(w_0)) \\ s_1 & \cdots & s_p \end{bmatrix} = 2n+1.$$

For a vector $v \in \mathbb{C}^n$, we write v = Re(v) + i Im(v) where Re(v) and $\text{Im}(v) \in \mathbb{R}^n$. The next result can be stated as follows.

Theorem 1.3 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$ generated by f_1, \ldots, f_p and let $f'_1, \ldots, f'_p \in \mathfrak{q}$ be such that $e^{\Psi(f'_1)} = \Phi(f_1), \ldots, e^{\Psi(f'_p)} = \Phi(f_p)$. Then the following are equivalent:

(i) *G is hypercyclic;*

(ii) the maps $\varphi^{-1} \circ f_1 \circ \varphi, \ldots, \varphi^{-1} \circ f_p \circ \varphi$ in GA (n, \mathbb{C}) satisfy the property \mathcal{D} ; (iii)

$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{Z}f'_k(w_0) + 2i\pi \sum_{k=2}^{r} \mathbb{Z}(p_2(Pe^{(k)})) & \text{if } r \ge 2, \\ \sum_{k=1}^{p} \mathbb{Z}f'_k(w_0) & \text{if } r = 1, \end{cases}$$

is an additive subgroup dense in \mathbb{C}^n .

Corollary 1.4 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$ and $G = \Phi(\mathcal{G})$. Let $P \in \Phi(GA(n, \mathbb{C}))$ such that $P^{-1}GP \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$ where $1 \leq r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}^r_0$. If \mathcal{G} is generated by 2n - r + 1 commuting invertible affine maps, then it has no dense orbit.

Corollary 1.5 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$. If \mathcal{G} is generated by n commuting invertible affine maps, then it has no dense orbit.

2 Normal Form of Abelian Affine Groups

The aim of this section is to prove the following proposition.

Proposition 2.1 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$ and $G = \Phi(\mathcal{G})$. Then there exists $P \in \Phi(GA(n, \mathbb{C}))$ such that $P^{-1}GP$ is a subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C}) \cap \Phi(GA(n, \mathbb{C}))$, for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}^r_0$.

The group $G' = P^{-1}GP$ is called the *normal form* of *G*. In particular, we have $Pu_0 = v_0 \in \{1\} \times \mathbb{C}^n$. Denote by $\mathcal{L}_{\mathcal{G}}$ the set of the linear parts of all elements of \mathcal{G} . Then $\mathcal{L}_{\mathcal{G}}$ is an abelian subgroup of $GL(n, \mathbb{C})$. A subset $F \subset \mathbb{C}^n$ is called *G*-*invariant* (resp. $\mathcal{L}_{\mathcal{G}}$ -*invariant*) if $A(F) \subset F$ for any $A \in G$ (resp. $A \in \mathcal{L}_{\mathcal{G}}$). To prove Proposition 2.1, we need the following results.

Lemma 2.2 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$, $n \ge 1$ and $G = \Phi(\mathcal{G})$. Then there exist an integer $p \in \mathbb{N}$, $0 \le p \le n$ and $Q \in GL(n, \mathbb{C})$ such that

- (i) $\mathbb{C}^n = E \oplus H$ where $E = Q(\mathbb{C}^p \times \{0_{\mathbb{C}^{n-p}}\})$ and $H = Q(\{0_{\mathbb{C}^p}\} \times \mathbb{C}^{n-p})$ are $\mathcal{L}_{\mathcal{G}}$ -invariant;
- (ii) if $E \neq \{0\}$, then for every $A \in \mathcal{L}_{\mathcal{G}}$, $A_{/E}$ has 1 as the only eigenvalue;

(iii) if $E \neq \{0\}$, $H \neq \{0\}$ and $P_1 = \text{diag}(1, Q)$, then for every $f = (A, a) \in \mathcal{G}$, one has

$$P_1^{-1}\Phi(f)P_1 = \begin{bmatrix} 1 & 0 & 0\\ a_1 & A_1 & 0\\ a_2 & 0 & A_2 \end{bmatrix}$$

where $A_1 = A_{/E} \in \mathbb{T}_p^*(\mathbb{C})$, $A_2 = A_{/H} \in \mathcal{K}_{\eta'',r''}^*(\mathbb{C})$ for some $r'' \leq n - p$ and $\eta'' \in \mathbb{N}_0^{r''}$, $a_1 \in \mathbb{C}^p$ and $a_2 \in \mathbb{C}^{n-p}$;

(iv) if $H = \{0\}$, then for every $f = (A, a) \in \mathcal{G}$, one has $P_1^{-1}\Phi(f)P_1 \in \mathbb{T}_{n+1}^*(\mathbb{C}) \cap \Phi(\operatorname{GA}(n,\mathbb{C}))$.

Proof Apply Proposition 2.6 to the group \mathcal{L}_{G} ; there exists $Q \in GL(n, \mathbb{C})$ such that $Q^{-1}\mathcal{L}_{G}Q$ is a subgroup of $\mathcal{K}_{\eta',r'}^*(\mathbb{C})$ for some $r' \leq n$ and $\eta' = (n'_1, \ldots, n'_{r'}) \in \mathbb{N}_0^{r'}$ such that $n'_1 + \cdots + n'_{r'} = n$. Hence for every $A \in \mathcal{L}_{G}$, we have $Q^{-1}AQ = \text{diag}(A'_1, \ldots, A'_{r'})$ with $A'_k \in \mathbb{T}_{n'_k}^*$. Let $\mu_{A'_k}$ be the only eigenvalue of A'_k , $k = 1, \ldots, r'$ and denote by $J_G = \{k \in \{1, \ldots, r'\} : \mu_{A'_k} = 1, \forall A \in \mathcal{L}_G\}$. If $J_G = \emptyset$, we take $E = \{0\}$ and $H = \mathbb{C}^n$. If $J_G \neq \emptyset$, one can assume that $J_G = \{1, \ldots, s\}$ for some $1 \leq s \leq r'$, by replacing Q by QR, where R is a circular matrix R of $GL(n, \mathbb{C})$. We let $P_1 = \text{diag}(1, Q) = \Phi(f_1), f_1 = (Q, 0)$. So for every $f = (A, a) \in \mathcal{G}$, we have

$$\Phi(f_1^{-1} \circ f \circ f_1) = P_1^{-1} \Phi(f) P_1 = \begin{bmatrix} 1 & 0 \\ Q^{-1}a & Q^{-1}AQ \end{bmatrix} \in \Phi(\mathsf{GA}(n,\mathbb{C})).$$

Proof of (i) If $J_{\mathfrak{G}} = \emptyset$, the assertion is clear. One can assume that $J_{\mathfrak{G}} \neq \emptyset$. We let $p = n'_1 + \cdots + n'_s$, $E = Q(\mathbb{C}^p \times \{0_{\mathbb{C}^{n-p}}\})$ and $H = Q(\{0_{\mathbb{C}^p}\} \times \mathbb{C}^{n-p})$. It is plain that $\mathbb{C}^n = E \oplus H$. Moreover, E and H are $\mathcal{L}_{\mathfrak{G}}$ -invariant vector spaces: Indeed, if $A \in \mathcal{L}_{\mathfrak{G}}$ and $x = (x_1, 0) \in \mathbb{C}^p \times \{0_{\mathbb{C}^{n-p}}\}$, one has $AQx = Q(Q^{-1}AQ)x$. Since $Q^{-1}AQ = \operatorname{diag}(A_1, A_2)$ where $A_1 = \operatorname{diag}(A'_1, \ldots, A'_s) \in \operatorname{GL}(p, \mathbb{C})$ with $\mu_{A'_k} = 1$, $k = 1, \ldots, s$ and $A_2 = \operatorname{diag}(A'_{s+1}, \ldots, A'_{r'})$, we have $Q^{-1}AQx = (A_1x_1, 0) \in \mathbb{C}^p \times \{0_{\mathbb{C}^{n-p}}\}$. The same proof holds for H.

Proof of (ii) If $A \in \mathcal{L}_{\mathcal{G}}$ then $(Q^{-1}AQ)_{/E} = A_1 = \text{diag}(A'_1, \dots, A'_s) \in \text{GL}(p, \mathbb{C})$ with $\mu_{A'_k} = 1, k = 1, \dots, s$.

Proof of (iii) Assume that $E \neq \{0\}$ and $H \neq \{0\}$. Then, for every $f = (A, a) \in \mathcal{G}$, we have $Q^{-1}AQ = \text{diag}(A_1, A_2)$ where $A_1 = A_{/E} \in \mathbb{T}_p^*(\mathbb{C}), A_2 = A_{/H} \in \mathcal{K}_{\eta'',r''}^*(\mathbb{C})$ with $r'' = r' - s \leq n - p$ and $\eta'' = (n'_{s+1}, \ldots, n'_{r'})$. Hence

$$P_1^{-1}\Phi(f)P_1 = \begin{bmatrix} 1 & 0 \\ Q^{-1}a & Q^{-1}AQ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ a_1 & A_1 & 0 \\ a_2 & 0 & A_2 \end{bmatrix},$$

where $Q^{-1}a = (a_1, a_2) \in \mathbb{C}^p \times \mathbb{C}^{n-p}$. Note that by (ii), 1 is the only eigenvalue of A_1 .

Proof of (iv) Assume that $H = \{0\}$. In this case we have s = r' and $J_{\mathfrak{S}} = \{1, \ldots, r'\}$. Then for every $f = (A, a) \in \mathfrak{G}$, we have $P_1^{-1}\Phi(f)P_1 = \begin{bmatrix} 1 & 0 \\ a_1 & A_1 \end{bmatrix}$ with $A = A_1 \in \mathbb{T}_n^*(\mathbb{C})$. So $P_1^{-1}\Phi(f)P_1 \in \mathbb{T}_{n+1}^*(\mathbb{C}) \cap \Phi(\operatorname{GA}(n, \mathbb{C}))$.

Lemma 2.3 ([2, Lemma 3.1]) Let $u_1, \ldots, u_n \in \mathbb{C}^n$ such that for every $1 \le k \le n$, $u_k = (x_{k,1}, \ldots, x_{k,n})$ with $x_{k,k} \ne 0$. Then $(\mathbb{Z}u_1 + \cdots + \mathbb{Z}u_n) \cap (\mathbb{C}^*)^n \ne \emptyset$.

Lemma 2.4 Let \mathcal{G} and H are as in Lemma 2.2 If $H \neq \{0\}$ then there exists $B \in \mathcal{L}_{\mathcal{G}}$ such that $B_{/H} - I_{n-p}$ is invertible.

Proof As $H \neq \{0\}$, then s < r' and for every $1 \le k \le r' - s$ there exists $B(k) \in G$ such that $B(k)_{/H} = \text{diag}(B_{k,s+1}, \ldots, B_{k,r'})$ where

$$B_{k,j} = \begin{bmatrix} \mu_{B_{k,j}} & & 0 \\ b_{2,1}^{(k)} & \ddots & & \\ \vdots & \ddots & \ddots & \\ b_{n'_{j},1}^{(k)} & \cdots & b_{n'_{j},n'_{j}-1}^{(k)} & \mu_{B_{k,j}} \end{bmatrix} \in \mathbb{T}_{n'_{j}}^{*}(\mathbb{C}),$$

such that $\mu_{B_{k,s+k}} \neq 1$, for every $j = s + 1, \ldots, r'$.

We let $u_k = \left(\log(\mu_{B_{k,s+1}}), \dots, \log(\mu_{B_{k,r'}})\right) \in \mathbb{C}^{r'-s}$, $k = 1, \dots, r' - s$. For $z = |z|e^{i \arg(z)} \in \mathbb{C}$, $\arg(z) \in [0, 2\pi[, \log z = |z| + i \arg(z)$. As $\log(\mu_{B_{k,s+k}}) \neq 0$ for every $k = 1, \dots, r' - s$, by Lemma 2.3, $(\mathbb{Z}u_1 + \dots + \mathbb{Z}u_{r'-s}) \cap (\mathbb{C}^*)^{r'-s} \neq \emptyset$. So there exist $m_1, \dots, m_{r'-s} \in \mathbb{Z}$ such that $m_1u_1 + \dots + m_{r'-s}u_{r'-s} \in (\mathbb{C}^*)^{r'-s}$. It follows that for every $j = s + 1, \dots, r'$, $\prod_{k=1}^{r'-s} \mu_{B_{k,j}}^{m_k} \neq 1$. If $B = \prod_{k=1}^{r'-s} (B(k))^{m_k}$, then $\prod_{k=1}^{r'-s} \mu_{B_{k,j}}^{m_k}$, $j = s + 1, \dots, r'$ are the eigenvalues of $B_{/H}$, this implies that $B_{/H} - I_{n-p}$ is invertible.

Denote by $Fix(G) = \{x \in \mathbb{C}^{n+1} : Bx = x, \text{ for every } B \in G\}.$

Lemma 2.5 Let G and E be as in Lemma 2.2. If $E = \{0\}$ then $Fix(G) \cap (\{1\} \times \mathbb{C}^n) \neq \emptyset$.

Proof By hypothesis, p = 0 and so $H = \mathbb{C}^n$. Then by Lemma 2.4, we have $B \in \mathcal{L}_{\mathcal{G}}$ such that $B - I_n$ is invertible, so 1 is not an eigenvalue of B. We let $f_0 = (B, b) \in \mathcal{G}$. As $\Phi(f_0) = \begin{bmatrix} 1 & 0 \\ b & B \end{bmatrix}$, $F = \operatorname{Fix}(\Phi(f_0)) = \{x \in \mathbb{C}^{n+1}: \Phi(f_0)x = x\}$ has dimension 1. So $\operatorname{Fix}(\Phi(f_0)) = \mathbb{C}v$, where $v = (1, v_1)$, $v_1 \in \mathbb{C}^n$. Write $P_2 = \begin{bmatrix} 1 & 0 \\ v_1 & I_n \end{bmatrix}$. We have $\Phi(f_0)v = v$, so $Bv_1 + b = v_1$ and $P_2^{-1}\Phi(f_0)P_2 = \begin{bmatrix} 1 & 0 \\ Av_1 + a - v_1 & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & B \end{bmatrix}$. Similarly, for every $f = (A, a) \in \mathcal{G}$, one has $P_2^{-1}\Phi(f)P_2 = \begin{bmatrix} 1 & 0 \\ Av_1 + a - v_1 & A \end{bmatrix}$. Write $a' = Av_1 + a - v_1$. Since G is abelian, we have $P_2^{-1}\Phi(f_0)\Phi(f)P_2 = P_2^{-1}\Phi(f)\Phi(f_0)P_2$, this implies that Ba' = a' and hence a' = 0. It follows that $P_2^{-1}\Phi(f)P_2e_1 = e_1$, hence $P_2e_1 \in \operatorname{Fix}(G)$. Since $P_2e_1 \in \{1\} \times \mathbb{C}^n$, we conclude that $\operatorname{Fix}(G) \cap (\{1\} \times \mathbb{C}^n) \neq \emptyset$.

Proposition 2.6 ([1, Proposition 2.3]) Let G' be an abelian subgroup of GL(m, \mathbb{C}), $m \ge 1$. Then there exists $P \in GL(m, \mathbb{C})$ such that $P^{-1}G'P$ is a subgroup of $\mathcal{K}^*_{\eta', r'}(\mathbb{C})$, for some $r' \le m$ and $\eta' = (n'_1, \ldots, n'_{r'}) \in \mathbb{N}^{r'}_0$.

Proof of Proposition 2.1 Let $P_1 = \text{diag}(1, Q)$, *E* and *H* as in Lemma 2.2. We distinguish two cases:

Case 1: $E \neq \{0\}$ If $H = \{0\}$, then the proposition results from Lemma 2.2 (iv) by taking $P = P_1$.

If $H \neq \{0\}$, then by Lemma 2.4 there exists $B \in \mathcal{L}_{\mathfrak{S}}$ such that $B_{/H} - I_{n-p}$ is invertible. Write $B_1 = B_{/E}$, $B_2 = B_{/H}$ and set $f_0 = (B, b) \in \mathfrak{S}$. Since $E \neq \{0\}$, we have by Lemma 2.2 (iii),

$$P_1^{-1}\Phi(f_0)P_1 = \begin{bmatrix} 1 & 0 & 0\\ b_1 & B_1 & 0\\ b_2 & 0 & B_2 \end{bmatrix}$$

where $B_1 \in \mathbb{T}_p^*(\mathbb{C})$, $B_2 \in \mathcal{K}_{\eta'',r''}^*(\mathbb{C})$ for some $r'' \leq n-p$, $\eta'' = (n_1'', \dots, n_{r''}') \in \mathbb{N}_0^{r''}$ and $(b_1, b_2) \in \mathbb{C}^p \times \mathbb{C}^{n-p}$. If

$$P_2 = egin{bmatrix} 1 & 0 & 0 \ 0 & I_p & 0 \ b_2 & 0 & B_2 - I_{n-p} \end{bmatrix},$$

it is clear that $P_2 \in GL(n+1, \mathbb{C})$. We let $P = P_1 P_2^{-1}$. Then we have $P = \begin{bmatrix} 1 & 0 \\ d & P_0 \end{bmatrix}$ where $P_0 = QQ_1^{-1}, Q_1 = \begin{bmatrix} I_p & 0 \\ 0 & B_2 - I_{n-p} \end{bmatrix}$ and $d = -P_0 \begin{bmatrix} 0 \\ b_2 \end{bmatrix}$. For $f = (A, a) \in \mathcal{G}$, we have

$$P_1^{-1}\Phi(f)P_1 = \begin{bmatrix} 1 & 0 & 0\\ a_1 & A_1 & 0\\ a_2 & 0 & A_2 \end{bmatrix}$$

where $A_1 \in \mathbb{T}_p^*(\mathbb{C})$ and $A_2 \in \mathcal{K}_{\eta'',r''}^*(\mathbb{C})$. Since *G* is abelian, $P_1^{-1}\Phi(f)\Phi(f_0)P_1 = P_1^{-1}\Phi(f_0)\Phi(f)P_1$, and therefore $A_2B_2 = B_2A_2$ and $-(A_2 - I_{n-p})b_2 + (B_2 - I_{n-p})a_2 = 0$. It follows that

$$P^{-1}\Phi(f)P = P_2 P_1^{-1}\Phi(f)P_1 P_2^{-1}$$

$$= P_2 \begin{bmatrix} 1 & 0 & 0 \\ a_1 & A_1 & 0 \\ a_2 & 0 & A_2 \end{bmatrix} P_2^{-1}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ a_1 & A_1 & 0 \\ -(A_2 - I_{n-p})b_2 + (B_2 - I_{n-p})a_2 & 0 & A_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ a_1 & A_1 & 0 \\ 0 & 0 & A_2 \end{bmatrix}.$$

Therefore, $P^{-1}\Phi(f)P = \text{diag}(A'_1, A_2) \in \mathcal{K}^*_{\eta', r''+1}(\mathbb{C})$ where $A'_1 = \begin{bmatrix} 1 & 0 \\ a_1 & A_1 \end{bmatrix} \in \mathbb{T}^*_{p+1}(\mathbb{C})$ $A_2 \in \mathcal{K}^*_{\eta'', r''}(\mathbb{C})$ and $\eta' = (p+1, n''_1, \dots, n''_{r''})$. This completes the proof in this case. **Case 2:** $E = \{0\}$ Let $B \in \mathcal{L}_{\mathfrak{G}}$ such that $(B - I_n)$ is invertible (Lemma 2.4). We let $f_0 = (B, b) \in \mathfrak{G}$. By Proposition 2.6, there exists $Q \in \mathrm{GL}(n, \mathbb{C})$ such that $Q^{-1}\mathcal{L}_{\mathfrak{G}}Q$ is a subgroup of $\mathcal{K}^*_{\eta', r'}(\mathbb{C})$ for some $r' \leq n$ and $\eta' = (n'_1, \ldots, n'_{r'}) \in \mathbb{N}^{r'}_0$ where $n'_1 + \cdots + n'_{r'} = n$. By Lemma 2.5, there exists $w = (1, w_1) \in \mathrm{Fix}(G) \cap (\{1\} \times \mathbb{C}^n)$. Set $P = \begin{bmatrix} 1 & 0 \\ w_1 & Q \end{bmatrix}$. For every $f = (A, a) \in \mathfrak{G}, \Phi(f)w = w$, so $Aw_1 + a = w_1$. Therefore

$$P^{-1}\Phi(f)P = \begin{bmatrix} 1 & 0 \\ -Q^{-1}w_1 & Q^{-1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix} \begin{bmatrix} 1 & 0 \\ w_1 & Q \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ Q^{-1}(Aw_1 + a - w_1) & Q^{-1}AQ \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & Q^{-1}AQ \end{bmatrix}.$$

Hence $P^{-1}\Phi(f)P \in \mathcal{K}^*_{\eta,r}(\mathbb{C}) \cap \Phi(\operatorname{GA}(n,\mathbb{C}))$, where r = r' + 1 and $\eta = (1, n'_1, \ldots, n'_{r'})$. This completes the proof.

Lemma 2.7 ([1, Proposition 3.2]) $\exp(\mathfrak{K}_{\eta,r}(\mathbb{C})) = \mathfrak{K}^*_{n,r}(\mathbb{C}).$

Lemma 2.8 $\exp(\Psi(MA(n, \mathbb{C}))) = \Phi(GA(n, \mathbb{C})).$

Proof It is clear that $\exp(\Psi(\operatorname{MA}(n, \mathbb{C}))) \subset \Phi(\operatorname{GA}(n, \mathbb{C}))$. Conversely, let $M \in \Phi(\operatorname{GA}(n, \mathbb{C}))$. By Proposition 2.1, there exists $P \in \Phi(\operatorname{GA}(n, \mathbb{C}))$ such that $M' = P^{-1}MP \in \mathcal{K}_{\eta,r}^*(\mathbb{C}) \cap \Phi(\operatorname{GA}(n, \mathbb{C}))$. By Lemma 2.7, $\exp(\mathcal{K}_{\eta,r}(\mathbb{C})) = \mathcal{K}_{\eta,r}^*(\mathbb{C})$, then $M' = e^{N'}$ for some $N' \in \mathcal{K}_{\eta,r}(\mathbb{C})$. So $N'' = PN'P^{-1} \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$ and $e^{N''} = PM'P^{-1} = M \in \Phi(\operatorname{GA}(n, \mathbb{C}))$. By Lemma 2.9, $N = N'' - 2ik\pi I_{n+1} \in \Psi(\operatorname{MA}(n, \mathbb{C}))$ for some $k \in \mathbb{Z}$ and N satisfies $e^N = e^{2ik\pi}e^{N''} = M$. It follows that $M \in \exp(\Psi(\operatorname{MA}(n, \mathbb{C})))$.

Lemma 2.9 If $N \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$ such that $e^N \in \Phi(GA(n,\mathbb{C}))$, then there exists $k \in \mathbb{Z}$ such that $N - 2ik\pi I_{n+1} \in \Psi(MA(n,\mathbb{C}))$.

Proof Let $N' = P^{-1}NP \in \mathcal{K}_{\eta,r}(\mathbb{C})$, $M = e^N$ and $M' = P^{-1}MP$. We have $e^{N'} = M'$ and by Lemma 2.7, $M' \in \mathcal{K}_{\eta,r}^*(\mathbb{C})$. Write $M' = \text{diag}(M'_1, \ldots, M'_r)$ and $N' = \text{diag}(N'_1, \ldots, N'_r)$, $M'_k, N'_k \in \mathbb{T}_{n_k}(\mathbb{C})$, $k = 1, \ldots, r$. Then $e^{N'} = \text{diag}(e^{N'_1}, \ldots, e^{N'_r})$, so $e^{N'_1} = M'_1$. As 1 is the only eigenvalue of M'_1 , N'_1 has an eigenvalue $\mu \in \mathbb{C}$ such that $e^{\mu} = 1$. Thus $\mu = 2ik\pi$ for some $k \in \mathbb{Z}$. Therefore, $N'' = N' - 2ik\pi I_{n+1} \in \Psi(\mathrm{MA}(n,\mathbb{C}))$ and $e^{N''} = e^{-2ik\pi}e^{N'} = M'$. It follows that $N - 2ik\pi I_{n+1} = PN''P^{-1} \in P\Psi(\mathrm{MA}(n,\mathbb{C}))P^{-1} = \Psi(\mathrm{MA}(n,\mathbb{C}))$, since $P \in \Phi(\mathrm{GA}(n,\mathbb{C}))$.

Lemma 2.10 ([1, Lemma 4.2]) *One has* $\exp(g) = G$.

Corollary 2.11 Let $G = \Phi(\mathcal{G})$. We have $g = g^1 + 2i\pi \mathbb{Z}I_{n+1}$.

Proof Let $N \in \mathfrak{g}$. By Lemma 2.10, $exp(N) \in G \subset \Phi(\operatorname{GA}(n,\mathbb{C}))$. Then by Lemma 2.9, there exists $k \in \mathbb{Z}$ such that $N' = N - 2ik\pi I_{n+1} \in \Psi(\operatorname{MA}(n,\mathbb{C}))$.

As $e^{N'} = e^N \in G$ and $N' \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$ then $N' \in g \cap \Psi(MA(n,\mathbb{C})) = g^1$. Hence $g \subset g^1 + 2i\pi\mathbb{Z}I_{n+1}$. Conversely, as $g^1 + 2i\pi\mathbb{Z}I_{n+1} \subset P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$ and $\exp(g^1 + 2i\pi\mathbb{Z}I_{n+1}) = \exp(g^1) \subset G$, hence $g^1 + 2i\pi\mathbb{Z}I_{n+1} \subset g$.

Corollary 2.12 We have $\exp(\Psi(\mathfrak{q})) = \Phi(\mathfrak{G})$.

Proof By Lemmas 2.10 and 2.11, we have $G = \exp(g) = \exp(g^1 + 2i\pi\mathbb{Z}I_{n+1}) = \exp(g^1)$. Since $g^1 = \Psi(\mathfrak{q})$, we get $\exp(\Psi(\mathfrak{q})) = \Phi(\mathfrak{G})$.

3 Proof of Theorem 1.1

Let \widetilde{G} be the group generated by G and $\mathbb{C}^*I_{n+1} = \{\lambda I_{n+1} : \lambda \in \mathbb{C}^*\}$. Then \widetilde{G} is an abelian subgroup of $\operatorname{GL}(n+1,\mathbb{C})$. By Proposition 2.1, there exists $P \in \Phi(\operatorname{GA}(n,\mathbb{C}))$ such that $P^{-1}GP$ is a subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$ for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}^r_0$, and this also implies that $P^{-1}\widetilde{G}P$ is a subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$. Set $\widetilde{g} = \exp^{-1}(\widetilde{G}) \cap (P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1})$ and $\widetilde{g}_{\nu_0} = \{B\nu_0 : B \in \widetilde{g}\}$. Then we have the following theorem, applied to \widetilde{G} .

Theorem 3.1 ([1, Theorem 1.1]) *Under the notations above, the following properties are equivalent:*

- (i) \widetilde{G} has a dense orbit in \mathbb{C}^{n+1} ;
- (ii) the orbit $G(v_0)$ is dense in \mathbb{C}^{n+1} ;
- (iii) \widetilde{g}_{ν_0} is an additive subgroup dense in \mathbb{C}^{n+1} .

Lemma 3.2 ([1, Lemma 4.1]) The sets g and \tilde{g} are additive subgroups of $M_{n+1}(\mathbb{C})$. In particular, g_{v_0} and \tilde{g}_{v_0} are additive subgroups of \mathbb{C}^{n+1} .

Recall that $g^1 = g \cap \Psi(MA(n, \mathbb{C}))$ and $q = \Psi^{-1}(g^1) \subset MA(n, \mathbb{C})$.

Lemma 3.3 Under the notations above, one has

- (i) $\widetilde{\mathbf{g}} = \mathbf{g}^1 + \mathbb{C}I_{n+1},$ (ii) (0) $\times 2$
- (ii) $\{0\} \times \mathfrak{q}_{w_0} = \mathfrak{g}_{v_0}^1$.

Proof (i) Let $B \in \widetilde{g}$, then $e^B \in \widetilde{G}$. One can write $e^B = \lambda A$ for some $\lambda \in \mathbb{C}^*$ and $A \in G$. Let $\mu \in \mathbb{C}$ such that $e^{\mu} = \lambda$, then $e^{B-\mu I_{n+1}} = A$. Since $B - \mu I_{n+1} \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$, so $B - \mu I_{n+1} \in \exp^{-1}(G) \cap P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1} = g$. By Corollary 2.11, there exists $k \in \mathbb{Z}$ such that $B' := B - \mu I_{n+1} + 2ik\pi I_{n+1} \in g^1$. Then $B \in g^1 + \mathbb{C}I_{n+1}$ and hence $\widetilde{g} \subset g^1 + \mathbb{C}I_{n+1}$. Since $g^1 \subset \widetilde{g}$ and $\mathbb{C}I_{n+1} \subset \widetilde{g}$, it follows that $g^1 + \mathbb{C}I_{n+1} \subset \widetilde{g}$ (since \widetilde{g} is an additive group, by Lemma 3.2). This proves (i).

(ii) Since $\Psi(\mathfrak{q}) = \mathfrak{g}^1$ and $\nu_0 = (1, w_0)$, we obtain for every $f = (B, b) \in \mathfrak{q}$,

$$\Psi(f)v_0 = \begin{bmatrix} 0 & 0 \\ b & B \end{bmatrix} \begin{bmatrix} 1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 0 \\ b + Bw_0 \end{bmatrix} = \begin{bmatrix} 0 \\ f(w_0) \end{bmatrix}$$

Hence $g_{\nu_0}^1 = \{0\} \times \mathfrak{q}_{w_0}$.

Lemma 3.4 The following assertions are equivalent:

A. Ayadi

 $\begin{array}{ll} (i) & \overline{\underline{\mathfrak{q}_{w_0}}} = \mathbb{C}^n; \\ (ii) & \overline{\underline{g}_{\nu_0}^1} = \{0\} \times \mathbb{C}^n; \\ (iii) & \overline{\widetilde{g}_{\nu_0}} = \mathbb{C}^{n+1}. \end{array}$

Proof (i) \Leftrightarrow (ii) follows from the fact that $\{0\} \times \mathfrak{q}_{w_0} = g_{v_0}^1$ (Lemma 3.3 (ii)).

(ii) \Rightarrow (iii) By Lemma 3.3 (ii), $\tilde{g}_{\nu_0} = g_{\nu_0}^1 + \mathbb{C}\nu_0$. Since $\nu_0 = (1, w_0) \notin \{0\} \times \mathbb{C}^n$ and $\mathbb{C}I_{n+1} \subset \tilde{g}$, we obtain $\mathbb{C}\nu_0 \subset \tilde{g}_{\nu_0}$ and so $\mathbb{C}\nu_0 \subset \tilde{g}_{\nu_0}$. Therefore $\mathbb{C}^{n+1} = \{0\} \times \mathbb{C}^n \oplus \mathbb{C}\nu_0 = \overline{g_{\nu_0}^1} \oplus \mathbb{C}\nu_0 \subset \tilde{g}_{\nu_0}$ (since, by Lemma 3.2, \tilde{g}_{ν_0} is an additive subgroup of \mathbb{C}^{n+1}). Thus $\tilde{g}_{\nu_0} = \mathbb{C}^{n+1}$.

(iii) \Rightarrow (ii) Let $x \in \mathbb{C}^n$, then $(0, x) \in \overline{\tilde{g}_{v_0}}$ and there exists a sequence $(A_m)_{m \in \mathbb{N}} \subset \widetilde{g}$ such that $\lim_{m \to +\infty} A_m v_0 = (0, x)$. By Lemma 3.3, we can write $A_m v_0 = \lambda_m v_0 + B_m v_0$ with $\lambda_m \in \mathbb{C}$ and $B_m = \begin{bmatrix} 0 & 0 \\ b_m & B_m^1 \end{bmatrix} \in g^1$ for every $m \in \mathbb{N}$. Since $B_m v_0 \in \{0\} \times \mathbb{C}^n$ for every $m \in \mathbb{N}$, we have $A_m v_0 = (\lambda_m, b_m + B_m^1 w_0 + \lambda_m w_0)$. It follows that $\lim_{m \to +\infty} \lambda_m = 0$ and $\lim_{m \to +\infty} A_m v_0 = \lim_{m \to +\infty} B_m v_0 = (0, x)$, thus $(0, x) \in \overline{g}_{v_0}^1$. Hence $\{0\} \times \mathbb{C}^n \subset \overline{g}_{v_0}^1$. Since $g^1 \subset \Psi(MA(n, \mathbb{C}))$, $g_{v_0}^1 \subset \{0\} \times \mathbb{C}^n$, and we conclude that $\overline{g}_{v_0}^1 = \{0\} \times \mathbb{C}^n$.

Lemma 3.5 Let $x \in \mathbb{C}^n$ and $G = \Phi(\mathcal{G})$. The following are equivalent:

- (i) $\overline{\mathfrak{G}(x)} = \mathbb{C}^n$;
- (ii) $\overline{G(1,x)} = \{1\} \times \mathbb{C}^n;$
- (iii) $\widetilde{G}(1, x) = \mathbb{C}^{n+1}$.

Proof (i) \Leftrightarrow (ii) is obvious, since $\{1\} \times \mathcal{G}(x) = G(1, x)$ by construction.

(iii) \Rightarrow (ii) Let $y \in \mathbb{C}^n$ and $(B_m)_m$ a sequence in G with $\lim_{m \to +\infty} B_m(1, x) = (1, y)$. One can write $B_m = \lambda_m \Phi(f_m)$ with $f_m \in \mathcal{G}$ and $\lambda_m \in \mathbb{C}^*$, thus $B_m(1, x) = (\lambda_m, \lambda_m f_m(x))$, so $\lim m \to +\infty \lambda_m = 1$. Therefore,

$$\lim_{m \to +\infty} \Phi(f_m)(1, x) = \lim_{m \to +\infty} \frac{1}{\lambda_m} B_m(1, x) = (1, y).$$

Hence, $(1, y) \in \overline{G(1, x)}$.

(ii) \Rightarrow (iii) Since $\mathbb{C}^{n+1} \setminus (\{0\} \times \mathbb{C}^n) = \bigcup_{\lambda \in \mathbb{C}^*} \lambda(\{1\} \times \mathbb{C}^n)$ and for every $\lambda \in \mathbb{C}^*$, $\lambda G(1, x) \subset \widetilde{G}(1, x)$, we get

$$\mathbb{C}^{n+1} = \overline{\mathbb{C}^{n+1} \setminus (\{0\} \times \mathbb{C}^n)} = \overline{\bigcup_{\lambda \in \mathbb{C}^*} \lambda(\{1\} \times \mathbb{C}^n)} = \overline{\bigcup_{\lambda \in \mathbb{C}^*} \lambda \overline{G(1,x)}} \subset \overline{\widetilde{G}(1,x)}.$$

Hence $\mathbb{C}^{n+1} = \widetilde{G}(1, x)$.

Proof of Theorem 1.1 (ii) \Rightarrow (i) is obvious.

(i) \Rightarrow (ii) Suppose that \mathcal{G} is hypercyclic, so $\overline{\mathcal{G}(x)} = \mathbb{C}^n$ for some $x \in \mathbb{C}^n$. By Lemma 3.5 (iii), $\overline{\widetilde{\mathcal{G}}(1,x)} = \mathbb{C}^{n+1}$, and by Theorem 3.1, $\overline{\widetilde{\mathcal{G}}(\nu_0)} = \mathbb{C}^{n+1}$. Then by Lemma 3.5, $\overline{\mathcal{G}}(w_0) = \mathbb{C}^n$, since $\nu_0 = (1, w_0)$.

(ii) \Rightarrow (iii) Suppose that $\overline{\mathfrak{G}(w_0)} = \mathbb{C}^n$. By Lemma 3.5, $\overline{\widetilde{\mathfrak{G}}(v_0)} = \mathbb{C}^{n+1}$, and by Theorem 3.1, $\overline{\widetilde{\mathfrak{g}}_{v_0}} = \mathbb{C}^{n+1}$. Then by Lemma 3.4, $\overline{\mathfrak{q}_{w_0}} = \mathbb{C}^n$.

(iii) \Rightarrow (ii) Suppose that $\overline{\mathfrak{q}_{w_0}} = \mathbb{C}^n$. By Lemma 3.4, $\overline{\widetilde{\mathfrak{g}}_{v_0}} = \mathbb{C}^{n+1}$, and by Theorem 3.1, $\overline{\widetilde{G}}(v_0) = \mathbb{C}^{n+1}$. Then by Lemma 3.5, $\overline{\mathfrak{g}}(w_0) = \mathbb{C}^n$.

Proof of Corollary 1.2 Assume that $\mathcal{G} \subset \operatorname{GL}(n, \mathbb{C})$. Then take $P = \operatorname{diag}(1, Q)$ and $G = \Phi(\mathcal{G})$, so $P^{-1}GP \subset \mathcal{K}_{\eta,r'+1}(\mathbb{C})$ where $\eta = (1, n'_1, \dots, n'_{r'})$. Hence $u_0 = (1, u'_0)$, $v_0 = Pu_0 = (1, Qu'_0)$ and thus $w_0 = Qu'_0 = v'_0$. Every $f = (A, 0) \in \mathcal{G}$ is simply noted A. Then for every $A \in \mathcal{G}$, $\Phi(A) = \operatorname{diag}(1, A)$. We can verify that $g^1 = \{\operatorname{diag}(0, B) : B \in g'\}$ where $g' = \exp^{-1}(\mathcal{G}) \cap Q(\mathcal{K}_{\eta',r'}(\mathbb{C}))Q^{-1}$, and so $\mathfrak{q} = \Psi^{-1}(\mathfrak{g}^1) = \mathfrak{g}'$. Hence the proof of Corollary 1.2 follows directly from Theorem 1.1.

4 Finitely Generated Subgroups

Recall the following result, proved in [1], which, applied to G, can be stated as follows.

Proposition 4.1 ([1, Proposition 8.1]) Suppose that G is generated by A_1, \ldots, A_p and let $B_1, \ldots, B_p \in g$ such that $A_k = e^{B_k}$, $k = 1, \ldots, p$, and $P \in GL(n + 1, \mathbb{C})$ satisfying $P^{-1}GP \subset \mathcal{K}^*_{\eta,r}(\mathbb{C})$. Then

$$g = \sum_{k=1}^{p} \mathbb{Z}B_{k} + 2i\pi \sum_{k=1}^{r} \mathbb{Z}PJ_{k}P^{-1} \quad and \quad g_{\nu_{0}} = \sum_{k=1}^{p} \mathbb{Z}B_{k}\nu_{0} + \sum_{k=1}^{r} 2i\pi \mathbb{Z}Pe^{(k)},$$

where $J_k = \text{diag}(J_{k,1}, \ldots, J_{k,r})$ with $J_{k,i} = 0 \in \mathbb{T}_{n_i}(\mathbb{C})$ if $i \neq k$ and $J_{k,k} = I_{n_k}$.

Proposition 4.2 Let \mathcal{G} be an abelian subgroup of $GA(n, \mathbb{C})$ generated by f_1, \ldots, f_p and let $f'_1, \ldots, f'_p \in \mathfrak{q}$ such that $e^{\Psi(f'_k)} = \Phi(f_k)$, $k = 1, \ldots, p$. Let P be as in Proposition 2.1. Then

$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{Z}f'_k(w_0) + \sum_{k=2}^{r} 2i\pi\mathbb{Z}p_2(Pe^{(k)}) & \text{if } r \ge 2, \\ \sum_{k=1}^{p} \mathbb{Z}f'_k(w_0) & \text{if } r = 1. \end{cases}$$

Proof Let $G = \Phi(\mathcal{G})$. Then G is generated by $\Phi(f_1), \ldots, \Phi(f_p)$. Apply Proposition 4.1 to $G, A_k = \Phi(f_k), B_k = \Psi(f'_k) \in g^1$, then we have

$$\mathbf{g} = \sum_{k=1}^{p} \mathbb{Z}\Psi(f_k') + 2i\pi\mathbb{Z}\sum_{k=1}^{r} PJ_kP^{-1}.$$

We have $\sum_{k=1}^{p} \mathbb{Z}\Psi(f'_{k}) \subset \Psi(\operatorname{MA}(n,\mathbb{C}))$. Moreover, for every $k = 2, \ldots, r$, $J_{k} \in \Psi(\operatorname{MA}(n,\mathbb{C}))$, hence $PJ_{k}P^{-1} \in \Psi(\operatorname{MA}(n,\mathbb{C}))$, since $P \in \Phi(\operatorname{GA}(n,\mathbb{C}))$. However, $mPJ_{1}P^{-1} \notin \Psi(\operatorname{MA}(n,\mathbb{C}))$ for every $m \in \mathbb{Z} \setminus \{0\}$, since J_{1} has the form $J_{1} = \operatorname{diag}(1, J')$ where $J' \in M_{n}(\mathbb{C})$. As $g^{1} = g \cap \Psi(\operatorname{MA}(n,\mathbb{C}))$, then $mPJ_{1}P^{-1} \notin g^{1}$ for every $m \in \mathbb{Z} \setminus \{0\}$. Hence we obtain

$$g^{1} = \begin{cases} \sum_{k=1}^{p} \mathbb{Z}\Psi(f_{k}') + \sum_{k=2}^{r} 2i\pi\mathbb{Z}PJ_{k}P^{-1} & \text{if } r \geq 2, \\ \sum_{k=1}^{p} \mathbb{Z}\Psi(f_{k}') & \text{if } r = 1. \end{cases}$$

Since $J_k u_0 = e^{(k)}$, we get

$$\mathbf{g}_{\nu_0}^1 = \begin{cases} \sum_{k=1}^p \mathbb{Z}\Psi(f'_k)\nu_0 + \sum_{k=2}^r 2i\pi\mathbb{Z}Pe^{(k)} & \text{if } r \ge 2, \\ \sum_{k=1}^p \mathbb{Z}\Psi(f'_k)\nu_0 & \text{if } r = 1. \end{cases}$$

By Lemma 3.3 (iii), one has $\{0\} \times \mathfrak{q}_{w_0} = g_{\nu_0}^1$ and $\Psi(f'_k)\nu_0 = (0, f'_k(w_0))$, so $\mathfrak{q}_{w_0} = p_2(\mathfrak{g}^1_{\nu_0})$. It follows that

$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^p \mathbb{Z}f_k'(w_0) + \sum_{k=2}^r 2i\pi\mathbb{Z}p_2(Pe^{(k)}) & \text{if } r \ge 2, \\ \sum_{k=1}^p \mathbb{Z}f_k'(w_0) & \text{if } r = 1. \end{cases}$$

The proof is complete.

Recall the following proposition, which was proved in [7].

Proposition 4.3 (cf. [7, p. 35]) Let $F = \mathbb{Z}u_1 + \cdots + \mathbb{Z}u_p$ with $u_k = \operatorname{Re}(u_k) + i \operatorname{Im}(u_k)$, where $\operatorname{Re}(u_k)$, $\operatorname{Im}(u_k) \in \mathbb{R}^n$, $k = 1, \ldots, p$. Then F is dense in \mathbb{C}^n if and only if for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

$$\operatorname{rank} \begin{bmatrix} \operatorname{Re}(u_1) & \cdots & \operatorname{Re}(u_p) \\ \operatorname{Im}(u_1) & \cdots & \operatorname{Im}(u_p) \\ s_1 & \cdots & s_p \end{bmatrix} = 2n+1.$$

Proof of Theorem 1.3 This follows directly from Theorem 1.1, Propositions 4.2 and 4.3.

Proof of Corollary 1.4 First, by Proposition 4.3, if $F = \mathbb{Z}u_1 + \cdots + \mathbb{Z}u_m$, $u_k \in \mathbb{C}^n$ with $m \leq 2n$, then *F* cannot be dense in \mathbb{C}^n . Now, by the form of \mathfrak{q}_{w_0} in Proposition 4.2, \mathfrak{q}_{w_0} cannot be dense in \mathbb{C}^n , and so Corollary 1.4 follows by Theorem 1.3.

Proof of Corollary 1.5 Since $n \le 2n - r + 1$ (because $r \le n + 1$), Corollary 1.5 follows from Corollary 1.4.

5 Example

Example 5.1 Let 9 the subgroup of GA(2, \mathbb{C}) generated by $f_1 = (A_1, a_1)$, $f_2 = (A_2, a_2)$, $f_3 = (A_3, a_3)$ and $f_4 = (A_4, a_4)$, where

$$a_{1} = I_{2}, \qquad a_{1} = (1 + i, 0),$$

$$A_{2} = \operatorname{diag}(1, e^{-2+i}), \qquad a_{2} = (0, 0),$$

$$A_{3} = \operatorname{diag}(1, e^{\frac{-\sqrt{2}}{\pi} + i\left(\frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2}\right)}), \qquad a_{3} = \left(\frac{-\sqrt{3}}{2\pi} + i\left(\frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi}\right), 0\right),$$

$$A_{4} = I_{2}, \qquad a_{4} = (2i\pi, 0).$$

Then G is hypercyclic.

Proof First one can check that \mathcal{G} is abelian: $f_i \circ f_j = f_j \circ f_i$ for every i, j = 1, 2, 3, 4. Let by $G = \Phi(\mathcal{G})$. Then G is generated by

$$\Phi(f_1) = \begin{bmatrix} 1 & 0 & 0 \\ 1+i & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \Phi(f_2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-2+i} \end{bmatrix},$$

$$\Phi(f_3) = \begin{bmatrix} \frac{1}{-\sqrt{3}} + i\left(\frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi}\right) & 1 & 0 \\ 0 & 0 & e^{\frac{-\sqrt{2}}{\pi} + i\left(\frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2}\right)} \end{bmatrix}, \quad \Phi(f_4) = \begin{bmatrix} 1 & 0 & 0 \\ 2i\pi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Let $f'_i = (B_i, b_i), i = 1, 2, 3, 4$ where

$$B_{1} = \operatorname{diag}(0, 0) = 0, \qquad b_{1} = (1 + i, 0),$$

$$B_{2} = \operatorname{diag}(0, -2 + i), \qquad b_{2} = (0, 0),$$

$$B_{3} = \operatorname{diag}\left(0, \frac{-\sqrt{2}}{\pi} + i\left(\frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2}\right)\right), \qquad b_{3} = \left(\frac{-\sqrt{3}}{2\pi} + i\left(\frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi}\right), 0\right),$$

$$B_{4} = \operatorname{diag}(0, 0) = 0, \qquad b_{4} = (2i\pi, 0).$$

Then we have $e^{\Psi(f_i')} = \Phi(f_i), i = 1, 2, 3, 4.$

Here r = 2, $\eta = (2, 1)$, *G* is an abelian subgroup of $\mathcal{K}^*_{(2,1),2}(\mathbb{C})$. We have $P = I_3$, $\varphi = (I_2, 0)$, $u_0 = v_0 = (1, 0, 1)$, $e^{(2)} = (0, 0, 1)$ and $w_0 = (0, 1)$. By Proposition 4.2, $\mathfrak{q}_{w_0} = \sum_{k=1}^4 \mathbb{Z} f'_k(w_0) + 2i\pi \mathbb{Z} p_2(e^{(2)})$. On the other hand, for every $(s_1, s_2, s_3, s_4, t_2) \in \mathbb{Z}^5 \setminus \{0\}$, write

$$M_{(s_1,s_2,s_3,s_4,t_2)} = \begin{bmatrix} \operatorname{Re}(B_1w_0 + b_1) & \operatorname{Re}(B_2w_0 + b_2) & \operatorname{Re}(B_3w_0 + b_3) & \operatorname{Re}(B_4w_0 + b_4) & 0\\ \operatorname{Im}(B_1w_0 + b_1) & \operatorname{Im}(B_2w_0 + b_2) & \operatorname{Im}(B_3w_0 + b_3) & \operatorname{Im}(B_4w_0 + b_4) & 2\pi e^{(2)}\\ s_1 & s_2 & s_3 & s_4 & t_2 \end{bmatrix}$$

Then the determinant:

$$\Delta = \det(M_{(s_1, s_2, s_3, s_4, t_2)}) = \begin{vmatrix} 1 & 0 & -\frac{\sqrt{3}}{2\pi} & 0 & 0 \\ 0 & -2 & -\frac{\sqrt{2}}{\pi} & 0 & 0 \\ 1 & 0 & \frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi} & 2\pi & 0 \\ 0 & 1 & \frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2} & 0 & 2\pi \\ s_1 & s_2 & s_3 & s_4 & t_2 \end{vmatrix}$$
$$= 2\pi(-s_1\sqrt{3} + 2s_2\sqrt{2} - 4s_3\pi + s_4\sqrt{5} - t_2\sqrt{7}).$$

Since π , $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ and $\sqrt{7}$ are rationally independent, $\Delta \neq 0$ for every $(s_1, s_2, s_3, s_4, t_2) \in \mathbb{Z}^5 \setminus \{0\}$. It follows that rank $(M_{(s_1, s_2, s_3, s_4, t_2)}) = 5$. Hence f_1, \ldots, f_4 satisfy the property \mathcal{D} . By Theorem 1.3, \mathcal{G} is hypercyclic.

A. Ayadi

References

- A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, C). In: Foliations 2005, [1] World Sci. Publ., Hackensack, NJ, 2006, 47-69.
- [2] A. Ayadi, H. Marzougui and Y. N'dao, On the dynamic of abelian groups of affine maps on \mathbb{C}^n and \mathbb{R}^{n} . Preprint, ICTP, IC /2009/062, 2009.
- [3] F. Bayart and E. Matheron, Dynamics of Linear Operators. Cambridge Tracts in Math. 179, Cambridge University Press, 2009.
- M. Javaheri, A generalization of Dirichlet approximation theorem for the affine actions on real line. [4]J. Number Theory **128**(2008), 1146–1156. http://dx.doi.org/10.1016/j.jnt.2007.08.008 R. S. Kulkarni, *Dynamics of linear and affine maps*. Asian J. Math. **12**(2008), 321–344.
- [5] V. Bergelson, M. Misiurewicz and S. Senti, Affine actions of a free semigroup on the real line. Ergodic [6]
- Theory Dynam. Systems 26(2006), 1285–1305. http://dx.doi.org/10.1017/S014338570600037X M. Waldschmidt, Topologie des points rationnels. Cours de Troisième Cycle, Université P. et
- [7] M. Curie (Paris VI), 1994/95.

Department of Mathematics, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia e-mail: adlenesoo@yahoo.com