Hypercyclic Abelian Groups of Affine Maps on \mathbb{C}^{n}

Adlene Ayadi

Abstract. We give a characterization of hypercyclic abelian group \mathcal{G} of affine maps on \mathbb{C}^{n}. If \mathcal{G} is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by n affine maps on \mathbb{C}^{n} has a dense orbit.

1 Introduction

Let $M_{n}(\mathbb{C})$ be the set of all square matrices of order $n \geq 1$ with entries in \mathbb{C} and $\mathrm{GL}(n, \mathbb{C})$ be the group of all invertible matrices of $M_{n}(\mathbb{C})$. A map $f: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is called an affine map if there exist $A \in M_{n}(\mathbb{C})$ and $a \in \mathbb{C}^{n}$ such that $f(x)=A x+a$, $x \in \mathbb{C}^{n}$. We let $f=(A, a)$, and we call A the linear part of f. The map f is invertible if $A \in \mathrm{GL}(n, \mathbb{C})$. Denote by $\operatorname{MA}(n, \mathbb{C})$ the vector space of all affine maps on \mathbb{C}^{n} and $\mathrm{GA}(n, \mathbb{C})$ the group of all invertible affine maps of MA($n, \mathbb{C})$.

Let \mathcal{G} be an abelian affine subgroup of $\mathrm{GA}(n, \mathbb{C})$. For a vector $v \in \mathbb{C}^{n}$, we consider the orbit of \mathcal{G} through $v: \mathcal{G}(v)=\{f(v): f \in \mathcal{G}\} \subset \mathbb{C}^{n}$. Denote by \bar{E} the closure of a subset $E \subset \mathbb{C}^{n}$. The group \mathcal{G} is called hypercyclic if there exists a vector $v \in \mathbb{C}^{n}$ such that $\overline{\mathcal{G}(v)}=\mathbb{C}^{n}$. For an account of results and bibliography on hypercyclicity, we refer to the book [3] by Bayart and Matheron.

Let $n \in \mathbb{N}_{0}$ be fixed, denote by:

- $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}, \mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ and $\mathbb{N}_{0}=\mathbb{N} \backslash\{0\} ;$
- $\mathcal{B}_{0}=\left(e_{1}, \ldots, e_{n+1}\right)$ the canonical basis of \mathbb{C}^{n+1} and I_{n+1} the identity matrix of $\mathrm{GL}(n+1, \mathrm{C})$.

For each $m=1,2, \ldots, n+1$, denote by

- $\mathbb{T}_{m}(\mathbb{C})$ the set of matrices over \mathbb{C} of the form

$$
\left[\begin{array}{cccc}
\mu & & & 0 \tag{1.1}\\
a_{2,1} & \mu & & \\
\vdots & \ddots & \ddots & \\
a_{m, 1} & \cdots & a_{m, m-1} & \mu
\end{array}\right]
$$

- $\mathbb{T}_{m}^{*}(\mathbb{C})$ the group of matrices of the form (1.1) with $\mu \neq 0$.

[^0]Let $r \in \mathbb{N}$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}$ such that $n_{1}+\cdots+n_{r}=n+1$. In particular, $r \leq n+1$. Write

- $\mathcal{K}_{\eta, r}(\mathbb{C}):=\mathbb{T}_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus \mathbb{T}_{n_{r}}(\mathbb{C})$. In particular if $r=1$, then $\mathcal{K}_{\eta, 1}(\mathbb{C})=\mathbb{T}_{n+1}(\mathbb{C})$ and $\eta=(n+1)$;
- $\mathcal{K}_{\eta, r}^{*}(\mathbb{C}):=\mathcal{K}_{\eta, r}(\mathbb{C}) \cap \mathrm{GL}(n+1, \mathbb{C})$;
- $u_{0}=\left(e_{1,1}, \ldots, e_{r, 1}\right) \in \mathbb{C}^{n+1}$ where $e_{k, 1}=(1,0, \ldots, 0) \in \mathbb{C}^{n_{k}}$, for $k=1, \ldots, r$, so $u_{0} \in\{1\} \times \mathbb{C}^{n}$;
- $p_{2}: \mathbb{C} \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, the second projection, defined by $p_{2}\left(x_{1}, \ldots, x_{n+1}\right)=$ $\left(x_{2}, \ldots, x_{n+1}\right)$;
- $e^{(k)}=\left(e_{1}^{(k)}, \ldots, e_{r}^{(k)}\right) \in \mathbb{C}^{n+1}$ where

$$
e_{j}^{(k)}=\left\{\begin{array}{ll}
0 \in \mathbb{C}^{n_{j}} & \text { if } j \neq k \\
e_{k, 1} & \text { if } j=k
\end{array} \quad \text { for every } 1 \leq j, k \leq r\right.
$$

- $\exp : \mathbb{M}_{n+1}(\mathbb{C}) \longrightarrow \mathrm{GL}(n+1, \mathbb{C})$ is the matrix exponential map; set $\exp (M)=e^{M}$, $M \in M_{n+1}(\mathbb{C})$.

Define the map $\Phi: \operatorname{GA}(n, \mathbb{C}) \longrightarrow \mathrm{GL}(n+1, \mathbb{C})$,

$$
f=(A, a) \longmapsto\left[\begin{array}{ll}
1 & 0 \\
a & A
\end{array}\right]
$$

We have the composition formula

$$
\left[\begin{array}{cc}
1 & 0 \\
a & A
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
b & B
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
A b+a & A B
\end{array}\right]
$$

Then Φ is an injective homomorphism of groups. Write $G=\Phi(\mathcal{G})$, which is an abelian subgroup of $\mathrm{GL}(n+1, \mathrm{C})$.

Define the map $\Psi: \operatorname{MA}(n, \mathbb{C}) \longrightarrow M_{n+1}(\mathbb{C})$,

$$
f=(A, a) \longmapsto\left[\begin{array}{ll}
0 & 0 \\
a & A
\end{array}\right]
$$

We can see that Ψ is injective and linear. Hence $\Psi(\operatorname{MA}(n, \mathbb{C}))$ is a vector subspace of $M_{n+1}(\mathbb{C})$. We prove (see Lemma 2.8) that Φ and Ψ are related by the following property

$$
\exp (\Psi(\operatorname{MA}(n, \mathbb{C})))=\Phi(\operatorname{GA}(n, \mathbb{C}))
$$

Let us consider the normal form of \mathcal{G} : By Proposition 2.1, there exists a $P \in$ $\Phi(\mathrm{GA}(n, \mathbb{C}))$ and a partition η of $(n+1)$ such that

$$
G^{\prime}=P^{-1} G P \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C}) \cap \Phi(\operatorname{GA}(n, \mathbb{C}))
$$

For such a choice of matrix P, we assume the following:

- $v_{0}=P u_{0}$. So $v_{0} \in\{1\} \times \mathbb{C}^{n}$, since $P \in \Phi(\mathrm{GA}(n, \mathbb{C}))$.
- $w_{0}=p_{2}\left(v_{0}\right) \in \mathbb{C}^{n}$. We have $v_{0}=\left(1, w_{0}\right)$.
- $\varphi=\Phi^{-1}(P) \in \operatorname{GA}(n,(\mathbb{C})$.
- $\mathrm{g}=\exp ^{-1}(G) \cap\left(P\left(\mathcal{K}_{\eta, r}(\mathbb{C})\right) P^{-1}\right)$. If $G \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$, we have $P=I_{n+1}$ and $\mathrm{g}=\exp ^{-1}(G) \cap \mathcal{K}_{\eta, r}(\mathbb{C})$.
- $\mathrm{g}^{1}=\mathrm{g} \cap \Psi(\operatorname{MA}(n, \mathbb{C}))$. This is an additive subgroup of $M_{n+1}(\mathbb{C})$ (because by Lemma 3.2, g is an additive subgroup of $\left.M_{n+1}(\mathbb{C})\right)$.
- $\mathrm{g}_{u}^{1}=\left\{B u: B \in \mathrm{~g}^{1}\right\} \subset \mathbb{C}^{n+1}, u \in \mathbb{C}^{n+1}$.
- $\mathfrak{q}=\Psi^{-1}\left(\mathrm{~g}^{1}\right) \subset \operatorname{MA}(n,(C)$. Then \mathfrak{q} is an additive subgroup of MA (n, \mathbb{C}) and we have $\Psi(\mathfrak{q})=\mathrm{g}^{1}$. By Corollary 2.12, we have $\exp (\Psi(\mathfrak{q}))=\Phi(\mathcal{G})$.
- $\mathfrak{q}_{v}=\{f(v), f \in \mathfrak{q}\} \subset \mathbb{C}^{n}, v \in \mathbb{C}^{n}$.

For groups of affine maps on $\mathbb{K}^{n}(\mathbb{K}=\mathbb{R}$ or $\mathbb{C})$, the study of their dynamics was recently initiated for some classes from a different point of view (see for instance, [2,4-6]). The purpose here is to give analogous results for linear abelian subgroups of $\mathrm{GL}(n, C)$ [1, Theorem 1.1].

Our main results are the following.
Theorem 1.1 Let \mathcal{G} be an abelian subgroup of $\mathrm{GA}(n, \mathbb{C})$. Then the following are equivalent:
(i) \mathcal{G} is hypercyclic;
(ii) the orbit $\mathcal{G}\left(w_{0}\right)$ is dense in $\left(\mathbb{C}^{n}\right.$;
(iii) $\mathfrak{q}_{w_{0}}$ is an additive subgroup dense in \mathbb{C}^{n}.

In the particular case where \mathcal{G} is an abelian subgroup of $\mathrm{GL}(n, \mathbb{C})$, let $Q \in \mathrm{GL}(n, \mathbb{C})$ such that $Q^{-1} \mathcal{G} Q \subset \mathcal{K}_{\eta^{\prime}, r^{\prime}}^{*}(\mathbb{C})$ for some $r^{\prime} \leq n$ and $\eta^{\prime}=\left(n_{1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right) \in \mathbb{N}_{0}^{r^{\prime}}$ with $n_{1}^{\prime}+\cdots+n_{r^{\prime}}^{\prime}=n$ (Proposition 2.6). Write

- $u_{0}^{\prime}=\left(e_{1,1}^{\prime}, \ldots, e_{r^{\prime}, 1}^{\prime}\right) \in \mathbb{C}^{n}$ where $e_{k, 1}^{\prime}=(1,0, \ldots, 0) \in \mathbb{C}^{n_{k}^{\prime}}$, for $k=1, \ldots, r^{\prime}$;
- $v_{0}^{\prime}=Q u_{0}^{\prime}$;
- $\mathrm{g}^{\prime}=\exp ^{-1}(\mathcal{G}) \cap Q\left(\mathcal{K}_{\eta^{\prime}, r^{\prime}}(\mathbb{C})\right) Q^{-1}$ and $\mathrm{g}_{v_{0}^{\prime}}^{\prime}=\left\{f\left(v_{0}^{\prime}\right), f \in \mathrm{~g}^{\prime}\right\}$.

Corollary 1.2 ([1, Theorem 1.3]) Let \mathcal{G} be an abelian subgroup of $\mathrm{GL}(n, \mathbb{C})$. Under the notations above, the following properties are equivalent:
(i) \mathcal{G} is hypercyclic.
(ii) $\mathrm{g}_{v_{0}^{\prime}}^{\prime}$ is an additive subgroup dense in \mathbb{C}^{n}.

For a finitely generated abelian subgroup $\mathcal{G} \subset G A(n, \mathbb{R})$, let us introduce the following property. Consider the following rank condition on a collection of affine maps $f_{1}, \ldots, f_{p} \in \mathcal{G}$. Let $f_{1}^{\prime}, \ldots, f_{p}^{\prime} \in \mathfrak{q}$ be such that $e^{\Psi\left(f_{k}^{\prime}\right)}=\Phi\left(f_{k}\right), k=1, \ldots, p$. We say that f_{1}, \ldots, f_{p} satisfy the property \mathcal{D} if for every $\left(s_{1}, \ldots, s_{p} ; t_{2}, \ldots, t_{r}\right) \in$ $\mathbb{Z}^{p+r-1} \backslash\{0\}$,

$$
\operatorname{rank}\left[\begin{array}{cccccc}
\operatorname{Re}\left(f_{1}^{\prime}\left(w_{0}\right)\right) & \cdots & \operatorname{Re}\left(f_{p}^{\prime}\left(w_{0}\right)\right) & 0 & \cdots & 0 \\
\operatorname{Im}\left(f_{1}^{\prime}\left(w_{0}\right)\right) & \cdots & \operatorname{Im}\left(f_{p}^{\prime}\left(w_{0}\right)\right) & 2 \pi p_{2}\left(e^{(2)}\right) & \cdots & 2 \pi p_{2}\left(e^{(r)}\right) \\
s_{1} & \cdots & s_{p} & t_{2} & \cdots & t_{r}
\end{array}\right]=2 n+1
$$

For $r=1$, this means that for every $\left(s_{1}, \ldots, s_{p}\right) \in \mathbb{Z}^{p} \backslash\{0\}$,

$$
\operatorname{rank}\left[\begin{array}{ccc}
\operatorname{Re}\left(f_{1}^{\prime}\left(w_{0}\right)\right) & \cdots & \operatorname{Re}\left(f_{p}^{\prime}\left(w_{0}\right)\right) \\
\operatorname{Im}\left(f_{1}^{\prime}\left(w_{0}\right)\right) & \cdots & \operatorname{Im}\left(f_{p}^{\prime}\left(w_{0}\right)\right) \\
s_{1} & \cdots & s_{p}
\end{array}\right]=2 n+1
$$

For a vector $v \in \mathbb{C}^{n}$, we write $v=\operatorname{Re}(v)+i \operatorname{Im}(v)$ where $\operatorname{Re}(v)$ and $\operatorname{Im}(v) \in \mathbb{R}^{n}$. The next result can be stated as follows.

Theorem 1.3 Let \mathcal{G} be an abelian subgroup of $\mathrm{GA}(n, \mathbb{C})$ generated by f_{1}, \ldots, f_{p} and let $f_{1}^{\prime}, \ldots, f_{p}^{\prime} \in \mathfrak{q}$ be such that $e^{\Psi\left(f_{1}^{\prime}\right)}=\Phi\left(f_{1}\right), \ldots, e^{\Psi\left(f_{p}^{\prime}\right)}=\Phi\left(f_{p}\right)$. Then the following are equivalent:
(i) \mathcal{G} is hypercyclic;
(ii) the maps $\varphi^{-1} \circ f_{1} \circ \varphi, \ldots, \varphi^{-1} \circ f_{p} \circ \varphi$ in $\mathrm{GA}(n, \mathbb{C})$ satisfy the property \mathcal{D};
(iii)

$$
\mathfrak{q}_{w_{0}}= \begin{cases}\sum_{k=1}^{p} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right)+2 i \pi \sum_{k=2}^{r} \mathbb{Z}\left(p_{2}\left(P e^{(k)}\right)\right) & \text { if } r \geq 2 \\ \sum_{k=1}^{p} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right) & \text { if } r=1\end{cases}
$$

is an additive subgroup dense in \mathbb{C}^{n}.
Corollary 1.4 Let \mathcal{G} be an abelian subgroup of $\mathrm{GA}(n,(\mathbb{C})$ and $G=\Phi(\mathcal{G})$. Let $P \in \Phi\left(\operatorname{GA}(n,(\mathbb{C}))\right.$ such that $P^{-1} G P \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ where $1 \leq r \leq n+1$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}$. If \mathcal{G} is generated by $2 n-r+1$ commuting invertible affine maps, then it has no dense orbit.

Corollary 1.5 Let \mathcal{G} be an abelian subgroup of $\mathrm{GA}(n, \mathbb{C})$. If \mathcal{G} is generated by n commuting invertible affine maps, then it has no dense orbit.

2 Normal Form of Abelian Affine Groups

The aim of this section is to prove the following proposition.
Proposition 2.1 Let \mathcal{G} be an abelian subgroup of $\mathrm{GA}(n, \mathbb{C})$ and $G=\Phi(\mathcal{G})$. Then there exists $P \in \Phi(\mathrm{GA}(n, \mathbb{C}))$ such that $P^{-1} G P$ is a subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C}) \cap \Phi(\mathrm{GA}(n, \mathbb{C}))$, for some $r \leq n+1$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}_{0}^{r}$.

The group $G^{\prime}=P^{-1} G P$ is called the normal form of G. In particular, we have $P u_{0}=v_{0} \in\{1\} \times \mathbb{C}^{n}$. Denote by $\mathcal{L}_{\mathcal{G}}$ the set of the linear parts of all elements of \mathcal{G}. Then $\mathcal{L}_{\mathcal{G}}$ is an abelian subgroup of $\operatorname{GL}\left(n,(\mathbb{C})\right.$. A subset $F \subset \mathbb{C}^{n}$ is called G invariant (resp. $\mathcal{L}_{\mathcal{G}}$-invariant) if $A(F) \subset F$ for any $A \in G\left(\right.$ resp. $\left.A \in \mathcal{L}_{\mathcal{G}}\right)$. To prove Proposition 2.1, we need the following results.

Lemma 2.2 Let \mathcal{G} be an abelian subgroup of $\mathrm{GA}(n,(\mathbb{C}), n \geq 1$ and $G=\Phi(\mathcal{G})$. Then there exist an integer $p \in \mathbb{N}, 0 \leq p \leq n$ and $Q \in G L(n, \mathbb{C})$ such that
(i) $\quad \mathbb{C}^{n}=E \oplus H$ where $E=Q\left(\mathbb{C}^{p} \times\left\{0_{\mathbb{C}^{n-p}}\right\}\right)$ and $H=Q\left(\left\{0_{\mathbb{C}^{p}}\right\} \times \mathbb{C}^{n-p}\right)$ are $\mathcal{L}_{\mathcal{G}}$-invariant;
(ii) if $E \neq\{0\}$, then for every $A \in \mathcal{L}_{\mathcal{G}}, A_{/ E}$ has 1 as the only eigenvalue;
(iii) if $E \neq\{0\}, H \neq\{0\}$ and $P_{1}=\operatorname{diag}(1, Q)$, then for every $f=(A, a) \in \mathcal{G}$, one has

$$
P_{1}^{-1} \Phi(f) P_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{1} & A_{1} & 0 \\
a_{2} & 0 & A_{2}
\end{array}\right]
$$

where $A_{1}=A_{/ E} \in \mathbb{T}_{p}^{*}(\mathbb{C}), A_{2}=A_{/ H} \in \mathcal{K}_{\eta^{\prime \prime}, r^{\prime \prime}}^{*}(\mathbb{C})$ for some $r^{\prime \prime} \leq n-p$ and $\eta^{\prime \prime} \in \mathbb{N}_{0}^{r^{\prime \prime}}, a_{1} \in \mathbb{C}^{p}$ and $a_{2} \in \mathbb{C}^{n-p} ;$
(iv) if $H=\{0\}$, then for every $f=(A, a) \in \mathcal{G}$, one has $P_{1}^{-1} \Phi(f) P_{1} \in \mathbb{T}_{n+1}^{*}(\mathbb{C}) \cap$ $\Phi(\mathrm{GA}(n, \mathbb{C}))$.

Proof Apply Proposition 2.6 to the group $\mathcal{L}_{\mathcal{G}}$; there exists $Q \in G L(n, \mathbb{C})$ such that $Q^{-1} \mathcal{L}_{\mathcal{G}} Q$ is a subgroup of $\mathcal{K}_{\eta^{\prime}, r^{\prime}}^{*}(\mathbb{C})$ for some $r^{\prime} \leq n$ and $\eta^{\prime}=\left(n_{1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right) \in$ $\mathbb{N}_{0}^{r^{\prime}}$ such that $n_{1}^{\prime}+\cdots+n_{r^{\prime}}^{\prime}=n$. Hence for every $A \in \mathcal{L}_{\mathcal{G}}$, we have $Q^{-1} A Q=$ $\operatorname{diag}\left(A_{1}^{\prime}, \ldots, A_{r^{\prime}}^{\prime}\right)$ with $A_{k}^{\prime} \in \mathbb{T}_{n_{k}^{\prime}}^{*}$. Let $\mu_{A_{k}^{\prime}}$ be the only eigenvalue of $A_{k}^{\prime}, k=1, \ldots, r^{\prime}$ and denote by $J_{\mathcal{G}}=\left\{k \in\left\{1, \ldots, r^{\prime}\right\}: \mu_{A_{k}^{\prime}}=1, \forall A \in \mathcal{L}_{\mathcal{G}}\right\}$. If $J_{\mathcal{G}}=\varnothing$, we take $E=\{0\}$ and $H=\mathbb{C}^{n}$. If $J_{\mathcal{G}} \neq \varnothing$, one can assume that $J_{\mathcal{G}}=\{1, \ldots, s\}$ for some $1 \leq s \leq r^{\prime}$, by replacing Q by $Q R$, where R is a circular matrix R of $\mathrm{GL}(n, \mathbb{C})$. We let $P_{1}=\operatorname{diag}(1, Q)=\Phi\left(f_{1}\right), f_{1}=(Q, 0)$. So for every $f=(A, a) \in \mathcal{G}$, we have

$$
\Phi\left(f_{1}^{-1} \circ f \circ f_{1}\right)=P_{1}^{-1} \Phi(f) P_{1}=\left[\begin{array}{cc}
1 & 0 \\
Q^{-1} a & Q^{-1} A Q
\end{array}\right] \in \Phi(\operatorname{GA}(n, \mathbb{C}))
$$

Proof of (i) If $J_{\mathcal{G}}=\varnothing$, the assertion is clear. One can assume that $J_{\mathcal{G}} \neq \varnothing$. We let $p=n_{1}^{\prime}+\cdots+n_{s}^{\prime}, E=Q\left(\mathbb{C}^{p} \times\left\{0_{\mathbb{C}^{n-p}}\right\}\right)$ and $H=Q\left(\left\{0_{\mathbb{C}^{p}}\right\} \times \mathbb{C}^{n-p}\right)$. It is plain that $\mathbb{C}^{n}=E \oplus H$. Moreover, E and H are $\mathcal{L}_{\mathcal{G}}$-invariant vector spaces: Indeed, if $A \in \mathcal{L}_{\mathcal{G}}$ and $x=\left(x_{1}, 0\right) \in \mathbb{C}^{p} \times\left\{0_{\mathbb{C}^{n-p}}\right\}$, one has $A Q x=Q\left(Q^{-1} A Q\right) x$. Since $Q^{-1} A Q=$ $\operatorname{diag}\left(A_{1}, A_{2}\right)$ where $A_{1}=\operatorname{diag}\left(A_{1}^{\prime}, \ldots, A_{s}^{\prime}\right) \in \mathrm{GL}(p, C)$ with $\mu_{A_{k}^{\prime}}=1, k=1, \ldots, s$ and $A_{2}=\operatorname{diag}\left(A_{s+1}^{\prime}, \ldots, A_{r^{\prime}}^{\prime}\right)$, we have $Q^{-1} A Q x=\left(A_{1} x_{1}, 0\right) \in \mathbb{C}^{p} \times\left\{0_{\mathbb{C}^{n-p}}\right\}$. The same proof holds for H.

Proof of (ii) If $A \in \mathcal{L}_{\mathcal{G}}$ then $\left(Q^{-1} A Q\right)_{/ E}=A_{1}=\operatorname{diag}\left(A_{1}^{\prime}, \ldots, A_{s}^{\prime}\right) \in \mathrm{GL}(p, \mathbb{C})$ with $\mu_{A_{k}^{\prime}}=1, k=1, \ldots, s$.

Proof of (iii) Assume that $E \neq\{0\}$ and $H \neq\{0\}$. Then, for every $f=(A, a) \in \mathcal{G}$, we have $Q^{-1} A Q=\operatorname{diag}\left(A_{1}, A_{2}\right)$ where $A_{1}=A_{/ E} \in \mathbb{T}_{p}^{*}(\mathbb{C}), A_{2}=A_{/ H} \in \mathcal{K}_{\eta^{\prime \prime}, r^{\prime \prime}}^{*}(\mathbb{C})$ with $r^{\prime \prime}=r^{\prime}-s \leq n-p$ and $\eta^{\prime \prime}=\left(n_{s+1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right)$. Hence

$$
P_{1}^{-1} \Phi(f) P_{1}=\left[\begin{array}{cc}
1 & 0 \\
Q^{-1} a & Q^{-1} A Q
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{1} & A_{1} & 0 \\
a_{2} & 0 & A_{2}
\end{array}\right]
$$

where $Q^{-1} a=\left(a_{1}, a_{2}\right) \in \mathbb{C}^{p} \times \mathbb{C}^{n-p}$. Note that by (ii), 1 is the only eigenvalue of A_{1}.
Proof of (iv) Assume that $H=\{0\}$. In this case we have $s=r^{\prime}$ and $J_{\mathcal{G}}=$ $\left\{1, \ldots, r^{\prime}\right\}$. Then for every $f=(A, a) \in \mathcal{G}$, we have $P_{1}^{-1} \Phi(f) P_{1}=\left[\begin{array}{cc}1 & 0 \\ a_{1} & A_{1}\end{array}\right]$ with $A=A_{1} \in \mathbb{T}_{n}^{*}(\mathbb{C})$. So $P_{1}^{-1} \Phi(f) P_{1} \in \mathbb{T}_{n+1}^{*}(\mathbb{C}) \cap \Phi(\operatorname{GA}(n, \mathbb{C}))$.

Lemma 2.3 ([2, Lemma 3.1]) Let $u_{1}, \ldots, u_{n} \in \mathbb{C}^{n}$ such that for every $1 \leq k \leq n$, $u_{k}=\left(x_{k, 1}, \ldots, x_{k, n}\right)$ with $x_{k, k} \neq 0$. Then $\left(\mathbb{Z} u_{1}+\cdots+\mathbb{Z} u_{n}\right) \cap\left(\mathbb{C}^{*}\right)^{n} \neq \varnothing$.

Lemma 2.4 Let \mathcal{G} and H are as in Lemma 2.2 If $H \neq\{0\}$ then there exists $B \in \mathcal{L}_{\mathcal{G}}$ such that $B_{/ H}-I_{n-p}$ is invertible.

Proof As $H \neq\{0\}$, then $s<r^{\prime}$ and for every $1 \leq k \leq r^{\prime}-s$ there exists $B(k) \in G$ such that $B(k)_{/ H}=\operatorname{diag}\left(B_{k, s+1}, \ldots, B_{k, r^{\prime}}\right)$ where

$$
B_{k, j}=\left[\begin{array}{cccc}
\mu_{B_{k, j}} & & & 0 \\
b_{2,1}^{(k)} & \ddots & & \\
\vdots & \ddots & \ddots & \\
b_{n_{j}^{\prime}, 1}^{(k)} & \cdots & b_{n_{j}^{\prime}, n_{j}^{\prime}-1}^{(k)} & \mu_{B_{k, j}}
\end{array}\right] \in \mathbb{T}_{n_{j}^{\prime}}^{*}(\mathbb{C})
$$

such that $\mu_{B_{k, s+k}} \neq 1$, for every $j=s+1, \ldots, r^{\prime}$.
We let $u_{k}=\left(\log \left(\mu_{B_{k, s+1}}\right), \ldots, \log \left(\mu_{B_{k, r^{\prime}}}\right)\right) \in \mathbb{C}^{r^{\prime}-s}, k=1, \ldots, r^{\prime}-s$. For $z=$ $|z| e^{i \arg (z)} \in \mathbb{C}, \arg (z) \in\left[0,2 \pi\left[, \log z=|z|+i \arg (z)\right.\right.$. As $\log \left(\mu_{B_{k, s+k}}\right) \neq 0$ for every $k=1, \ldots, r^{\prime}-s$, by Lemma 2.3, $\left(\mathbb{Z} u_{1}+\cdots+\mathbb{Z} u_{r^{\prime}-s}\right) \cap\left(\mathbb{C}^{*}\right)^{r^{\prime}-s} \neq \varnothing$. So there exist $m_{1}, \ldots, m_{r^{\prime}-s} \in \mathbb{Z}$ such that $m_{1} u_{1}+\cdots+m_{r^{\prime}-s} u_{r^{\prime}-s} \in\left(\mathbb{C}^{*}\right)^{r^{\prime}-s}$. It follows that for every $j=s+1, \ldots, r^{\prime}, \prod_{k=1}^{r^{\prime}-s} \mu_{B_{k, j}}^{m_{k}} \neq 1$. If $B=\prod_{k=1}^{r^{\prime}-s}(B(k))^{m_{k}}$, then $\prod_{k=1}^{r^{\prime}-s} \mu_{B_{k, j}}^{m_{k}}, j=s+1, \ldots, r^{\prime}$ are the eigenvalues of $B_{/ H}$, this implies that $B_{/ H}-I_{n-p}$ is invertible.

Denote by $\operatorname{Fix}(G)=\left\{x \in \mathbb{C}^{n+1}: B x=x\right.$, for every $\left.B \in G\right\}$.
Lemma 2.5 Let G and E be as in Lemma 2.2. If $E=\{0\}$ then $\operatorname{Fix}(G) \cap\left(\{1\} \times \mathbb{C}^{n}\right) \neq$ \varnothing.

Proof By hypothesis, $p=0$ and so $H=\mathbb{C}^{n}$. Then by Lemma 2.4, we have $B \in \mathcal{L}_{\mathcal{G}}$ such that $B-I_{n}$ is invertible, so 1 is not an eigenvalue of B. We let $f_{0}=(B, b) \in \mathcal{G}$. As $\Phi\left(f_{0}\right)=\left[\begin{array}{cc}1 & 0 \\ b & B\end{array}\right], F=\operatorname{Fix}\left(\Phi\left(f_{0}\right)\right)=\left\{x \in \mathbb{C}^{n+1}: \Phi\left(f_{0}\right) x=x\right\}$ has dimension 1 . So $\operatorname{Fix}\left(\Phi\left(f_{0}\right)\right)=\mathbb{C} v$, where $v=\left(1, v_{1}\right), v_{1} \in \mathbb{C}^{n}$. Write $P_{2}=\left[\begin{array}{cc}1 & 0 \\ v_{1} & I_{n}\end{array}\right]$. We have $\Phi\left(f_{0}\right) v=v$, so $B v_{1}+b=v_{1}$ and $P_{2}^{-1} \Phi\left(f_{0}\right) P_{2}=\left[\begin{array}{cc}1 & 0 \\ -v_{1}+b+B v_{1} & B\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & B\end{array}\right]$. Similarly, for every $f=(A, a) \in \mathcal{G}$, one has $P_{2}^{-1} \Phi(f) P_{2}=\left[\begin{array}{cc}1 & 0 \\ A v_{1}+a-v_{1} & A\end{array}\right]$. Write $a^{\prime}=A v_{1}+a-v_{1}$. Since G is abelian, we have $P_{2}^{-1} \Phi\left(f_{0}\right) \Phi(f) P_{2}=P_{2}^{-1} \Phi(f) \Phi\left(f_{0}\right) P_{2}$, this implies that $B a^{\prime}=a^{\prime}$ and hence $a^{\prime}=0$. It follows that $P_{2}^{-1} \Phi(f) P_{2} e_{1}=e_{1}$, hence $P_{2} e_{1} \in \operatorname{Fix}(G)$. Since $P_{2} e_{1} \in\{1\} \times \mathbb{C}^{n}$, we conclude that $\operatorname{Fix}(G) \cap\left(\{1\} \times \mathbb{C}^{n}\right) \neq \varnothing$.

Proposition 2.6 ([1, Proposition 2.3]) Let G^{\prime} be an abelian subgroup of $\mathrm{GL}(m, \mathbb{C})$, $m \geq 1$. Then there exists $P \in \mathrm{GL}(m, \mathbb{C})$ such that $P^{-1} G^{\prime} P$ is a subgroup of $\mathcal{K}_{\eta^{\prime}, r^{\prime}}^{*}(\mathbb{C})$, for some $r^{\prime} \leq m$ and $\eta^{\prime}=\left(n_{1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right) \in \mathbb{N}_{0}^{r^{\prime}}$.

Proof of Proposition 2.1 Let $P_{1}=\operatorname{diag}(1, Q), E$ and H as in Lemma 2.2. We distinguish two cases:

Case 1: $E \neq\{0\} \quad$ If $H=\{0\}$, then the proposition results from Lemma 2.2 (iv) by taking $P=P_{1}$.

If $H \neq\{0\}$, then by Lemma 2.4 there exists $B \in \mathcal{L}_{\mathcal{G}}$ such that $B_{/ H}-I_{n-p}$ is invertible. Write $B_{1}=B_{/ E}, B_{2}=B_{/ H}$ and set $f_{0}=(B, b) \in \mathcal{G}$. Since $E \neq\{0\}$, we have by Lemma 2.2 (iii),

$$
P_{1}^{-1} \Phi\left(f_{0}\right) P_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
b_{1} & B_{1} & 0 \\
b_{2} & 0 & B_{2}
\end{array}\right]
$$

where $B_{1} \in \mathbb{T}_{p}^{*}(\mathbb{C}), B_{2} \in \mathcal{K}_{\eta^{\prime \prime}, r^{\prime \prime}}^{*}(\mathbb{C})$ for some $r^{\prime \prime} \leq n-p, \eta^{\prime \prime}=\left(n_{1}^{\prime \prime}, \ldots, n_{r^{\prime \prime}}^{\prime \prime}\right) \in \mathbb{N}_{0}^{r^{\prime \prime}}$ and $\left(b_{1}, b_{2}\right) \in \mathbb{C}^{p} \times \mathbb{C}^{n-p}$. If

$$
P_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & I_{p} & 0 \\
b_{2} & 0 & B_{2}-I_{n-p}
\end{array}\right]
$$

it is clear that $P_{2} \in \mathrm{GL}(n+1, \mathbb{C})$. We let $P=P_{1} P_{2}^{-1}$. Then we have $P=\left[\begin{array}{ll}1 & 0 \\ d & P_{0}\end{array}\right]$ where $P_{0}=Q Q_{1}^{-1}, Q_{1}=\left[\begin{array}{cc}I_{p} & 0 \\ 0 & B_{2}-I_{n-p}\end{array}\right]$ and $d=-P_{0}\left[\binom{0}{b_{2}}\right]$. For $f=(A, a) \in \mathcal{G}$, we have

$$
P_{1}^{-1} \Phi(f) P_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{1} & A_{1} & 0 \\
a_{2} & 0 & A_{2}
\end{array}\right]
$$

where $A_{1} \in \mathbb{T}_{p}^{*}(\mathbb{C})$ and $A_{2} \in \mathcal{K}_{\eta^{\prime \prime}, r^{\prime \prime}}^{*}(\mathbb{C})$. Since G is abelian, $P_{1}^{-1} \Phi(f) \Phi\left(f_{0}\right) P_{1}=$ $P_{1}^{-1} \Phi\left(f_{0}\right) \Phi(f) P_{1}$, and therefore $A_{2} B_{2}=B_{2} A_{2}$ and $-\left(A_{2}-I_{n-p}\right) b_{2}+\left(B_{2}-I_{n-p}\right) a_{2}=$ 0 . It follows that

$$
\begin{aligned}
P^{-1} \Phi(f) P & =P_{2} P_{1}^{-1} \Phi(f) P_{1} P_{2}^{-1} \\
& =P_{2}\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{1} & A_{1} & 0 \\
a_{2} & 0 & A_{2}
\end{array}\right] P_{2}^{-1} \\
& =\left[\begin{array}{ccc}
& 0 & 0 \\
-\left(A_{2}-I_{n-p}\right) b_{2}+\left(B_{2}-I_{n-p}\right) a_{2} & 0 & A_{2}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
a_{1} & A_{1} & 0 \\
0 & 0 & A_{2}
\end{array}\right] .
\end{aligned}
$$

Therefore, $P^{-1} \Phi(f) P=\operatorname{diag}\left(A_{1}^{\prime}, A_{2}\right) \in \mathcal{K}_{\eta^{\prime}, r^{\prime \prime}+1}^{*}(\mathbb{C})$ where $A_{1}^{\prime}=\left[\begin{array}{cc}1 & 0 \\ a_{1} & A_{1}\end{array}\right] \in \mathbb{T}_{p+1}^{*}(\mathbb{C})$ $A_{2} \in \mathcal{K}_{\eta^{\prime \prime}, r^{\prime \prime}}^{*}(\mathbb{C})$ and $\eta^{\prime}=\left(p+1, n_{1}^{\prime \prime}, \ldots, n_{r^{\prime \prime}}^{\prime \prime}\right)$. This completes the proof in this case.

Case 2: $E=\{0\} \quad$ Let $B \in \mathcal{L}_{\mathcal{G}}$ such that $\left(B-I_{n}\right)$ is invertible (Lemma 2.4). We let $f_{0}=(B, b) \in \mathcal{G}$. By Proposition 2.6, there exists $Q \in \mathrm{GL}(n, C)$ such that $Q^{-1} \mathcal{L}_{\mathcal{G}} Q$ is a subgroup of $\mathcal{K}_{\eta^{\prime}, r^{\prime}}^{*}(\mathbb{C})$ for some $r^{\prime} \leq n$ and $\eta^{\prime}=\left(n_{1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right) \in \mathbb{N}_{0}^{r^{\prime}}$ where $n_{1}^{\prime}+\cdots+n_{r^{\prime}}^{\prime}=n$. By Lemma 2.5, there exists $w=\left(1, w_{1}\right) \in \operatorname{Fix}(G) \cap\left(\{1\} \times \mathbb{C}^{n}\right)$. Set $P=\left[\begin{array}{cc}1 & 0 \\ w_{1} & 0\end{array}\right]$. For every $f=(A, a) \in \mathcal{G}, \Phi(f) w=w$, so $A w_{1}+a=w_{1}$. Therefore

$$
\begin{aligned}
P^{-1} \Phi(f) P & =\left[\begin{array}{cc}
1 & 0 \\
-Q^{-1} w_{1} & Q^{-1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
a & A
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
w_{1} & Q
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
Q^{-1}\left(A w_{1}+a-w_{1}\right) & Q^{-1} A Q
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & Q^{-1} A Q
\end{array}\right] .
\end{aligned}
$$

Hence $P^{-1} \Phi(f) P \in \mathcal{K}_{\eta, r}^{*}(\mathbb{C}) \cap \Phi(\operatorname{GA}(n, \mathbb{C}))$, where $r=r^{\prime}+1$ and $\eta=$ $\left(1, n_{1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right)$. This completes the proof.

Lemma 2.7 ([1, Proposition 3.2]) $\quad \exp \left(\mathcal{K}_{\eta, r}(\mathbb{C})\right)=\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$.
Lemma $2.8 \exp (\Psi(\operatorname{MA}(n, \mathbb{C})))=\Phi(\mathrm{GA}(n, \mathbb{C}))$.
Proof It is clear that $\exp (\Psi(\operatorname{MA}(n, C))) \subset \Phi(\operatorname{GA}(n,(C))$. Conversely, let $M \in$ $\Phi(\mathrm{GA}(n, \mathbb{C}))$. By Proposition 2.1, there exists $P \in \Phi(\mathrm{GA}(n, \mathbb{C}))$ such that $M^{\prime}=$ $P^{-1} M P \in \mathcal{K}_{\eta, r}^{*}(\mathbb{C}) \cap \Phi(\operatorname{GA}(n, \mathbb{C}))$. By Lemma 2.7, $\exp \left(\mathcal{K}_{\eta, r}(\mathbb{C})\right)=\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$, then $M^{\prime}=e^{N^{\prime}}$ for some $N^{\prime} \in \mathcal{K}_{\eta, r}(\mathbb{C})$. So $N^{\prime \prime}=P N^{\prime} P^{-1} \in P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}$ and $e^{N^{\prime \prime}}=P M^{\prime} P^{-1}=M \in \Phi\left(\operatorname{GA}(n,(\mathbb{C}))\right.$. By Lemma 2.9, $N=N^{\prime \prime}-2 i k \pi I_{n+1} \in$ $\Psi(\operatorname{MA}(n, C))$ for some $k \in \mathbb{Z}$ and N satisfies $e^{N}=e^{2 i k \pi} e^{N^{\prime \prime}}=M$. It follows that $M \in \exp (\Psi(\operatorname{MA}(n,(C)))$.

Lemma 2.9 If $N \in P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}$ such that $e^{N} \in \Phi(\operatorname{GA}(n, \mathbb{C}))$, then there exists $k \in \mathbb{Z}$ such that $N-2 i k \pi I_{n+1} \in \Psi(\operatorname{MA}(n,(\mathbb{C}))$.

Proof Let $N^{\prime}=P^{-1} N P \in \mathcal{K}_{\eta, r}(\mathbb{C}), M=e^{N}$ and $M^{\prime}=P^{-1} M P$. We have $e^{N^{\prime}}=M^{\prime}$ and by Lemma 2.7, $M^{\prime} \in \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. Write $M^{\prime}=\operatorname{diag}\left(M_{1}^{\prime}, \ldots, M_{r}^{\prime}\right)$ and $N^{\prime}=\operatorname{diag}\left(N_{1}^{\prime}, \ldots, N_{r}^{\prime}\right), M_{k}^{\prime}, N_{k}^{\prime} \in \mathbb{T}_{n_{k}}(\mathbb{C}), k=1, \ldots, r$. Then $e^{N^{\prime}}=$ $\operatorname{diag}\left(e^{N_{1}^{\prime}}, \ldots, e^{N_{r}^{\prime}}\right)$, so $e^{N_{1}^{\prime}}=M_{1}^{\prime}$. As 1 is the only eigenvalue of $M_{1}^{\prime}, N_{1}^{\prime}$ has an eigenvalue $\mu \in \mathbb{C}$ such that $e^{\mu}=1$. Thus $\mu=2 i k \pi$ for some $k \in \mathbb{Z}$. Therefore, $N^{\prime \prime}=N^{\prime}-2 i k \pi I_{n+1} \in \Psi\left(\operatorname{MA}(n,(\mathbb{C}))\right.$ and $e^{N^{\prime \prime}}=e^{-2 i k \pi} e^{N^{\prime}}=M^{\prime}$. It follows that $N-2 i k \pi I_{n+1}=P N^{\prime \prime} P^{-1} \in P \Psi(\operatorname{MA}(n, \mathbb{C})) P^{-1}=\Psi(\operatorname{MA}(n, \mathbb{C}))$, since $P \in \Phi(\operatorname{GA}(n, \mathbb{C}))$.

Lemma 2.10 ([1, Lemma 4.2]) One has $\exp (\mathrm{g})=G$.
Corollary 2.11 Let $G=\Phi(\mathcal{G})$. We have $g=g^{1}+2 i \pi Z Z I_{n+1}$.
Proof Let $N \in$ g. By Lemma 2.10, $\exp (N) \in G \subset \Phi(G A(n, \mathbb{C}))$. Then by Lemma 2.9, there exists $k \in \mathbb{Z}$ such that $N^{\prime}=N-2 i k \pi I_{n+1} \in \Psi(\operatorname{MA}(n, \mathbb{C}))$.

As $e^{N^{\prime}}=e^{N} \in G$ and $N^{\prime} \in P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}$ then $N^{\prime} \in \mathrm{g} \cap \Psi(\operatorname{MA}(n, \mathbb{C}))=$ g^{1}. Hence $\mathrm{g} \subset \mathrm{g}^{1}+2 i \pi \mathbb{Z} I_{n+1}$. Conversely, as $\mathrm{g}^{1}+2 i \pi \mathbb{Z} I_{n+1} \subset P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}$ and $\exp \left(\mathrm{g}^{1}+2 i \pi \mathbb{Z} I_{n+1}\right)=\exp \left(\mathrm{g}^{1}\right) \subset G$, hence $\mathrm{g}^{1}+2 i \pi \mathbb{Z} I_{n+1} \subset \mathrm{~g}$.

Corollary 2.12 We have $\exp (\Psi(\mathfrak{q}))=\Phi(\mathcal{G})$.
Proof By Lemmas 2.10 and 2.11, we have $G=\exp (\mathrm{g})=\exp \left(\mathrm{g}^{1}+2 i \pi \not Z I_{n+1}\right)=$ $\exp \left(g^{1}\right)$. Since $g^{1}=\Psi(\mathfrak{q})$, we get $\exp (\Psi(\mathfrak{q}))=\Phi(\mathcal{G})$.

3 Proof of Theorem 1.1

Let \widetilde{G} be the group generated by G and $\mathbb{C}^{*} I_{n+1}=\left\{\lambda I_{n+1}: \lambda \in \mathbb{C}^{*}\right\}$. Then \widetilde{G} is an abelian subgroup of $\mathrm{GL}(n+1, \mathbb{C})$. By Proposition 2.1, there exists $P \in \Phi(\mathrm{GA}(n, \mathbb{C}))$ such that $P^{-1} G P$ is a subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$ for some $r \leq n+1$ and $\eta=\left(n_{1}, \ldots, n_{r}\right) \in$ \mathbb{N}_{0}^{r}, and this also implies that $P^{-1} \widetilde{G} P$ is a subgroup of $\mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. Set $\widetilde{g}=\exp ^{-1}(\widetilde{G}) \cap$ $\left(P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}\right)$ and $\widetilde{\mathbf{g}}_{v_{0}}=\left\{B v_{0}: B \in \widetilde{\mathrm{~g}}\right\}$. Then we have the following theorem, applied to \widetilde{G}.

Theorem 3.1 ([1, Theorem 1.1]) Under the notations above, the following properties are equivalent:
(i) \widetilde{G} has a dense orbit in $\left(\mathbb{C}^{n+1}\right.$;
(ii) the orbit $\widetilde{G}\left(v_{0}\right)$ is dense in \mathbb{C}^{n+1};
(iii) $\widetilde{\mathrm{g}}_{v_{0}}$ is an additive subgroup dense in $\left(\mathbb{C}^{n+1}\right.$.

Lemma 3.2 ([1, Lemma 4.1]) The sets g and $\widetilde{\mathrm{g}}$ are additive subgroups of $M_{n+1}(\mathbb{C})$. In particular, $\mathrm{g}_{v_{0}}$ and $\widetilde{\mathrm{g}}_{v_{0}}$ are additive subgroups of \mathbb{C}^{n+1}.

Recall that $\mathrm{g}^{1}=\mathrm{g} \cap \Psi(\operatorname{MA}(n, \mathbb{C}))$ and $\mathrm{q}=\Psi^{-1}\left(\mathrm{~g}^{1}\right) \subset \operatorname{MA}(n,(\mathbb{C})$.
Lemma 3.3 Under the notations above, one has
(i) $\widetilde{\mathrm{g}}=\mathrm{g}^{1}+\left(\mathbb{C} I_{n+1}\right.$,
(ii) $\{0\} \times \mathfrak{q}_{w_{0}}=\mathrm{g}_{v_{0}}^{1}$.

Proof (i) Let $B \in \widetilde{\mathrm{~g}}$, then $e^{B} \in \widetilde{G}$. One can write $e^{B}=\lambda A$ for some $\lambda \in \mathbb{C}^{*}$ and $A \in$ G. Let $\mu \in \mathbb{C}$ such that $e^{\mu}=\lambda$, then $e^{B-\mu I_{n+1}}=A$. Since $B-\mu I_{n+1} \in P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}$, so $B-\mu I_{n+1} \in \exp ^{-1}(G) \cap P \mathcal{K}_{\eta, r}(\mathbb{C}) P^{-1}=$ g. By Corollary 2.11, there exists $k \in \mathbb{Z}$ such that $B^{\prime}:=B-\mu I_{n+1}+2 i k \pi I_{n+1} \in \mathrm{~g}^{1}$. Then $B \in \mathrm{~g}^{1}+\mathbb{C} I_{n+1}$ and hence $\widetilde{\mathrm{g}} \subset \mathrm{g}^{1}+\mathbb{C} I_{n+1}$. Since $\mathrm{g}^{1} \subset \widetilde{\mathrm{~g}}$ and $\mathbb{C}_{n+1} \subset \widetilde{\mathrm{~g}}$, it follows that $\mathrm{g}^{1}+\mathbb{C}_{n+1} \subset \widetilde{\mathrm{~g}}$ (since $\widetilde{\mathrm{g}}$ is an additive group, by Lemma 3.2). This proves (i).
(ii) Since $\Psi(\mathfrak{q})=\mathfrak{g}^{1}$ and $v_{0}=\left(1, w_{0}\right)$, we obtain for every $f=(B, b) \in \mathfrak{q}$,

$$
\Psi(f) v_{0}=\left[\begin{array}{ll}
0 & 0 \\
b & B
\end{array}\right]\left[\begin{array}{c}
1 \\
w_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
b+B w_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
f\left(w_{0}\right)
\end{array}\right] .
$$

Hence $\mathrm{g}_{v_{0}}^{1}=\{0\} \times \mathfrak{q}_{w_{0}}$.
Lemma 3.4 The following assertions are equivalent:
(i) $\overline{\overline{\mathfrak{q}_{w_{0}}}}=\mathbb{C}^{n}$;
(ii) $\mathrm{g}_{v_{0}}^{1}=\{0\} \times \mathbb{C}^{n}$;
(iii) $\overline{\widetilde{\mathrm{g}}_{v_{0}}}=\mathbb{C}^{n+1}$.

Proof (i) \Leftrightarrow (ii) follows from the fact that $\{0\} \times \mathfrak{q}_{w_{0}}=g_{v_{0}}^{1}$ (Lemma 3.3 (ii)).
(ii) \Rightarrow (iii) By Lemma 3.3 (ii), $\widetilde{\mathrm{g}}_{v_{0}}=\mathrm{g}_{v_{0}}^{1}+\mathbb{C} v_{0}$. Since $v_{0}=\left(1, w_{0}\right) \notin\{0\} \times \mathbb{C}^{n}$ and $\mathbb{C} I_{n+1} \subset \widetilde{\mathbf{g}}$, we obtain $\mathbb{C} v_{0} \subset \widetilde{\mathbf{g}}_{v_{0}}$ and so $\mathbb{C} v_{0} \subset \overline{\widetilde{\mathrm{~g}}_{v_{0}}}$. Therefore $\mathbb{C}^{n+1}=\{0\} \times \mathbb{C}^{n} \oplus \mathbb{C} v_{0}=$ $\overline{\overline{\mathrm{g}_{v_{0}}}} \oplus \mathbb{C} v_{0} \subset \overline{\widetilde{\mathrm{~g}}_{v_{0}}}$ (since, by Lemma 3.2, $\widetilde{\mathrm{g}}_{v_{0}}$ is an additive subgroup of $\left.\mathbb{C}^{n+1}\right)$. Thus $\stackrel{\widetilde{\mathrm{g}}_{v_{0}}}{ }=\mathbb{C}^{n+1}$.
(iii) \Rightarrow (ii) Let $x \in \mathbb{C}^{n}$, then $(0, x) \in \overline{\widetilde{\mathbf{g}}_{v_{0}}}$ and there exists a sequence $\left(A_{m}\right)_{m \in \mathbb{N}} \subset \widetilde{\mathbf{g}}$ such that $\lim _{m \rightarrow+\infty} A_{m} v_{0}=(0, x)$. By Lemma 3.3, we can write $A_{m} v_{0}=\lambda_{m} v_{0}+B_{m} v_{0}$ with $\lambda_{m} \in \mathbb{C}$ and $B_{m}=\left[\begin{array}{cc}0 & 0 \\ b_{m} & B_{m}^{1}\end{array}\right] \in \mathrm{g}^{1}$ for every $m \in \mathbb{N}$. Since $B_{m} v_{0} \in\{0\} \times$ \mathbb{C}^{n} for every $m \in \mathbb{N}$, we have $A_{m} v_{0}=\left(\lambda_{m}, b_{m}+B_{m}^{1} w_{0}+\lambda_{m} w_{0}\right)$. It follows that $\lim _{m \rightarrow+\infty} \lambda_{m}=0$ and $\lim _{m \rightarrow+\infty} A_{m} v_{0}=\lim _{m \rightarrow+\infty} B_{m} v_{0}=(0, x)$, thus $(0, x) \in \overline{\mathrm{g}_{v_{0}}^{1}}$. Hence $\{0\} \times \mathbb{C}^{n} \subset \overline{\mathrm{~g}_{v_{0}}^{1}}$. Since $\mathrm{g}^{1} \subset \Psi(\operatorname{MA}(n, \mathbb{C})), \mathrm{g}_{v_{0}}^{1} \subset\{0\} \times \mathbb{C}^{n}$, and we conclude that $\overline{\mathbf{g}_{v_{0}}^{1}}=\{0\} \times \mathbb{C}^{n}$.

Lemma 3.5 Let $x \in \mathbb{C}^{n}$ and $G=\Phi(\mathcal{G})$. The following are equivalent:
(i) $\overline{\mathcal{G}(x)}=\mathbb{C}^{n}$;
(ii) $\overline{\overline{G(1, x)}}=\{1\} \times \mathbb{C}^{n}$;
(iii) $\widetilde{\widetilde{G}(1, x)}=\mathbb{C}^{n+1}$.

Proof (i) \Leftrightarrow (ii) is obvious, since $\{1\} \times \mathcal{G}(x)=G(1, x)$ by construction.
(iii) \Rightarrow (ii) Let $y \in \mathbb{C}^{n}$ and $\left(B_{m}\right)_{m}$ a sequence in \widetilde{G} with $\lim _{m \rightarrow+\infty} B_{m}(1, x)=$ $(1, y)$. One can write $B_{m}=\lambda_{m} \Phi\left(f_{m}\right)$ with $f_{m} \in \mathcal{G}$ and $\lambda_{m} \in \mathbb{C}^{*}$, thus $B_{m}(1, x)=$ $\left(\lambda_{m}, \lambda_{m} f_{m}(x)\right)$, so $\lim m \rightarrow+\infty \lambda_{m}=1$. Therefore,

$$
\lim _{m \rightarrow+\infty} \Phi\left(f_{m}\right)(1, x)=\lim _{m \rightarrow+\infty} \frac{1}{\lambda_{m}} B_{m}(1, x)=(1, y)
$$

Hence, $(1, y) \in \overline{G(1, x)}$.
(ii) \Rightarrow (iii) \quad Since $\mathbb{C}^{n+1} \backslash\left(\{0\} \times \mathbb{C}^{n}\right)=\bigcup_{\lambda \in \mathbb{C}^{*}} \lambda\left(\{1\} \times \mathbb{C}^{n}\right)$ and for every $\lambda \in \mathbb{C}^{*}$, $\lambda G(1, x) \subset \widetilde{G}(1, x)$, we get

$$
\mathbb{C}^{n+1}=\overline{\mathbb{C}^{n+1} \backslash\left(\{0\} \times \mathbb{C}^{n}\right)}=\overline{\bigcup_{\lambda \in \mathbb{C}^{*}} \lambda\left(\{1\} \times \mathbb{C}^{n}\right)}=\overline{\bigcup_{\lambda \in \mathbb{C}^{*}} \lambda \overline{G(1, x)} \subset \overline{\widetilde{G}(1, x)} ~}
$$

Hence $\mathbb{C}^{n+1}=\overline{\widetilde{G}(1, x)}$.
Proof of Theorem 1.1 (ii) \Rightarrow (i) is obvious.
(i) \Rightarrow (ii) Suppose that \mathcal{G} is hypercyclic, so $\overline{\mathcal{G}(x)}=\widetilde{\mathbb{C}^{n}}$ for some $x \in \mathbb{C}^{n}$. By Lemma 3.5 (iii), $\widetilde{\widetilde{G}(1, x)}=\mathbb{C}^{n+1}$, and by Theorem 3.1, $\overline{\widetilde{G}\left(v_{0}\right)}=\mathbb{C}^{n+1}$. Then by Lemma 3.5, $\overline{\mathcal{G}\left(w_{0}\right)}=\mathbb{C}^{n}$, since $v_{0}=\left(1, w_{0}\right)$.
(ii) \Rightarrow (iii)_Suppose that $\overline{\mathcal{G}\left(w_{0}\right)}=\mathbb{C}^{n}$. By Lemma 3.5, $\widetilde{\widetilde{G}\left(v_{0}\right)}=\mathbb{C}^{n+1}$, and by Theorem 3.1, $\overline{\mathbf{g}_{v_{0}}}=\mathbb{C}^{n+1}$. Then by Lemma 3.4, $\overline{\mathfrak{q}_{w_{0}}}=\mathbb{C}^{n}$.
(iii) \Rightarrow (ii) Suppose that $\overline{\mathfrak{q}_{w_{0}}}=\mathbb{C}^{n}$. By Lemma 3.4, $\overline{\tilde{\mathrm{g}}_{v_{0}}}=\mathbb{C}^{n+1}$, and by Theorem 3.1, $\widetilde{G}\left(v_{0}\right)=\mathbb{C}^{n+1}$. Then by Lemma 3.5, $\overline{\mathcal{G}\left(w_{0}\right)}=\mathbb{C}^{n}$.

Proof of Corollary 1.2 Assume that $\mathcal{G} \subset \operatorname{GL}(n, \mathbb{C})$. Then take $P=\operatorname{diag}(1, Q)$ and $G=\Phi(\mathcal{G})$, so $P^{-1} G P \subset \mathcal{K}_{\eta, r^{\prime}+1}(\mathbb{C})$ where $\eta=\left(1, n_{1}^{\prime}, \ldots, n_{r^{\prime}}^{\prime}\right)$. Hence $u_{0}=$ $\left(1, u_{0}^{\prime}\right), v_{0}=P u_{0}=\left(1, Q u_{0}^{\prime}\right)$ and thus $w_{0}=Q u_{0}^{\prime}=v_{0}^{\prime}$. Every $f=(A, 0) \in \mathcal{G}$ is simply noted A. Then for every $A \in \mathcal{G}, \Phi(A)=\operatorname{diag}(1, A)$. We can verify that $\mathrm{g}^{1}=\left\{\operatorname{diag}(0, B): B \in \mathrm{~g}^{\prime}\right\}$ where $\mathrm{g}^{\prime}=\exp ^{-1}(\mathcal{G}) \cap Q\left(\mathcal{K}_{\eta^{\prime}, r^{\prime}}(\mathbb{C})\right) Q^{-1}$, and so $\mathfrak{q}=$ $\Psi^{-1}\left(g^{1}\right)=g^{\prime}$. Hence the proof of Corollary 1.2 follows directly from Theorem 1.1.

4 Finitely Generated Subgroups

Recall the following result, proved in [1], which, applied to G, can be stated as follows.
Proposition 4.1 ([1, Proposition 8.1]) Suppose that G is generated by A_{1}, \ldots, A_{p} and let $B_{1}, \ldots, B_{p} \in \mathrm{~g}$ such that $A_{k}=e^{B_{k}}, k=1, \ldots, p$, and $P \in \operatorname{GL}(n+1, \mathbb{C})$ satisfying $P^{-1} G P \subset \mathcal{K}_{\eta, r}^{*}(\mathbb{C})$. Then

$$
\mathrm{g}=\sum_{k=1}^{p} \mathbb{Z} B_{k}+2 i \pi \sum_{k=1}^{r} \mathbb{Z} P J_{k} P^{-1} \quad \text { and } \quad \mathrm{g}_{v_{0}}=\sum_{k=1}^{p} \mathbb{Z} B_{k} v_{0}+\sum_{k=1}^{r} 2 i \pi \mathbb{Z} P e^{(k)},
$$

where $J_{k}=\operatorname{diag}\left(J_{k, 1}, \ldots, J_{k, r}\right)$ with $J_{k, i}=0 \in \mathbb{T}_{n_{i}}(\mathbb{C})$ if $i \neq k$ and $J_{k, k}=I_{n_{k}}$.
Proposition 4.2 Let \mathcal{G} be an abelian subgroup of $\operatorname{GA}\left(n,(\mathbb{C})\right.$ generated by f_{1}, \ldots, f_{p} and let $f_{1}^{\prime}, \ldots, f_{p}^{\prime} \in \mathfrak{q}$ such that $e^{\Psi\left(f_{k}^{\prime}\right)}=\Phi\left(f_{k}\right), k=1, \ldots, p$. Let P be as in Proposition 2.1. Then

$$
\mathfrak{q}_{w_{0}}= \begin{cases}\sum_{k=1}^{p} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right)+\sum_{k=2}^{r} 2 i \pi \mathbb{Z} p_{2}\left(P e^{(k)}\right) & \text { if } r \geq 2, \\ \sum_{k=1}^{p} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right) & \text { if } r=1 .\end{cases}
$$

Proof Let $G=\Phi(\mathcal{G})$. Then G is generated by $\Phi\left(f_{1}\right), \ldots, \Phi\left(f_{p}\right)$. Apply Proposition 4.1 to $G, A_{k}=\Phi\left(f_{k}\right), B_{k}=\Psi\left(f_{k}^{\prime}\right) \in \mathrm{g}^{1}$, then we have

$$
\mathrm{g}=\sum_{k=1}^{p} \mathbb{Z} \Psi\left(f_{k}^{\prime}\right)+2 i \pi \mathbb{Z} \sum_{k=1}^{r} P J_{k} P^{-1} .
$$

We have $\sum_{k=1}^{p} \mathbb{Z} \Psi\left(f_{k}^{\prime}\right) \subset \Psi(\operatorname{MA}(n, \mathbb{C}))$. Moreover, for every $k=2, \ldots, r$, $J_{k} \in \Psi(\operatorname{MA}(n, \mathbb{C}))$, hence $P J_{k} P^{-1} \in \Psi(\operatorname{MA}(n, \mathbb{C}))$, since $P \in \Phi(\operatorname{GA}(n, \mathbb{C}))$. However, $m P J_{1} P^{-1} \notin \Psi(\operatorname{MA}(n, \mathbb{C}))$ for every $m \in \mathbb{Z} \backslash\{0\}$, since J_{1} has the form $J_{1}=\operatorname{diag}\left(1, J^{\prime}\right)$ where $J^{\prime} \in M_{n}(\mathbb{C})$. As $\mathrm{g}^{1}=\mathrm{g} \cap \Psi(\mathrm{MA}(n, \mathbb{C}))$, then $m P J_{1} P^{-1} \notin \mathrm{~g}^{1}$ for every $m \in \mathbb{Z} \backslash\{0\}$. Hence we obtain

$$
\mathrm{g}^{1}= \begin{cases}\sum_{k=1}^{p} \mathbb{Z} \Psi\left(f_{k}^{\prime}\right)+\sum_{k=2}^{r} 2 i \pi \mathbb{Z} P J_{k} P^{-1} & \text { if } r \geq 2 \\ \sum_{k=1}^{p} \mathbb{Z} \Psi\left(f_{k}^{\prime}\right) & \text { if } r=1\end{cases}
$$

Since $J_{k} u_{0}=e^{(k)}$, we get

$$
\mathrm{g}_{v_{0}}^{1}= \begin{cases}\sum_{k=1}^{p} \mathbb{Z} \Psi\left(f_{k}^{\prime}\right) v_{0}+\sum_{k=2}^{r} 2 i \pi \mathbb{Z} P e^{(k)} & \text { if } r \geq 2 \\ \sum_{k=1}^{p} \mathbb{Z} \Psi\left(f_{k}^{\prime}\right) v_{0} & \text { if } r=1\end{cases}
$$

By Lemma 3.3 (iii), one has $\{0\} \times \mathfrak{q}_{w_{0}}=g_{v_{0}}^{1}$ and $\Psi\left(f_{k}^{\prime}\right) v_{0}=\left(0, f_{k}^{\prime}\left(w_{0}\right)\right)$, so $\mathfrak{q}_{w_{0}}=p_{2}\left(\mathrm{~g}_{v_{0}}^{1}\right)$. It follows that

$$
\mathfrak{q}_{w_{0}}= \begin{cases}\sum_{k=1}^{p} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right)+\sum_{k=2}^{r} 2 i \pi \mathbb{Z} p_{2}\left(P e^{(k)}\right) & \text { if } r \geq 2 \\ \sum_{k=1}^{p} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right) & \text { if } r=1\end{cases}
$$

The proof is complete.
Recall the following proposition, which was proved in [7].
Proposition 4.3 (cf. [7, p. 35]) Let $F=\mathbb{Z} u_{1}+\cdots+\mathbb{Z} u_{p}$ with $u_{k}=\operatorname{Re}\left(u_{k}\right)+i \operatorname{Im}\left(u_{k}\right)$, where $\operatorname{Re}\left(u_{k}\right), \operatorname{Im}\left(u_{k}\right) \in \mathbb{R}^{n}, k=1, \ldots, p$. Then F is dense in \mathbb{C}^{n} if and only if for every $\left(s_{1}, \ldots, s_{p}\right) \in \mathbb{Z}^{p} \backslash\{0\}:$

$$
\operatorname{rank}\left[\begin{array}{ccc}
\operatorname{Re}\left(u_{1}\right) & \cdots & \operatorname{Re}\left(u_{p}\right) \\
\operatorname{Im}\left(u_{1}\right) & \cdots & \operatorname{Im}\left(u_{p}\right) \\
s_{1} & \cdots & s_{p}
\end{array}\right]=2 n+1
$$

Proof of Theorem 1.3 This follows directly from Theorem 1.1, Propositions 4.2 and 4.3.

Proof of Corollary 1.4 First, by Proposition 4.3 , if $F=\mathbb{Z} u_{1}+\cdots+\mathbb{Z} u_{m}, u_{k} \in \mathbb{C}^{n}$ with $m \leq 2 n$, then F cannot be dense in \mathbb{C}^{n}. Now, by the form of $\mathfrak{q}_{w_{0}}$ in Proposition 4.2, $\mathfrak{q}_{w_{0}}$ cannot be dense in \mathbb{C}^{n}, and so Corollary 1.4 follows by Theorem 1.3.

Proof of Corollary 1.5 Since $n \leq 2 n-r+1$ (because $r \leq n+1$), Corollary 1.5 follows from Corollary 1.4.

5 Example

Example 5.1 Let \mathcal{G} the subgroup of $\mathrm{GA}(2, \mathrm{C})$ generated by $f_{1}=\left(A_{1}, a_{1}\right), f_{2}=$ $\left(A_{2}, a_{2}\right), f_{3}=\left(A_{3}, a_{3}\right)$ and $f_{4}=\left(A_{4}, a_{4}\right)$, where

$$
\begin{array}{ll}
a_{1}=I_{2}, & a_{1}=(1+i, 0) \\
A_{2}=\operatorname{diag}\left(1, e^{-2+i}\right), & a_{2}=(0,0) \\
A_{3}=\operatorname{diag}\left(1, e^{\frac{-\sqrt{2}}{\pi}+i\left(\frac{\sqrt{2}}{2 \pi}-\frac{\sqrt{3}}{2}\right)}\right), & a_{3}=\left(\frac{-\sqrt{3}}{2 \pi}+i\left(\frac{\sqrt{5}}{2}-\frac{\sqrt{3}}{2 \pi}\right), 0\right), \\
A_{4}=I_{2}, & a_{4}=(2 i \pi, 0)
\end{array}
$$

Then \mathcal{G} is hypercyclic.

Proof First one can check that \mathcal{G} is abelian: $f_{i} \circ f_{j}=f_{j} \circ f_{i}$ for every $i, j=1,2,3,4$. Let by $G=\Phi(\mathcal{G})$. Then G is generated by

$$
\begin{gathered}
\Phi\left(f_{1}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1+i & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \Phi\left(f_{2}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-2+i}
\end{array}\right], \\
\Phi\left(f_{3}\right)=\left[\begin{array}{ccc}
\frac{-\sqrt{3}}{2 \pi}+i\left(\frac{\sqrt{5}}{2}-\frac{\sqrt{3}}{2 \pi}\right) & 1 & 0 \\
0 \\
0 & 0 & e^{\frac{-\sqrt{2}}{\pi}+i\left(\frac{\sqrt{2}}{2 \pi}-\frac{\sqrt{7}}{2}\right)}
\end{array}\right], \quad \Phi\left(f_{4}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 i \pi & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

Let $f_{i}^{\prime}=\left(B_{i}, b_{i}\right), i=1,2,3,4$ where

$$
\begin{array}{ll}
B_{1}=\operatorname{diag}(0,0)=0, & b_{1}=(1+i, 0), \\
B_{2}=\operatorname{diag}(0,-2+i), & b_{2}=(0,0) \\
B_{3}=\operatorname{diag}\left(0, \frac{-\sqrt{2}}{\pi}+i\left(\frac{\sqrt{2}}{2 \pi}-\frac{\sqrt{7}}{2}\right)\right), & b_{3}=\left(\frac{-\sqrt{3}}{2 \pi}+i\left(\frac{\sqrt{5}}{2}-\frac{\sqrt{3}}{2 \pi}\right), 0\right), \\
B_{4}=\operatorname{diag}(0,0)=0, & b_{4}=(2 i \pi, 0) .
\end{array}
$$

Then we have $e^{\Psi\left(f_{i}^{\prime}\right)}=\Phi\left(f_{i}\right), i=1,2,3,4$.
Here $r=2, \eta=(2,1), G$ is an abelian subgroup of $\mathcal{K}_{(2,1), 2}^{*}(\mathbb{C})$. We have $P=I_{3}$, $\varphi=\left(I_{2}, 0\right), u_{0}=v_{0}=(1,0,1), e^{(2)}=(0,0,1)$ and $w_{0}=(0,1)$. By Proposition 4.2, $\mathfrak{q}_{w_{0}}=\sum_{k=1}^{4} \mathbb{Z} f_{k}^{\prime}\left(w_{0}\right)+2 i \pi \mathbb{Z} p_{2}\left(e^{(2)}\right)$. On the other hand, for every $\left(s_{1}, s_{2}, s_{3}, s_{4}, t_{2}\right) \in$ $\mathbb{Z}^{5} \backslash\{0\}$, write

$$
M_{\left(s_{1}, s_{2}, s_{3}, s_{4}, t_{2}\right)}=
$$

$$
\left[\begin{array}{ccccc}
\operatorname{Re}\left(B_{1} w_{0}+b_{1}\right) & \operatorname{Re}\left(B_{2} w_{0}+b_{2}\right) & \operatorname{Re}\left(B_{3} w_{0}+b_{3}\right) & \operatorname{Re}\left(B_{4} w_{0}+b_{4}\right) & 0 \\
\operatorname{Im}\left(B_{1} w_{0}+b_{1}\right) & \operatorname{Im}\left(B_{2} w_{0}+b_{2}\right) & \operatorname{Im}\left(B_{3} w_{0}+b_{3}\right) & \operatorname{Im}\left(B_{4} w_{0}+b_{4}\right) & 2 \pi e^{(2)} \\
s_{1} & s_{2} & s_{3} & s_{4} & t_{2}
\end{array}\right] .
$$

Then the determinant:

$$
\begin{aligned}
\Delta & =\operatorname{det}\left(M_{\left(s_{1}, s_{2}, s_{3}, s_{4}, t_{2}\right)}\right)=\left|\begin{array}{ccccc}
1 & 0 & -\frac{\sqrt{3}}{2 \pi} & 0 & 0 \\
0 & -2 & -\frac{\sqrt{2}}{\pi} & 0 & 0 \\
1 & 0 & \frac{\sqrt{5}}{2}-\frac{\sqrt{3}}{2 \pi} & 2 \pi & 0 \\
0 & 1 & \frac{\sqrt{2}}{2 \pi}-\frac{\sqrt{7}}{2} & 0 & 2 \pi \\
s_{1} & s_{2} & s_{3} & s_{4} & t_{2}
\end{array}\right| \\
& =2 \pi\left(-s_{1} \sqrt{3}+2 s_{2} \sqrt{2}-4 s_{3} \pi+s_{4} \sqrt{5}-t_{2} \sqrt{7}\right) .
\end{aligned}
$$

Since $\pi, \sqrt{2}, \sqrt{3}, \sqrt{5}$ and $\sqrt{7}$ are rationally independent, $\Delta \neq 0$ for every $\left(s_{1}, s_{2}, s_{3}, s_{4}, t_{2}\right) \in \mathbb{Z}^{5} \backslash\{0\}$. It follows that $\operatorname{rank}\left(M_{\left(s_{1}, s_{2}, s_{3}, s_{4}, t_{2}\right)}\right)=5$. Hence f_{1}, \ldots, f_{4} satisfy the property \mathcal{D}. By Theorem 1.3, \mathcal{G} is hypercyclic.

References

[1] A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL (n, C). In: Foliations 2005, World Sci. Publ., Hackensack, NJ, 2006, 47-69.
[2] A. Ayadi, H. Marzougui and Y. N'dao, On the dynamic of abelian groups of affine maps on \mathbb{C}^{n} and \mathbb{R}^{n}. Preprint, ICTP, IC /2009/062, 2009.
[3] F. Bayart and E. Matheron, Dynamics of Linear Operators. Cambridge Tracts in Math. 179, Cambridge University Press, 2009.
[4] M. Javaheri, A generalization of Dirichlet approximation theorem for the affine actions on real line. J. Number Theory 128(2008), 1146-1156. http://dx.doi.org/10.1016/j.jnt.2007.08.008
[5] R. S. Kulkarni, Dynamics of linear and affine maps. Asian J. Math. 12(2008), 321-344.
[6] V. Bergelson, M. Misiurewicz and S. Senti, Affine actions of a free semigroup on the real line. Ergodic Theory Dynam. Systems 26(2006), 1285-1305. http://dx.doi.org/10.1017/S014338570600037X
[7] M. Waldschmidt, Topologie des points rationnels. Cours de Troisième Cycle, Université P. et M. Curie (Paris VI), 1994/95.

Department of Mathematics, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
e-mail: adlenesoo@yahoo.com

[^0]: Received by the editors March 21, 2011; revised October 12, 2011. Published electronically July 27, 2012.
 This work is supported by the research unit systèmes dynamiques et combinatoire: 99UR15-15.
 AMS subject classification: 37C85, 47A16.
 Keywords: affine, hypercyclic, dense, orbit, affine group, abelian.

