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Abstract 

The capability to manufacture at home is continually increasing with technologies, such as 3D printing. 

However, the ability to design products suitable for manufacture and use remains a highly-skilled and 

knowledge intensive activity. This has led to ‘content creators’ providing vast repositories of 

manufacturable products for society, however challenges remain in the search & retrieval of models. 

This paper presents the surrogate model convolutional neural networks approach to search and retrieve 

CAD models by mapping them directly to their real-world photographed counterparts. 

Keywords: 3D printing, computer-aided design (CAD), design informatics, surrogate models, 
convolutional neural networks 

1. Introduction 

3D printing has been recognised by many as the technology that will lead to the “prosumption” society 

where individuals are both producers and consumers of goods and services (Hermans, 2015). While 

3D printing has democratised the manufacture of components due to its low-price and suitability for 

home use, many individuals in society are still limited in applying this technology due to the 

underlying Design & Manufacture (D&M) knowledge required to produce the Computer Aided 

Design (CAD) models required for the process. 

To overcome this, a range of online CAD repositories have arisen where experts are able to upload 

their manufacturable models for others to download and print. These individuals are often referred to 

as “content creators”. For example, Thingiverse holds 1,655,150 CAD models and sees millions of 

downloads every month (https://www.thingiverse.com/about/), whilst GrabCAD features 4,030,000 

produced by 6,920,000 content creators (https://grabcad.com/library). These CAD data lakes have 

since become an emergent area for research with researchers investigating the open source nature of 

design and ability to share knowledge, as well as the barriers in the application of stored 3D models 

due to the variety in geometric representations used (e.g. .stl, .ipt, .iges, .f3d) (Buehler et al., 2015; 

Baumann and Roller, 2018; Alcock et al., 2016). Given the wealth of available models for individuals 

to download, the challenge that this paper identifies lies in search and retrieval. 

Search & retrieval is currently achieved by individuals having the necessary knowledge and 

understanding to describe the models they have created as well as consumers in the search terms used. 

Descriptions that should embody both form and application of the model. This is where one 

encounters all the traditional challenges of text-based search and retrieval. Given the model geometry, 
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could one not use this to support the search and retrieval of models and further democratise the D&M 

process for 3D printing? 

This paper answers this question by applying Convolutional Neural Networks (CNNs) trained on a 

surrogate model of rendered images produced from CAD files in online repositories. A surrogate 

model in this context is a training set that has been generated to simulate the real-world data that will 

be provided to the CNN for prediction. Training through a surrogate model mitigates one of the 

biggest challenges in CNNs, which is having a rich labelled dataset to train on. The trained CNN then 

allows individuals to take images/live video of real-world objects and have the CNN suggest the 

closest matching CAD model available in the repository, thereby meeting our overall objective of 

democratising 3D printing. 

The related work in re-engineering CAD models is now discussed (Section 2). This is then followed 

by the description of the surrogate model Convolutional Neural Network and subsequent study used to 

evaluate the potential of the approach (Section 3). The results are then presented (Section 4) followed 

by a discussion on future work (Section 5). The paper then concludes by highlighting the key findings 

from the study (Section 6). 

2. Related work 

Research into the generation of CAD models from real-world models can be grouped as single-

image object recognition, multi-image to 3D object reproduction and object-scanning to 3D model 

reproduction. In addition, there have been a few studies showing the potential of Neural Networks 

for 3D geometry primarily focused on the matching of digital 3D geometry (Zaki et al., 2016; 

Maturana and Scherer, 2015). These are now discussed in relation to their potential for 

democratising the D&M process of 3D printing. 

2.1. Single-image object recognition 

Single-image object reproduction estimates 3D geometry from 2D images. When recovering 

polyhedral objects, reconstruction algorithms assume parallel projection from an oblique view - a 

valid assumption for relatively short objects where perspective projection is negligible (Lee and 

Fang, 2011). 

Using “large differences between neighbouring elements by sharp spatial gradient”, boundary 

detection identifies object edges (Liu et al., 2005). These edges are built into a surface using 

rectification to remove objective distortion and image vanishing points to produce affine geometry. 

Affine geometry is converted to a parallel original-image projection using circular vanishing points. 

A control polyhedron is applied to the surface, followed by control-point cubic corner inflation to 

produce 3D representations (Jha and Gurumoorthy, 2014). 

Single-image object reproduction is only capable of reproducing visible views, meaning the final 

model inevitably lacks detail, unless it is rotationally symmetric with the view used (Figure 1a) (Van 

den Heuvel, 1998). Single images lose true depth information of a scene point in 2D projection, 

meaning depth recovery is required to re-produce a 3D object (Liu et al., 2005). Hence single-image 

object recognition is limited to (and only advantageous in) simple geometry cases such as a logo, 

where one view can capture the entire geometry. 

2.2. Multi-image to 3D object reproduction 

Multi-image to 3D object reproduction uses several object viewpoints to build a 3D model (Figure 1), 

known as multi-view stereopsis (Furukawa and Ponce, 2009). Multi-view stereopsis uses a 

reconstruction pipeline to produce 3D object surfaces. Camera parameters, such as focal length, are 

estimated by comparing images, allowing image calibration. Common features are identified and 

matched between images, producing connection points. An initial view is selected, and additional 

views added sequentially through connecting points, producing a sparse cloud representation of the 

object. The sparse-point cloud is converted into a dense-cloud by computing image pixel depths across 

surfaces of corresponding object images. This produces a depth-map, filtered and converted to a 

detailed 3D object model (Tingdahl and Van Gool, 2011). 
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ARC3D is a commercial tool that applies this technique for 3D geometry generation (Figure 1b). The 

tool is advantageous as the scanned object size is scale free enabling both small and large items to be 

re-created. However, the tool can find ‘weak’ textures, such as skin and reflective surfaces, challenging 

with the resulting surface often requiring post-processing tools to produce acceptable surface 

resolution (Anon, n.d.). In addition, the method re-constructs a surface and further checks are required 

to ensure the surface forms a body and that the resulting body is suitable of 3D printing. This post-

processing requires knowledge, skills and tools in digital image processing and surface geometry 

manipulation, meaning poor usability for the home consumer. 

2.3.  Object-scanning to 3D model reproduction 

Another approach that has been taken is to apply object scanning of the model using distance 

measuring devices, such as lasers. These systems create a point-cloud, which is used to create a mesh 

of the object. Filtering techniques, such as Kalman filters, reduce surface noise and roughness effects 

of measurement uncertainty (Weiss-Cohen et al., 2009). The MakerBot Digitiser is one such example 

of a commercial solution that applies this approach (Figure 1c). 

Challenges in this approach are in the time it takes to complete a scan (typically 12 min for the MakerBot 

Digitiser) and missing occluded surfaces often resulting in a convex hull of the item being scanned. Post-

scan, individuals are still required to the check the mesh to ensure it form a complete body. Again, there is 

an underlying requirement for the individual to have knowledge of manipulating geometry. 

2.4. Convolutional neural networks 

Convolutional Neural Networks (CNN) have also been applied with the focus on matching digital 

3D geometries. For example, Zaki et al. (2016) has trained a CNN on multi-view renders of 3D 

geometry and used these to cluster and classify other 3D geometries (Figure 1d). A potential use 

case for this is the matching of similar parts across product families with a view to reduce the part 

variety in an organisations supply chain. While Maturana and Scherer (2015) have sought to 

augment depth mapped images with Neural Networks to develop voxel-based approximations of 

objects within a scene. 

  
(a) Single-image (Van den Heuvel, 1998) (b) Multi-image re-construction (Katholieke 

Universiteit Leuven Visics Group, 2011) 

  
(c) Makerbot digitiser (Makerbot Industries, 2015) (d) CNN CAD-to-CAD matching 

(Zaki et al., 2016) 

Figure 1. Approaches to 3D model reproduction 
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2.5. Summary 

These results show the promise of CNNs as a means of supporting geometry matching and classification 

and this paper further contributes to this space by investigating the potential of CAD renders to form a 

surrogate model for the CNN to be trained on and its subsequent accuracy in classifying a set of 

real-world photographs. Achieving this would eliminate the need to build labelled datasets of real-

world images featuring the objects of interest as well as being able to relate real -world objects to 

3D printable CAD files. Table 1 summarises the advantages and disadvantages of the four 

approaches. 

Table 1. Comparing approaches to object reconstruction 

 

The paper now continues into the development of the study to investigate the potential of surrogate 

model convolutional neural networks to democratise D&M through the matching of 3D printable CAD 

files to real-world objects. 

3. Study 

The investigation into the potential of generating a surrogate model from CAD renders to train a CNN 

that will be used to evaluate real-world photos followed a four-step process. 

1. Model selection 

2. Generating the surrogate model 

3. Train 

4. Test & refine 

 

The first step involved selecting a subset of CAD models held within GrabCAD that will be used 

to generate the surrogate model. With the models chosen, the surrogate model was developed. The 

process then preceded into training a series of CNNs using the surrogate model. To test the CNNs, 

a set of test images generated from real-world 3D printed versions of the CAD models was 

created and metrics on the accuracy of prediction were created. Following the results from the 

initial test, experiments were then performed to see how one could refine the model by reducing 

the computational cost of generating the surrogate model by reducing the number of images 

rendered and applying rotation, reflection and scaling augmentation strategies. Each step is now 

discussed in further detail. 

3.1. Model selection 

The parts selected are shown in Figure 2. The rationale for their selection is that they were some of the 

most popular models on GrabCAD and feature a mixture of everyday objects individuals might wish 
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to produce. In addition, models were selected based on having similar geometric profiles to test the 

level at which the CNN could differentiate between models. The primary example for this test is 

between the car and mouse (Figure 2d and 2e). 

   
(a) Coffee cup (Bourque, 2018) (b) Turbine (Solanki, 2019) (c) Gear (Karlie, 2018) 

  
(d) Car (Amagliani, 2018) (e) Mouse (Patil, 2018) 

Figure 2. Models selected from GrabCAD 

3.2. Generating the surrogate model 

To generate the surrogate model, the models (in STL format) were placed in Blender and 500x500 

pixel renders produced at 6° increments rotating about the y and z axes (Figure 3a). The scene has 

been set-up to mimic a lightbox in order to emphasise the geometric features and patterns of the 

models and normalise the background. This was validated against a real-world lightbox scene through 

linear intensity correlation using the Pearson Correlation Coefficient and colour distribution closeness 

using Bhattacharyya distance. This resulted in a set of rendered images labelled against the CAD 

models Figure 3b. The rendering time for the 915 image dataset was 4.1 h. 

  
(a) Rendering the object in 6° increments (b) Collage of renders 

Figure 3. Surrogate model 
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3.3. Train 

With the surrogate model generated, the study moved to training the CNN. Five CNNs were 

selected to investigate the influence of the CNN architecture on the accuracy and computational 

requirements. This also ensures that the particular implementation does not skew the findings in 

evaluating the potential of CNNs as an approach for CAD model to real-world image classification. 

The CNNs are described in Table 2 and have been developed to be trained on labelled images 

having all performed well in CNN competitions, such as ImageNet. For each model, the surrogate 

model renders where re-scaled to the required input size. 

Table 2. CNNs evaluated 

 

The CNN training, validation and testing applied the well-established 80% training, 10% validation 

and 10% testing. In this case, the training and validation images come from the surrogate model and 

testing from real-world images of 3D-printed versions of the CAD models. Training was left until 200 

iterations were complete. 

3.4. Test & refine 

Having trained the CNNs, three experiments were performed to evaluate the potential in using a surrogate 

model CNN for real-world object to CAD model classification. The image test used consisted of images 

taken in a controlled lightbox environment featuring 3D printed versions of the CAD models and totalled 

48 images (Figure 4). Images were taken using an iPhone 6 rear-camera which has a 7.99 MP resolution, 

image sensor size of 4.8 x 3.6 mm2, focal length of 4.15 mm and field of view of 72.8°. The selection of a 

phone camera reflects the typical type of camera that would be used by the target audience of this model. 

   
(a) Car (b) Gear (c) Mouse 

Figure 4. Real-world photographs of 3D-printed models 

The first experiment compares the trained CNNs performance in relation to accurately determining the 

model captured in the real-world images. The second experiment investigates the potential in 

augmenting the surrogate model to investigate how the accuracy can be improved with minimum 

additional computational cost and the compromise that could be made between render time and CNN 

accuracy. The third and final experiment sought to understand how reducing the number of renders in 

the surrogate model effects the accuracy of the CNN. 

4. Results 

This section details the results of the three experiments outlined in Section 3.4. 

4.1. Experiment 1. CNN Comparison 

Table 3 details the performance results for the 5 CNNs trained on the surrogate model and tested 

against real-world photos. It can be seen that both AlexNet and GoogleNet perform well in identifying 
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real-world images even though they were trained on a surrogate model. This confirms that a surrogate 

model approach is viable for the classification of objects. Further, the associated mean confidence 

scores for correctly and incorrectly labelled images shows that the CNNs confidence value can be used 

as a threshold to prevent false positive detection. 

Table 3. CNN accuracy 

 

However, the ResNet and Inception models did not perform as well even though they outperform 

AlexNet and GoogleNet in the ImageNet tests. They also require significantly greater training time. 

This reveals the importance of the CNN architecture for the given application. 

From these results, AlexNet was selected as the CNN to carry forward to Experiment 2 due to its low 

training time and high accuracy. The accuracy of 83.3% also provided headroom to evaluate the 

capability of augmentation to support the training of the CNNs. 

4.2. Experiment 2. Augmentation 

Augmentation is the process of manipulating the input images in order to increase the training set size 

through methods of low-computational cost (Mikoajczyk and Grochowski, 2018). The first method is 

rotation of the image about its centre. Both 90° and 180° were trialled with 90° increasing the 

accuracy of AlexNet to 96.2%. However, this is at the detriment of the difference in confidence 

measures between correct and incorrect results (Table 4). This would lead to the tool providing a 

greater number of accurate results but with a greater likelihood of false positives. 

Table 4. Effect of augmentation on the predictive power of the CNN 

 

The second method is reflection, which was performed about the x=0 and y=0 axes of the image. 

Table 4 reveals that all forms of reflection improved the accuracy of AlexNet with x, y giving the 

greatest increase in accuracy while also maintaining a significant difference between the mean correct 

and incorrect confidence scores enabling false positive detection. 

The third method trialled was scaling of the image through the ranges of 0.9–1.1, 0.8–1.2 and 0.7–1.3. The 

centre of the image was the point at which the scaling was acted upon. This yielded results similar to 

reflection where an increase in accuracy while maintaining the difference in confidence values was preserved. 
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From these results, it was decided to continue with AlexNet trained on a surrogate model that had 

been augmented through reflection by x, y. 

4.3. Experiment 3. Reduction 

Experiment 3 investigated the potential in reducing the surrogate model dataset to provide an 

indication of the minimum level of rendering time that would be required given that one can enhance 

the dataset through augmentation. Table 5 presents the results of reducing the surrogate model dataset. 

It can be seen that an 80% reduction of the dataset can be achieved with only a 10% loss in accuracy 

and 10% reduction in the margins between confidences. This highlights the potential of using a 

reduced and less computationally expensive surrogate model dataset, 1.37 h from 4.1 h in render time. 

Figure 5 shows the confusion matrices for the four reductions. Confusion matrices visualises the 

results true to predicted class prediction made by the CNN and enables the identification of common 

classes that may be confused with one another. Out of the five models used in this study, it reveals that 

it is the coffee cup and mouse that are often miss-classified and correlates with a lack of, one might 

argue, features. In contrast, the models with a high number of features, the gear and turbine, are not 

misclassified until one reaches the 80% reduction of the surrogate model. 

  

(a) 0% (b) 20% 

  

(c) 50% (d) 80% 

Figure 5. Confusion matrices for reduced surrogate models 
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Table 5. Effect of reduction on the predictive power of the CNN 

 

5. Discussion and future work 

This study has shown the potential of surrogate model CNNs as a method of classifying real-world 

images of objects to their respective CAD model, however further work is required to fully realise this 

and for it to be used on a repository of millions of models. First and foremost is the scaling of these 

experiments to much larger surrogate models with a greater number of CAD models, as well as 

increasing the scene variance in the real-world test image set. This additional variance is likely to 

decrease the accuracy of the CNN although may be mitigate through further augmentation of the 

surrogate model to alter the scene the rendered model is in. 

Experiment 1 revealed the architecture of the CNN has a considerable effect on its performance in the 

intended application and further exploration of this is required to create a custom CNN that is 

specifically tasked for handling CAD surrogate models. Further analysis into the layer activations of 

the CNNs will provide an understanding of the most informative components of the current CNNs. 

Additional studies in optimising the training settings could also be performed for existing CNNs. 

Experiment 2 shows the power of augmentation to reduce the computational requirement on rendering 

from the CAD models with reflection providing the greatest gain in performance. Further work on 

combinations of augmentation may reduce the surrogate model render requirements. 

Experiment 3 revealed that a considerable reduction of the rendered images forming the surrogate 

model could be achieved with minimal reduction in the accuracy of the CNN. Evaluating the 

confusion matrices highlighted an emerging relationship between the complexity of the CAD model 

geometry and its probability of being misclassified. This relationship could be investigated further by 

classifying the complexity of models and correlating it to the number of misclassifications in testing 

the CNN. Understanding this relationship would enable propositions to be made on the minimum 

number of rendered images required to minimise misclassification of real-world photos to their 

respective CAD models. 

6. Conclusion 

Democratised manufacturing technologies, such as 3D printing, are providing the capability for 

society to fundamentally alter how we produce and consume goods. While the capability to 

manufacture at home is increasing, the ability to design products suitable for manufacture and use 

remains a highly skilled and knowledge intensive activity. The associated movement of ‘content 

creation’ has enabled individuals with these skills to form vast repositories of manufacturable products 

for society, however challenges remain in the search & retrieval of models. 

This study has shown the potential for Convolutional Neural Networks (CNNs) trained on surrogate 

models of CAD model renders is able to classify real-world images accurately with respect to their 

CAD counterpart. This provides a promising route whereby individuals would be able to take pictures 

of items in the real-world and be then taken to the respective CAD model for manufacture in their own 

homes. The study attained a 94.9% accurate model with the ability to detect false positives. 

Augmentation through rotation, reflection and scaling has a significant potential in reducing the 

computational time required to generate a surrogate model of the CAD models. 
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