
10

Factorization and subtractions

In Sec. 9.13 we saw how factorization theorems give a lot of predictive power to QCD.
They are essential in the analysis of data at high-energy colliders, not just for understanding
the QCD aspects but also in searches for new physics, for example.

So far we have seen a genuine proof (Sec. 8.9) only for inclusive DIS, and only in a
model theory without gauge fields. In this chapter we will formulate the principles that
apply very generally, to other reactions, and when dealing with the full complications of a
gauge theory.

The general class of problem concerns the extraction of the asymptotic behavior of
amplitudes and cross sections as some external parameter, like a momentum, gets large. In
general discussions, we denote the large parameter by Q. As well as factorization theorems
in their broadest sense, such asymptotic problems also encompass simpler situations like
renormalization, the operator product expansion (OPE), and the IR divergence issue1 in
QED.

There is a common and general mathematical structure in these different problems that
could undoubtedly use further codification. Perhaps methods based on Hopf algebras, or
some generalization, would provide an appropriate mathematical structure. So far these
methods have been applied to renormalization (e.g., Connes and Kreimer, 2000, 2002).

In this chapter, I interleave a general formal treatment with its application to the Sudakov
form factor, including explicit calculations at one-loop order. The general treatment will
underlie all further work in this book. The Sudakov form factor illustrates the issues that
are characteristic of asymptotic problems in Minkowski space, especially in a gauge theory.
Factorization for the Sudakov form factor is a prototype for many important applications.

First I will give an overview of the method, which is a general subtractive procedure
generalizing Bogoliubov’s procedure for renormalization. The Libby-Sterman analysis is
used to determine the leading regions R for a graph � for the process under consideration.
For each region R of a graph � there is defined an approximator TR . From TR , with the aid
of subtractions to cancel double counting between regions, is constructed the contribution
CR� associated with the region.

Then I will define an implementation of these ideas for the Sudakov form factor, complete
with a specific calculation for a one-loop graph. After that will be a proof that the general

1 Which concerns a small photon mass instead of a large scale Q.
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314 Factorization and subtractions

subtraction method works. This will require that the region approximators TR obey certain
conditions, that will be especially critical in QCD. The one-loop example will help to
explain the rationale for these conditions and to show how to satisfy them in general.

Then I will derive factorization and evolution equations for the Sudakov form factor.
Many elements of the proofs given here can be found in the literature. However, the

presentation as a whole represents a new treatment, which is intended to be a substantial
improvement on previous work.

Although the methods presented here apply to perturbation theory, it should be evident,
just as in Sec. 8.9, that much structure is seen that has a reality beyond perturbation theory.
But exactly how to capture this structure in a strict deductive framework is not so clear, and
there are some important open problems.

10.1 Subtraction method

To understand the rationale for a subtraction procedure, recall the successive approximation
method outlined in Sec. 8.8. This starts from the smallest region for a graph for some process,
for which we find a useful approximation. The approximation typically corresponds to a
product or convolution of a lowest-order partonic subgraph and a matrix element of some
operator. The operator in the matrix element determines the definition of, for example, a
parton density.

We then sequentially construct approximations suitable for successively larger regions.
When constructing the contribution CR associated with some region R, subtractions must
be applied to compensate double counting of the contributions CR′ from smaller regions R′,
contributions that have already been constructed. Finally, we sum over the regions for each
graph �, and over graphs. This results in factorization, by an argument with the pattern
given in Sec. 8.2.

A simple example was given by the derivation of leading-twist factorization for DIS in
a non-gauge theory in Sec. 8.9. It is a useful exercise to show how the formulae in that
section, like (8.70) and (8.74), give particular cases of the more general formulae in the
present chapter.

In a gauge theory like QCD, the basic argument will need to be supplemented, notably
by an application of Ward identities to extract gluons of scalar polarization from the hard
scattering, to convert them to attachments to Wilson lines. Further issues concern the exact
nature of the leading regions and the accuracy of the approximators TR . These are much
harder than for relatively simple Euclidean asymptotic problems like the OPE.

10.1.1 Overall view

We let Q denote the large scale for the process under consideration. Each graph � has a
set of leading regions, and up to power-suppressed terms, we aim to write � as a sum over
terms for its leading regions:

� =
∑

R of �

CR� + power-suppressed. (10.1)
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10.1 Subtraction method 315

For the processes of interest, the regions and the associated powers of Q are determined
by the Libby-Sterman analysis (Ch. 5). Normally we treat only the leading power. As
explained in Ch. 5, each region is specified by a skeleton in loop-momentum space, i.e., the
position of the associated pinch-singular surface (PSS) in a massless theory. Each region
also corresponds to a decomposition of the whole graph � into subgraphs (e.g., Fig. 5.17)
where each subgraph has momenta of a particular kind: hard, collinear in some direction,
or soft. There can be finer decompositions needed under some circumstances, but that does
not affect the principles.

The general definition of the contribution CR� associated with a region R of a graph
� will be made in (10.4) in terms of an “approximator” TR , together with subtractions
to eliminate double counting between regions. A key element in applying (10.1) and in
enabling factorization to be derived is the construction of suitable approximators TR .

10.1.2 Regions: terminology

We review some terminology and definitions from Ch. 5.

• A region R of a graph � is specified by a PSS in the massless theory, as determined by
the Libby-Sterman method.

• A region is called leading if Libby-Sterman power-counting gives it a leading power,
usually defined by dimensional analysis, e.g., Q0 for a DIS structure function.

• Some regions occur with a super-leading power in individual graphs, when all the gluons
exchanged between hard and collinear subgraphs are of scalar polarization. Since such
super-leading contributions cancel very generally after a sum over graphs, we choose the
definition of the leading power accordingly.

• Our factorization arguments will be applied to regions which give at least a certain chosen
power of Q. The term “power-suppressed” in (10.1) means with respect to the chosen
power of Q.

Typically, this is the power of Q we call leading. But extensions of our methods to
non-leading powers are possible. Since TR is essentially a truncation of a Taylor series
expansion about a PSS, keeping more terms in the Taylor series corresponds to keeping
more non-leading powers of Q.

When we use dimensional regularization, with 4− 2ε dimensions, some exponents
in power laws have ε dependence. In categorizing powers as leading or non-leading, we
generally work close to ε = 0 and ignore changes in exponents that are of order ε.

• At each PSS R we choose a set of intrinsic coordinates labeling points within the PSS,
and there is a set of normal coordinates labeling deviations off the surface (Sec. 5.7).

• We can convert the normal coordinates for a region R into a radial coordinate λR and
a set of angle-like coordinates specifying direction. We saw a number of examples in
Ch. 5. Power-counting is conveniently done using the one-dimensional integral over λR .
We require λR to have the dimensions of mass.

• Ordering between the regions is defined by set-theoretic inclusion on the skeletons
defined technically in Sec. 5.4.1, and reviewed in the next section, 10.1.3.
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10.1.3 Regions: properties

Relations between regions

In simple cases, all the leading regions for a graph are nested. A typical example is DIS in
a non-gauge theory (Sec. 8.9). For that case, the leading regions are where some number
of rungs at the top of a ladder graph, Fig. 8.12, form the hard subgraph, and the rest of
the graph is target-collinear. The hard subgraph corresponds to a graphical factor AKj in
Fig. 8.12. If we use Rj to denote the corresponding region, then the ordering of leading
regions can be represented along a line:

R0 < R1 < R2 < · · · < RN. (10.2)

This situation is called a total ordering, i.e., any two leading regions, R1 and R2, obey
exactly one of R1 < R2, R2 < R1 or R1 = R2.

But in general, the ordering is only a partial ordering. That is, between any two regions
R1 and R2, exactly one of the following holds:

• R1 < R2: R1 is smaller than R2.
• R1 > R2: R1 is bigger than R2.
• R1 = R2: they are the same region.
• They overlap. That is, the intersection of their skeletons is non-empty, R1 ∩ R2 �= ∅, but

none of the preceding three cases hold.2 Thus R1 ∩ R2 is non-empty and strictly smaller
than both of R1 and R2. An example is given by RA and RB in (5.21). We denote this
situation by R1 ovrlp R2.

• R1 and R2 do not intersect at all: R1 ∩ R2 = ∅. An example is given by RA′ and RB ′ in
(5.21).

Separation of non-intersecting regions

Suppose two regions R1 and R2 do not intersect. Then there is a non-zero separation
between them, because the (empty) intersection is of their skeletons, which are closed sets.
Thus if λ1 and λ2 are radial variables for the two regions, then there is a non-zero range
0 ≤ λj ≤ Lj for which points around each PSS do not intersect the other. Since the PSS
are defined from the massless theory, each of these ranges in λj is of order Q.

Minimal region(s)

We define a region R0 to be minimal if it has no smaller regions, i.e., if there is no R′ for
which R′ < R0. One example is for a handbag diagram for DIS. Its minimal region gives
the parton model. A non-trivial example is for the one-loop vertex graph treated in Sec. 5.4.
It has three minimal regions RA′ , RB ′ and RS . (But only RS is leading.)

Note that a minimal region R0 cannot overlap with any region. For every other region,
either R0 is contained in it or does not intersect it.

2 ∅ denotes the empty set.
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10.1 Subtraction method 317

Hierarchy

Ordering between the different regions of a graph allows them to be organized in a hierarchy
which can be diagrammed as in (5.21).

10.1.4 Definition of region term CR�

CR for minimal region

For a minimal region R0, its contribution is simply defined to be the action of its approxi-
mator on the unapproximated graph:

CR0�
def= TR0�. (10.3)

In DIS in a non-gauge theory in Ch. 8, a suitable approximator for a minimal leading region
was given in (8.68).

As that equation illustrates, a natural definition of the approximator can lead to extra
UV divergences, which are to be removed by renormalization of parton densities (and of
similar objects, in the general case). Therefore we define the approximator to include such
renormalization.

Alternatively, the approximator can be defined to include a suitable cutoff. The com-
parative advantages and disadvantages of the renormalization and cutoff approaches were
discussed in Sec. 8.3.1.

CR for larger regions

In the contributions from larger regions, we use subtractions to avoid double counting of
the contributions from smaller regions. So we define

CR�
def= TR

(
� −

∑
R′<R

CR′�

)
. (10.4)

For a minimal region, (10.4) reduces to (10.3). Thus (10.4) gives a valid recursive definition
of CR�, starting from the minimal region(s).

The factor in parentheses is the original graph minus subtractions for regions smaller than
R. For the case treated in Ch. 8, this factor was found in (8.74); it is A [1− (1−←−T |V )K]−1

on the last line of that equation.3 In that situation, it was evident that the factor is power-
suppressed in regions smaller than R. Thus the smallest region where CR� is leading is
actually R.

But in more general cases, like the Sudakov form factor, such statements will need some
modifications.

It is also possible to start from an approximation for a maximal region, and then work
to smaller regions, as in Tkachov (1994). But starting from the smaller regions, as we have
done, gives a more direct relation to the parton model and makes clearer the relation to a
non-perturbative definition of the parton densities.

3 That formula does not explicitly include the needed parton-density renormalization.
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318 Factorization and subtractions

Fig. 10.1. Leading regions for DIS: (a) in a theory without gauge fields, (b) in a gauge
theory.

10.1.5 Remainder

We define the remainder of a graph to be

r(�)
def= � −

∑
R of �

CR�. (10.5)

It is essential to prove that this is actually power-suppressed, given a particular implemen-
tation of the region approximators TR�.

10.1.6 Relation to factorization

The above formalism focuses on an additive structure for a particular graph. To get a
factorized form, we sum over graphs. As observed in Sec. 8.2, the sum over regions and
graphs corresponds to independent sums over subgraphs associated with the regions, e.g.,
independent sums over the hard and collinear subgraphs for DIS in Fig. 10.1.

In the simplest cases, exemplified by Fig. 10.1(a), we have a fixed number of lines
joining the subgraphs, and the graphical structure directly corresponds to a factorization
formula. Then to prove factorization we need to prove that (1) the approximators TR respect
the factorized structure, (2) UV renormalization needed on the parton densities respects the
factorized structure, and (3) the subtractions in (10.4) actually have their intended effect of
removing double counting between the terms for different regions.

But as illustrated in Fig. 10.1(b), the situation is more complicated in a gauge theory,
because arbitrarily many gauge-field lines can connect the collinear and hard subgraphs,4

without any power-suppression.
Therefore the graphical representation of the regions does not directly correspond to

factorization.
An example of the necessary argument was given in Sec. 7.7 for a gauge-theory version

of the parton model. We applied Ward identities to convert the extra gluons into attachments
to the Wilson line in the definition of a gauge-invariant quark density. To do this requires an
appropriate choice of the approximators TR , together with a demonstration that the Wilson

4 And also soft and collinear subgraphs in a general case
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lines are actually obtained. Only after this work do we find that∑
R,�

CR� = factorized form. (10.6)

We could conceive that Fig. 10.1(b) itself represents a generalized factorization
structure. But the structure would involve an infinite collection of parton-density-like
objects, each with a different number of gluon lines, and each with a different hard-
scattering factor. Without further information, such a factorization would not be useful for
phenomenology.

10.1.7 Which formulation for calculations?

Often in realistic QCD calculations, there are many graphs to consider. The decomposi-
tion (10.1) produces multiple terms for each graph, resulting in an apparently even more
elaborate structure. Is it actually necessary to use it?

An alternative calculational approach was described in Sec. 9.6, and corresponds to many
practical calculations. The aim is to compute the hard-scattering coefficient in a factorization
formula, and the method uses the observation that the hard scattering does not depend on
the type of particle used for the target. One first makes a direct computation of Feynman
graphs for the process under consideration, but with a partonic target. Then one computes
the densities of partons in partons to the relevant order, and then applies factorization on a
partonic target to deduce the hard-scattering coefficients. Because factorization has taken
account of simplifications due to the use of Ward identities, there are generally fewer terms
to calculate than by a direct use of (10.1), which requires a listing of all the leading regions
for every graph computed.

This would appear to relegate the subtraction formalism to a key tool in a careful
derivation of factorization.

However, direct calculation of partonic Feynman graphs involves the cancellation of
various kinds of collinear and soft divergences between different graphs; it thereby entails
the use of a regulator. This is satisfactory if calculations are done analytically rather than
numerically. But if numerical calculations are used, the cancellation of divergences between
graphs is tricky to implement; it is a classic situation where rounding errors can dominate
a numerical calculation. To set up a numerical integral for the hard scattering one can
apply subtractions directly to the integrand of a hard-scattering subgraph. All necessary
cancellations of divergences are then in the integrand, and the integral can be evaluated
directly in four dimensions, without a regulator. We saw a very simple example in Sec. 9.7.5.

There is much recent work in implementing subtractions numerically, e.g., Binoth et al.
(2008); Dittmaier, Kabelschacht, and Kasprzik (2008); Frederix, Gehrmann, and Greiner
(2008); Hasegawa, Moch, and Uwer (2008); Seymour and Tevlin (2008).

Since there are many regions involved in high-order graphs, practical application of a
subtraction procedure must be automated. If the subtractions are not formulated correctly,
there can remain divergences, which manifest themselves in badly behaved numerical
integrals over a high-dimensional space.
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320 Factorization and subtractions

Fig. 10.2. One-loop graph for DIS on elementary target.

10.2 Simple example of subtraction method

With suitable definitions of the region approximators TR , we will derive factorization
for many processes of interest from the structure of the sum over regions and graphs,∑

�,R CR�. So to prove factorization is accurate up to a power-law error, we need to prove
that for each individual graph the sum over regions,

∑
R CR�, itself approximates �, up to

a power-law error, i.e., that the remainder r(�) is power-suppressed.
Now the approximator TR is always designed so that TR� gives an accurate approxi-

mation when the momentum configuration is both close to the PSS defining the region R,
and away from the intersections with the PSSs for regions that are smaller than or overlap
with R. The complications in making a satisfactory proof that r(�) is power-suppressed
arise from the combination of multiple regions, with the possibility of double counting, and
from the fact that there are intermediate configurations of momenta where the individual
approximations degrade in accuracy.

The simplest proof is when all the relevant regions are nested, as in Sec. 8.9. Our aim in
this chapter is to construct better methods that also work when there are more complicated
relations between regions, e.g., (5.21).

But first I illustrate the general notation with a simple mathematical example motivated
by a one-loop graph for DIS in a model theory, Fig. 10.2. There are two leading regions:
R0, where the top rung is hard and the bottom rung collinear, and R1, where the whole loop
is hard. They obey R0 < R1. The simple example is obtained by replacing the full Feynman
graph by the following one-dimensional integral

I (Q,P,m) =
∫ ∞

0
dk �(k,Q,P,m) =

∫ ∞
0

dk
Q

Q+ k +m

1

k + P +m
. (10.7)

The factor of Q in the numerator makes the integral dimensionless, and gives an overall
leading power of Q0.

If our general subtraction method works, then the leading-power asymptote for the graph
is

CR0� + CR1� = TR0� + TR1 (1− TR0 )�. (10.8)

We define the approximators TR to be applied to the integrand, �, rather than to the integral
as a whole. Each TR sets to zero the (lower) external momentum and the internal mass of
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the hard scattering. Thus

CR0� = TR0� =
Q

Q

1

k + P +m
= 1

k + P +m
, (10.9a)

(1− TR0 )� =
(

Q

Q+ k +m
− 1

)
1

k + P +m
, (10.9b)

TR1� =
Q

Q+ k

1

k
, (10.9c)

CR1� = TR1 (1− TR0 )� =
(

Q

Q+ k
− 1

)
1

k
, (10.9d)

so that the remainder is

r(�) = � − CR0� − CR1� = (1− TR1 )(1− TR0 )�

=
(

Q

Q+ k +m
− 1

)
1

k + P +m
−
(

Q

Q+ k
− 1

)
1

k
. (10.10)

Applying 1− TR0 gives a suppression by k/Q or m/Q, whichever is larger, in the factors
in parentheses on the last line of (10.10). This has a minimum of m/Q, which is the desired
overall error, but the error degrades as k increases towards Q.

Applying 1− TR1 gives a suppression by m/Q or m/k. (We assume P is of order m.)
The intrinsic variable of the large region R1 is k, and TR1 is designed to give an accurate
approximation when k ∼ Q. But as k approaches R0 the accuracy of an approximation of
� by TR1� degrades to m/k. But multiplying this error by the previously determined factor
of k/Q compensates this, to leave an overall relative error of m/Q.

Notice that the error in (1− TR1 )� gets even worse if k � m, because TR1 makes a
massless approximation, replacing 1/(k + P +m) by 1/k. By itself, this would give an
actual divergence in the integral at k = 0. But the 1− TR0 factor applied in this same
massless approximation gives a k/Q factor to kill the divergence.

10.3 Sudakov form factor

The fundamental object in our method is the approximator TR� for a region R of a graph
�. We let λR be the radial variable, we let kR be the angular variables surrounding R, and
we let zR be the intrinsic variables for R (Secs. 5.5 and 5.7). The approximator must give
a good approximation to � in the core of the region R, i.e., where λR is small and the kR

variables are not close to larger regions.
In simple examples, as in Sec. 10.2, the accuracy of TR only degrades when the intrinsic

variable(s) of R approach the PSS of a smaller region. However, when we treat soft gluons,
the accuracy of TR also degrades when the angular variables kR approach larger PSSs
than R. This issue is responsible for complications in many QCD processes, when they are
compared with simple Euclidean problems, like the OPE.

A simple case to illustrate these issues is the Sudakov form factor, i.e., the electro-
magnetic form factor of an elementary particle at high Q. We defined the Sudakov form
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Fig. 10.3. (a) Sudakov form factor. (b) Its leading regions with loop momenta connecting the
subgraphs. The dots indicate arbitrarily many gluons exchanged between the neighboring
subgraphs. Note that the soft subgraph S may be empty or may have more than one connected
component. The complete amplitude is approximated by a sum over regions and graphs
when the contribution of each region is interpreted as CR�.

factor and its kinematics in Sec. 5.1.1. Our aims now are to make suitable definitions of the
approximators TR , and to derive factorization. The form factor and its leading regions are
shown in Fig. 10.3.

10.3.1 Factorization

We will obtain a factorization property in which the form factor F is the product of a hard
factor H , collinear factors A and B for each external quark, and a soft factor S:

F = HABS + power-suppressed, (10.11)

each with dependence on only some parameters of F . Later we will redefine the factors so
that a square root of S is absorbed into each collinear factor. (We will accompany this by
some further redefinitions of A and B.) Then S will not appear in the final factorization
formula.

10.3.2 Overall motivation for factorization approach

At this point, I review the rationale for using the factorization approach in QCD. This will
indicate the kinds of theorem we need to formulate.

Typically, multiple regions contribute to an amplitude or cross section when there are
large momenta. In perturbative calculations, this gives rise to large logarithms which prevent
a straightforward use of perturbation theory in QCD. The two logarithms per loop present
in many cases like the Sudakov form factor are particularly bothersome.

Moreover, in almost all interesting cases in QCD, some momenta in leading regions
have low virtualities, where the effective coupling is large, so that low-order perturbative
calculations are inapplicable.

In a factorized formula like (10.11), the different factors are each concerned with a
particular kind of 4-momentum. Besides dependence on external kinematic variables, each
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10.4 Region approximator TR for Sudakov form factor 323

Fig. 10.4. One-loop graph for Sudakov form factor, and the hierarchy of its leading regions.
In each case, the name of the region, e.g., “RS”, refers to the category of the gluon’s
momentum. A line connecting two regions denotes that they are ordered, with the bigger
region on the left. Thus the diagram component R2 − R1 means that R2 > R1 in the sense
defined in Sec. 10.1.2.

factor has dependence on one or more auxiliary parameters (like a renormalization scale).
The auxiliary parameters can be roughly characterized as setting the boundaries between
kinematic regions. The logarithms can be tamed by deriving evolution equations for the
dependence on the auxiliary parameters. The kernels of the evolution equations are free of
logarithms in the parameter whose dependence is governed by the evolution equation, and
thus the kernels are susceptible to perturbative calculations (and hence prediction from first
principles).

After the application of evolution equations, we need the individual factors, each at
appropriate reference values of the auxiliary parameters. Some factors depend on low
momentum scales, and are therefore genuinely non-perturbative in QCD. Others depend
only on a single large scale, and therefore are perturbatively calculable in QCD. The
non-perturbative quantities in QCD are typified by parton densities. They will be proved
to be universal, i.e., the same parton densities appear in many different reactions. As
explained in Sec. 9.13, universality underlies much of the predictive power of QCD: The
non-perturbative quantities can be measured from a limited set of data, and then predictions
are made for a wide variety of other experiments, with the aid of perturbative calculations
for hard-scattering coefficients and evolution kernels.

10.3.3 Sudakov: regions for one- and two-loop graphs

As explained in Secs. 5.4.1 and 10.1.3, the regions for a graph can be organized as a
hierarchy. To illustrate this, Figs. 10.4 and 10.5 show some important one- and two-loop
graphs for the Sudakov form factor together with a representation of the hierarchies of their
leading regions. A useful exercise is to check the hierarchies.

10.4 Region approximator TR for Sudakov form factor

The definition in this section of the region approximator TR uses the methods of Collins,
Rogers, and Staśto (2008).

10.4.1 Decomposition of graph for one region

Consider a particular graph � for the Sudakov form factor. A leading region R corresponds
to a graphical decomposition of the form of Fig. 10.3(b), with subgraphs which we label H ,
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Fig. 10.5. Some two-loop graphs for the Sudakov form factor, and their leading-region
hierarchies. The two-lettered code for a region, e.g., in “RHS”, refers to the categories of
gluon k and gluon l.

A, B, and S.5 We choose loop momenta coupling the subgraphs as follows. Momenta on
external lines of the soft subgraph circulate into one collinear subgraph, round through the
hard subgraph and back by the other collinear subgraph. Remaining loops involve momenta
from each collinear subgraph entering the hard subgraph and circulating back to the same
collinear subgraph. Thus we write the integral for the graph as

I =
∫

dkAS dkBS dkHA dkHB H (q, kHA + kHAS, kHB + kHBS,m)

× A(pA, kHA, kAS) B(pB, kHB, kBS) S(kBS, kAS). (10.12)

Here kAS denotes the array of momenta flowing from the A subgraph into the S subgraph,
and similarly for kBS . These momenta flow through the hard subgraph, with kHAS and kHBS

denoting how the circulating soft momenta are apportioned among lines entering H . The
remaining momenta circulating between the H and A subgraphs are kHA, and similarly for
kHB . Thus to denote the full set of momenta entering the hard subgraph from each collinear
subgraph we use kHA + kHAS and kHB + kHBS .

The soft factor is defined to include a momentum-conservation factor for each of its
connected components. All loops contained entirely within the separate subgraphs do not
need to be indicated explicitly. Although the integrals in (10.12) are commonly of high

5 Note that the use of these symbols is different than in Figs. 10.4 and 10.5, where the symbols refer to particular
categories of gluon momentum instead of subgraphs with momenta in a category.
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dimension, it is possible that some or all are absent, for example when the soft subgraph is
empty, or when only a single line connects a collinear graph to the hard subgraph.

Although to construct the definition of TR we will examine properties of the graph when
the values of momenta correspond to the region under consideration, we do not intend the
loop momenta in (10.12) to be restricted to the region. In that sense, (10.12) is an exact
expression for the whole Feynman graph. The purpose of this decomposition is simply to
provide a convenient notation for use in a general definition of TR .

When the momenta are near the PSS of R, some propagator denominators are particularly
small. In general, we can make a suitable approximant by expanding in powers of small
variables compared with large variables. Since we are concerned here only with the leading
power of Q, the first term in the series suffices, i.e., we simply neglect the small variables
compared with the large variables.

One complication now arises. As follows from the discussion in Sec. 5.10.2, there are
two clashing characterizations of a collinear momentum. One is that it has energy of order
Q and low virtuality. The other is that it has high center-of-mass rapidity. The distinction
is particularly important when we deal with graphs with a massless gluon, as in QCD, and
it is the second, more general, characterization that is more appropriate.

The use of this second definition strongly influences our construction of the region
approximator TR , since it affects the characterization of large and small variables. There
can be leading contributions when some gluons are simultaneously soft and collinear, in the
sense that all their momentum components are much less than Q and that their rapidities
are large.

10.4.2 Definition of TR

We consider the region R of a graph � associated with the decomposition (10.12). We
also label momenta of particular lines by their category (soft, collinear-to-A, etc.) at the
PSS for the region. The power-counting for the momentum components was given in
Sec. 5.7.4.

The basic method to construct the region approximator TR is to expand to leading power
in the radial variable λR for the region. This will tend to introduce divergences. Some of the
divergences are endpoint divergences, associated with regions R′ that are smaller than R;
these we will find to be canceled by the subtractions in the definition (10.4) of the region’s
contribution CR�. Other divergences arise when we extend loop-momentum integration
beyond the immediate neighborhood of R. These are essentially UV divergences removed
by conventional renormalization that we include in the definition of TR .

For simple Euclidean asymptotic problems like the OPE, there are no further divergences.
But characteristic of asymptotic problems in Minkowski space with soft gluons are further
divergences, which we term rapidity divergences; see the discussion around (10.35) below.
We will modify the definition of TR to cut off rapidity divergences. The evolution equations
with respect to the cutoffs are essential to using the factorization theorem, and we will
see important applications in Ch. 13. The only place where a modification is needed is in
the approximation of soft momenta entering the collinear subgraphs. Later, in Sec. 10.11,
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we will reorganize the factorization formula into a form where the cutoffs on rapidity
divergences can be removed.

The approximator’s definition is made in three stages. The first is to extract the leading
power of λR in the numerators and denominators of the subgraphs, with modifications to cut
off rapidity divergences, and to improve properties of the hard scattering. It is implemented
by defining linear projectors on loop momenta: PAS , PBS for soft loop momenta in the A

and B subgraphs, and PHA, PHB for collinear and soft loop momenta in the H subgraph.
Then certain adjustments of the momenta in H are implemented by non-linear functions
RHA and RHB , so that the following replacement is made:

I �→
∫

dkAS dkBS dkHA dkHB H
(
q, k̂HA, k̂HB, 0

)
× A

(
pA, kHA, k̂AS

)
B
(
pB, kHB, k̂BS

)
S
(
kBS, kAS

)
, (10.13)

where

k̂AS = PAS(kAS), (10.14a)

k̂BS = PBS(kBS), (10.14b)

k̂HA = RHAPHA

(
kHA + PAS(kHAS)

) = RHAPHA(kHA), (10.14c)

k̂HB = RHBPHB

(
kHB + PBS(kHBS)

) = RHBPHB(kHB). (10.14d)

It will be a considerable convenience that soft momenta are approximated by exactly
zero in the hard subgraph H , which is enforced by defining projectors so that PHAPAS =
PHBPBS = 0.

The second stage of the definition of TR is to apply corresponding approximations to the
numerator factors in the lines connecting the subgraphs. The final stage is renormalization
of UV divergences.

The approximator makes use of some auxiliary vectors to define particular directions in
the (t, z) plane:

w1 = (1, 0, 0T), w2 = (0, 1, 0T), (10.15a)

n1 =
(
1,−e−2y1 , 0T

)
, n2 =

(−e2y2 , 1, 0T
)
. (10.15b)

Thus w1 and w2 are light-like vectors corresponding to the external momenta pA and pB ,
while n1 and n2 are similar vectors that are slightly space-like. The rapidity parameters y1

and y2 are among the auxiliary parameters referred to earlier, for which evolution equations
will be derived; initially they are chosen to be comparable to the rapidities ypA

and ypB
of

the external on-shell lines. The vectors in (10.15) specify directions, and all their uses will
be unchanged if any of the vectors is scaled by a positive non-zero number.

I now present the detailed definitions that make up TR , leaving some details of the
justification to Sec. 10.6.

1. Soft to collinear-A: Consider a momentum kAS flowing from A into S. The denominator
for a line in A has the form (kA + k2

AS)−m2 = k2
A −m2 + 2kA · kAS + k2

AS , where kA
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is a momentum classified as collinear-to-A. From Sec. 5.7.4, the leading power of
λR is λ2

R , for the terms k2
A and 2k+Ak−AS . So the basic leading-power approximation

for subgraph A is to neglect all but the minus component of kAS , i.e., to make the
replacement kAS �→ (0, k−AS, 0T). To cut off rapidity divergences we then modify the
minus component slightly, and define TR to use the following projector:

kAS �→ k̂AS = PAS(kAS) = (0, 1, 0T)
(
k−AS − e−2y1k+AS

)
. (10.16)

In covariant form this is

k̂AS = PAS(kAS) = w
μ
2 kAS · n1

w2 · n1
, (10.17)

where n1 and w2 are defined in (10.15), with y1 in the definition of n1 being a large
positive rapidity appropriate to the pA particle. But the precise value of y1 is not critical;
the effect of changes in y1 will cancel in the complete factorization formula.

The use of kAS in (10.12) treats kAS as the array of loop momenta flowing from A

into S. So the above definition is to be applied separately to each of the momenta in the
array.

The justification of the exact form of the above projector will be given in Sec. 10.6,
including the choice that n1 is space-like.

2. Soft to collinear-B: A similar replacement is applied to soft momenta in the B subgraph,
with the roles of plus and minus components exchanged:

kBS �→ k̂BS = PBS(kBS) = w
μ
1 kBS · n2

w1 · n2
. (10.18)

Naturally y2 in the definition of n2 should be a large negative rapidity appropriate to pB .
3. Collinear-A and collinear-B to H : In the hard subgraph H , the basic approximation

is to replace momenta kHA + kHAS from the A subgraph by their plus components and
momenta kHB + kHBS from the B subgraph by their minus components:

PHA(kHA) = w1 (kHA + k̂HAS) · w2

w1 · w2
= (k+HA, 0, 0T), (10.19a)

PHB(kHB) = w2 (kHB + k̂HBS) · w1

w2 · w1
= (0, k−HB, 0T). (10.19b)

Hence soft momenta are replaced by zero in the hard subgraph.
4. Masses in H : We also normally replace masses by zero in H . Under some circumstances,

it is appropriate to retain masses. In that case it is normally appropriate to put on-shell
the external massive quark lines of the hard subgraph by modifying PHA and PHB .

5. Alternative for H : In applications, like QCD, where the gluon is massless, there can be
important contributions from gluons that are soft in the sense of having very low energy,
but collinear in the sense of having rapidity comparable to that of pA or pB . Such gluons
we call “soft-collinear”. From the point of view of regions and approximations, we will
treat them as collinear. They can be external lines of the hard scattering.
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To treat them adequately, we modify the definition of the approximator for a hard
subgraph: masses are left unapproximated, and the external quark lines of the hard
scattering are put on-shell, but now massive. The projectors for Dirac matrix connec-
tions between collinear and hard subgraphs are modified to project onto massive wave
functions.

After use of Ward identities to extract the extra collinear gluons from the hard
subgraph, the modified H subgraph can be replaced by the standard one.

6. Numerators connecting subgraphs: We project on the leading-power part of the numer-
ators for Dirac lines and for gluons connecting the H , A, B and S subgraphs as follows:
(a) For the attachment of a gluon from S to A, insert the following matrix to implement

a Grammer-Yennie approximation (modified from (5.51)):

k̂
μ
ASn

ν
1

kAS · n1 + i0
. (10.20)

Note that kAS · n1 = k̂AS · n1. The i0 prescription is correct when kAS is defined to
flow out of the collinear subgraph. The μ index is contracted with the A subgraph
and ν with S. We will see that because the approximated A subgraph is contracted
with the approximated momentum k̂AS , exact Ward identities can be applied to
convert the S-to-A couplings to a Wilson line in direction n1.

Thus the following replacement is made on the product of the A and S

subgraphs:

A(pA, kAS, 1, . . . , kAS, N )μ1...μN S(kAS, 1, . . . , kAS, N )μ1...μN

�→ A(pA, k̂AS, 1, . . . , k̂AS, N )μ1...μN

×
N∏

j=1

k̂AS, j, μj
n1, νj

kAS, j · n1 + i0
S(kAS, 1, . . . , kAS, N )ν1...νN , (10.21)

where the individual momenta of the array kAS are denoted by kAS, j . It can be
verified that the approximation is accurate to leading power when the kAS momenta
are in the soft region: i.e., all components are much less than Q, their rapidities are
much lower than those of the collinear-to-A lines, and they are not in the Glauber
region.

(b) Similarly, for the attachment of a gluon from S to B, insert

k̂
μ
BSn

ν
2

kBS · n2 + i0
, (10.22)

where the momentum is flowing out of B.
(c) For a gluon of momentum kHA + kHAS out of H into the A subgraph, make the

insertion

PHA(kHA)μwν
2

kHA · w2 + i0
. (10.23)
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(d) For a gluon of momentum kHB + kHBS out of H into the B subgraph, make the
insertion

PHA(kHB)μwν
1

kHB · w1 + i0
. (10.24)

(e) For a Dirac line entering H from B, and for a Dirac line leaving H to A, insert
the projector PB = 1

2γ+γ−. This and the next item are cases of the Dirac spinor
projector derived for the parton model in Sec. 6.1.2.

(f) But for a quark line in the reverse direction, use PA = 1
2γ−γ+.

(g) If a version of the approximator is used in which approximated quark momenta are
massive (and on-shell), then the projectors need to be modified, but in such a way
that their massless limits exist. See problem 10.8 for possible definitions.

7. Slightly scaled H : The approximated hard scattering will generally not obey momentum
conservation:∑

j

(k+HA, j , 0, 0T)+
∑

j

(0, k−HB, j , 0T) �= q. (Pre-rescaling) (10.25)

Here j labels the lines carrying the relevant momenta. To correct momentum
conservation, we apply overall scaling factors separately to the plus and minus
components:

k+HA, j �→ k̃+HA, j = k+HA, j

q+∑
j ′ k
+
HA, j ′

, (10.26a)

k−HB, j �→ k̃−HB, j = k−HB, j

q−∑
j ′ k
−
HB, j ′

, (10.26b)

a replacement to be made in H alone. Since we defined q to have qT = 0, no correction
of approximated transverse momenta is needed. After the rescaling, we have exact
momentum conservation:∑

j

(k̃+HA, j , 0, 0T)+
∑

j

(0, k̃−HB, j , 0T) = q. (Post-rescaling) (10.27)

The correction factors in (10.26) differ from unity by order m2/Q2. This is because the
sums of the unapproximated collinear momenta are the external momenta:

∑
j kHA, j =

pA,
∑

j kHB, j = pB , while p−A/p+A and p+B /p−B are of order m2/Q2.
8. Renormalization of extra UV divergences: As in our treatment of DIS in a non-gauge

theory, the approximator short-circuits certain loop-momentum components, thereby
inducing UV divergences beyond those renormalized in the Lagrangian. These are
removed by UV counterterms defined, for example, in the MS scheme with the use of
dimensional regularization. After we obtain factorization, renormalization will behave
much like that for the local operators used in the OPE (e.g., Collins, 1984), but now
applied to the operators defining the soft and collinear factors. We will generally leave
this renormalization implicit until we do actual calculations.
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×

Fig. 10.6. Representation of soft term (10.29) for vertex graph, (a) before and (b) after use
of Ward identities.

10.5 One-loop Sudakov form factor

We now illustrate the general definitions given in Sec. 10.4 by applying them to the one-loop
graph, Fig. 10.4. The external fermions are on-shell, and the gluon has a non-zero mass
mg . But some issues will be illustrated by taking mg to zero and/or taking the fermions
off-shell.

The graph is

�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

ūAγ κ (/pA
− /k +m)γ μ(−/pB

− /k +m)γ λvB

[(pA − k)2 −m2 + i0] [(pB + k)2 −m2 + i0]
,

(10.28)

where uA and vB are the Dirac wave functions for the outgoing quark and antiquark. Its
leading regions are RS , RA, RB and RH , where the subscripts indicate the type of gluon
momentum. For a compact notation, the region approximators and the region contributions

are written TS
def= TRS

, CS
def= CRS

, etc.

10.5.1 Soft-gluon term CS

The soft region RS is a minimal region, so its term is obtained by applying the region’s
approximator, as defined in the list starting on p. 326:

CS�1 = TS�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

nκ
1

−n1 · k + i0

nλ
2

n2 · k + i0

× ūA(−/k1) (/pA
− /k1 +m)PBγ μPB (−/pB

− /k2 +m)/k2vB

[(pA − k1)2 −m2 + i0] [(pB + k2)2 −m2 + i0]

= ig2

(2π )n

∫
dnk

n1 · n2 ūAPBγ μPBvB

(k2 −m2
g + i0) (−n1 · k + i0) (n2 · k + i0)

, (10.29)

which we write diagrammatically in Fig. 10.6. The hard scattering is just the factor γ μ; it is
surrounded by factors of PB = 1

2γ+γ−, to project onto the appropriate on-shell massless
Dirac wave functions. This is indicated by the hooks in Fig. 10.6(a), just as for the parton
model in Fig. 6.4.
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From (10.17) and (10.18), the projected gluon momenta in the collinear subgraphs are

k1 = (0, k− − e−2y1k+, 0T) and k2 = (k+ − e2y2k−, 0, 0T). (10.30)

At the ends of the gluon line are applied the Grammer-Yennie approximants (10.20) and
(10.22). The result is notated by the arrows at the ends of the gluon in Fig. 10.6(a).

To get the last line of (10.29), we applied the identities /k2 = (/pB
+ /k2 +m)− (/pB

+
m) and /k1 = (/pA

−m)− (/pA
− /k1 −m). For each of these, one term gives zero on a

Dirac wave function and the other cancels the neighboring quark propagator. The result is
represented in Fig. 10.6(b). On the left is a lowest-order vertex

�0 = ūAPBγ μPBvB. (10.31)

On the right, the two double lines represent the gn1/(−n1 · k + i0) and−gn2/(n2 · k + i0)
factors in (10.29). With two changes, these factors are just as the first-order application
of the Feynman rules, Figs. 7.10 and 7.11, for Wilson lines, as in the gauge-invariant
definition of a parton density, (7.40). One change is that we have two Wilson-line segments
in different directions. The other is that the Wilson line in direction n2 has a reversed sign
of the coupling; physically this is because it approximates an outgoing antiquark, with the
opposite charge to a quark.

We therefore identify CS�1 as �0 times the one-loop value of the vacuum matrix element
of two Wilson lines of opposite charge, joined at the origin:

soft factorver. 1 = 〈0|W (∞, 0, n2)† W (∞, 0, n1) |0〉 , (10.32)

where W is defined by

W (∞, 0; n) = P
{
e−ig0

∫∞
0 dλ n ·A(0)α(λn) tα

}
. (10.33)

Notice that this definition uses the bare coupling and field, as needed to get the correct
gauge-transformation properties. A factor of a representation matrix tα of the gauge group
appears in the exponent to give a formula that is also appropriate for a non-abelian theory. In
the simpler case of an abelian gauge theory, one omits the tα factor, and one can replace the
coupling and field by their renormalized counterparts, since g0A(0) = gμεA in an abelian
theory. The opposite charge of the Wilson line for direction n2 is implemented by a hermitian
conjugation in (10.32).

After we formulate a factorization theorem, we will see that the formula for the one-loop
soft factor, CS�1, is sufficient to determine almost completely the Wilson-line definition.
However, we will modify some details of the definition. Hence we include a version
subscript on the left-hand side of (10.32). The matrix element in (10.33) is a primary
ingredient in the later redefinitions.

The approximations used to give CS�1 are valid in the soft region, provided we deform
the integration contour out of the Glauber region. As we will show in Sec. 10.6.4, the choice
of space-like vectors (10.15b) for n1 and n2, and of the i0 prescriptions in (10.29) is needed
to be compatible with the contour deformation.
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y
ypAypB

ln(kT/m)

k
− ∼ p

−
B k

+ ∼ p
+
A

(a): Graph Γ1 (b): CSΓ1

− =
−

(c): TAΓ1 (d): −TATSΓ1 (e): CAΓ1

− =
−

(f): TBΓ1 (g): −TBTSΓ1 (h): CBΓ1

(i): CHΓ1

Fig. 10.7. Main regions in y and kT for one-loop Sudakov form factor. The shaded areas
indicate where there are leading-power contributions, and the thick lines show where there
is a cutoff. A lack of a thick edge to a shaded area indicates that the area goes to infinity.
These diagrams are for the original graph and for various terms in the decomposition of
the graph by regions, with subtractions. The− signs on a shaded region indicate a negative
contribution. The top of the triangle in graph (a) is at ln(kT/m) = ln(Q/m).

10.5.2 (Double) leading-logarithm approximation

To understand the nature of the approximation, we make plots in the space of ln kT and y,
where y is the gluon rapidity y = 1

2 ln |k+/k−|, and examine where the main contributions
arise, both for the original graph and for terms contributing to each CR�1. These are shown
in Fig. 10.7.
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The variables are logarithmic in ordinary momentum components. With respect to these
variables, we will find that the original integral �1 has a uniform integrand in the interior of
the triangle in Fig. 10.7(a). This uniform value is in fact that of the soft approximation CS�1.
Outside of the triangle, the integrand falls off, so that a first approximation to the original
graph is the uniform integrand times the area of the triangle, which is a coefficient times
ln2 Q. This gives the double leading-logarithm approximation (LLA) to �1. The edges and
corners of the triangle give non-leading logarithms, and remaining contributions are in fact
power-suppressed.

We will see that the soft term, CS�1, also has important contributions from outside
the triangle. But we will find that these other contributions cancel corresponding parts of
the terms CR�1 for other regions R; see Fig. 10.7(b–i). The total reproduces �1 up to a
power-suppressed remainder.

In the core of the soft region the original graph �1 is correctly approximated by the
soft term CS�1, and the approximation remains correct when n1 and n2 are replaced by
light-like vectors, to give

ig2

(2π )4

∫
core of soft region

d4k
ūAPBγ μPBvB

(k2 −m2
g + i0) (−k− + i0) (k+ + i0)

, (10.34)

where we now work in four-dimensional space-time. We apply contour integration to the
k− integral,6 which gives a non-zero result only for k+ > 0. By closing the contour on
the gluon pole and changing variables from k+ to y = 1

2 ln |k+/k−| and from kT to ln kT,
we obtain:

−g2

4π2

∫
core of soft region

d ln kT dy ūAPBγ μPBvB

k2
T

k2
T +m2

g

� −g2

4π2

∫
core of soft region

d ln kT dy ūAPBγ μPBvB. (10.35)

The right-hand form is obtained by restricting attention, for reasons that will soon be
apparent, to large enough kT that we can neglect the gluon mass.

Original graph

The result has a uniform integrand, and so we estimate the size of the original unapproxi-
mated graph by the area of the relevant part of the plane of ln kT and y. We will find that the
integrand falls off relative to (10.35) near the edges of the triangle in Fig. 10.7(a), so the
area is that of the triangle. We examine the limits provided by each propagator denominator
in turn.

In the gluon propagator, the gluon mass effectively cuts off the kT integral at mg , and
this gives the lower boundary of the triangle, at ln(kT/mg) � 0. This is a fuzzy cutoff, not
a sharp cutoff. Given that the dimensions of the triangle are of order ln(Q/m), the width of
the fuzzy edge relative to the triangle is small, of order 1/ ln(Q/m).

6 Strictly speaking, this application of contour integration includes values of k− all the way to infinity, i.e., outside the
soft region. To see that this is not a problem, observe that the contribution we use in later equations is from the gluon
pole. The errors, i.e., the non-pole terms, are from a non-soft region which does not concern us here.
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The A-quark denominator (after setting k on the gluon mass-shell from the contour
integration and after setting p2

A = m2) is

(pA − k)2 −m2 = −2p+Ak− − 2p−Ak+ +m2
g. (10.36)

We write 2p+Ak− in terms of rapidities as m
√

k2
T +m2

ge
ypA
−y , where ypA

is the rapidity of

the A quark, also taken as the rapidity of the n1 vector. The simplest soft approximation
replaces the denominator by−2p+Ak−. The second term in the denominator becomes equally
important when the rapidity of the gluon is comparable to that of pA, thereby providing
a cutoff requiring y � ypA

. Next, in the unapproximated graph, the k− poles are all in the
lower half plane if k+ > p+A ; this limits k+ to be less than p+A . The m2

g term in (10.36)
provides no stronger constraint.

Similar limits are associated with the B quark.
If the gluon mass is comparable to the quark mass, as we will assume for the moment, then

the limits kT � m, k+ � p+A , and k− � p−B dominate, giving the triangle in Fig. 10.7(a). The
two diagonal lines give ypB

+ ln(kT/m) � y � ypA
− ln(kT/m), which intersect at kT ∼ Q.

But when the gluon mass is made small or zero (as in QCD perturbation theory), the
range of kT extends down, and other limits become important.

Finally, the graph has a renormalized UV divergence for kT � Q. We assign this to the
line going vertically up from the top vertex of the triangle.

The area of the triangle is 1
2 (ypA

− ypB
) ln(Q2/m2) = 1

2 ln2(Q2/m2), which gives the
leading-logarithm approximation

LLA of �1 = −g2 ln2(Q2/m2)

16π2
ūAPBγ μPBvB. (10.37)

This has two logarithms for a one-loop graph, unlike the case for ordinary renormalization-
group (RG) logarithms, which are one per loop. At high energy the approximated ver-
tex ūAPBγ μPBvB equals the unapproximated vertex ūAγ μvB , up to a power-suppressed
correction.

The effects of the cutoffs are important only in a finite range of y and ln kT near the edges
of the triangle. Thus they do not affect the double logarithm. At large Q2, the sides of the
triangle contribute single logarithms, while the vertices contribute constants. The vertical
line above the triangle gives an RG single logarithm. Further contributions are suppressed
by a power of Q.

All-orders sum of LLA

This line of argumentation can be extended to higher loops, to give the leading logarithms
(Sudakov, 1956; Jackiw, 1968) for every order of perturbation theory. These form an
exponential series. If the assumption is made that it is sufficient to retain the leading
logarithm in each order, then one obtains the LLA for the form factor:

F � e−g2 ln2(Q2/m2)/(16π2) ūAPBγ μPBvB. (10.38)

We will derive this from our general factorization approach in Sec. 10.11.5. The result given
above is for the case of a massive gluon with on-shell external quarks, and was first found
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10.5 One-loop Sudakov form factor 335

Fig. 10.8. Modifications to Fig. 10.7(a) when: (a) the gluon mass is zero;
(b) the gluon mass is zero but the external quarks are off-shell; (c) the quark and the
gluon masses are both zero, and the external quarks are on-shell.

by Jackiw (1968). As we will see below, the case of a massless gluon with off-shell external
quarks has double the coefficient of the double logarithm, and this was what Sudakov
(1956) actually calculated.

At large Q the LLA form factor drops faster than any power of Q. This obviously
indicates that power-law corrections might dominate, for sufficiently large Q. However,
without further information, there is no guarantee that non-leading logarithms have to fall
into the same pattern of summing to a strongly decreasing function of Q. For example,
as a hypothetical example, if the non-leading logarithms consisted of a single term g2,
this would be non-vanishing at large Q, and would dominate the LLA. In some analogous
problems in QCD (Ch. 13) such a phenomenon does occur, a standard example being the
Drell-Yan cross section at small transverse momentum; the LLA does not even get correct
the qualitative behavior of the cross section. The factorization approach provides a much
more systematic and powerful approach to dealing with these issues.

10.5.3 Massless gluon; off-shell external quarks

The above estimates assumed that the gluon and quark masses are comparable, and that the
external quarks are on-shell. But in QCD the gluon is massless. Although a massive gluon
might be considered more representative of the real physics of a theory with quark and
gluon confinement, perturbative calculations definitely need a massless gluon. Moreover
applications to QED require a massless photon instead. We will also need to consider vertex
graphs embedded in bigger graphs, so it is also useful to understand the effect of taking the
external quarks off-shell.

Figure 10.8(a) shows the effect of setting mg = 0, which is to remove the lower cutoff
on kT. Thus a leading contribution occurs all the way to kT = 0, or minus infinity on a
logarithmic scale. As for the rapidity range at low k, the dominant restriction is caused by
the rapidities of the external quarks, which give the lower vertical lines. The integral has a
divergence, which is a conventional IR divergence, as in QED, with a coefficient that grows
with energy like ypA

− ypB
.

The IR divergence arises from the 1/(k−k+) factor in the soft approximation. If we now
set the external quarks off-shell, there is an extra term in the quark denominators. This
cuts off the kT integral at the lower end. If the external quark virtuality is of the order of
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the quark mass, i.e., m2, the result is shown in Fig. 10.8(b). There are effective cutoffs at
k− and k+ of order m2/Q. The leading-logarithm result comes from the diamond-shaped
region, which has twice the area of the triangle in the massive gluon case, thereby doubling
the coefficient of the double logarithm.

The general factorization theory we will establish requires the use of Ward identities. In
a real physical quantity, we must combine the off-shell form factor with the contributions
from other graphs, so the off-shell form factor does not represent the final result for a
physical quantity.

Finally there is the case of the on-shell form factor with all particles massless. In that
case, there is no longer a cutoff caused by the rapidities of the external lines, so we have the
region shown in Fig. 10.8(c), where we effectively have a doubly logarithmic divergence
composed of both IR and collinear divergences.

10.5.4 Region for CS�1

In contrast to the actual denominators of the quark propagators, the approximated eikonal
denominators (n2 · k + i0) (−n1 · k + i0) in the soft term CS provide cutoffs only at the
rapidities of the Wilson line. As illustrated in Fig. 10.7(b), the limits on gluon rapidity,
y2 � y � y1, are the same at all kT. We choose the rapidities of n1 and n2 to be approximately
the same as the rapidities of the external quark lines pA and pB . The soft term forms a
good approximation at small y and kT. It is most accurate at the center of the bottom line
in Fig. 10.7(a) and (b), and in fact is equally good for even smaller kT. The approximation
degrades as one approaches the upper lines of the triangle; one can characterize these lines
as where the error in the soft term is around 100%.

The soft term obviously contributes in a region where the original graph does not. This
is above the triangle, and therefore where at least one of the following holds: the energy
of the gluon is large, its rapidity is large, and/or its transverse momentum is large. These
all concern other regions than the soft region. Compensation for the extra area for the soft
term will be obtained from subtraction terms in the terms for regions bigger than the soft
region.

We can apply the same area argument as we used for the LLA for the original graph.
There is evidently an infinity (multiplied by y1 − y2) for the infinite range of kT. This can
be regulated dimensionally and renormalized, although we will not exhibit the calculation
yet.

Our general proof will require us to understand the errors in the soft approximation
more systematically. To do this we return to ordinary non-logarithmic momentum space.
The PSSs forming the skeletons of the leading regions are shown in Fig. 10.9(a). The
relative error in approximating the integrand is

|CSI1 − I1|
‖CSI1‖ = O

( |k+|
p+A

,
|k−|
p−B

, e−2(ypA
−y), e−2(y−ypB

)

)
. (10.39)

Here I1 denotes the integrand. One might expect the denominator to be just the absolute
value |CSI1|. But we use the double bars, ‖CSI1‖, to indicate that in a more general situation
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Fig. 10.9. (a) Leading PSSs for one-loop Sudakov form factor. (b) Neighborhood of S for
evaluating errors in soft approximation. (c) Neighborhood of A for evaluating errors in
collinear-to-A approximation. The squashing on the left indicates that we restrict attention
to positive rapidity.

a modification is needed. The problem is that there may be what we can term accidental
cancellations; for example, a numerator might have a variable sign, with necessarily a
zero at some place in the integration. We wish to use the general order of magnitude of
the integrand, for which we use the power-counting estimate of CSI1, obtained by the
methods of Sec. 5.8, with avoidance of any accidental cancellations. The result is denoted
‖CSI1‖. We also use the approximated integrand CSI1 in ‖CSI1‖, rather than the original
integrand I1.

The right-hand side of (10.39) simply comes from listing the sources of error in the soft
approximation, i.e., from examining the terms in the quark denominators and numerators
that were neglected in making the soft approximation. The first two terms simply measure
distance from the center of the soft region, viewed in the center-of-mass frame; these
sources of error are roughly constant on surfaces such as those in Fig. 10.9(b) surrounding
S. In a purely Euclidean asymptotic problem, this would be the whole story.

But in a Minkowski-space problem, such as ours, the errors worsen as the rapidity of
the gluon gets large, and approaches the A and B lines. The errors are given quantitatively
by the last two terms in (10.39). These are of order m2/Q2 when the gluon rapidity y is
small. But when the gluon rapidity is comparable to that of one of the external quarks, the
errors become of order unity.

10.5.5 Why integrate CS�1, etc., over all k?

Given that CS�1 has important contributions from a much broader range of loop momentum
than has �1, it is natural to want to restrict the integration to, for example, the triangular
range in Fig. 10.7(a). Nevertheless we define CS�1 (and all other CR) to have an integral
over all loop momenta. The combination of CS�1 with terms for other leading regions
will not only cancel the large excess regions, but will correct the inaccuracies in the soft
approximation at the edges of the triangle. Then the sum over CR�1 will give a complete
and useful representation of the leading-power part of �1.

The reasons for not using cutoffs (beyond those given by the finite rapidities of the
Wilson lines) are as follows. To get a systematic treatment, we need to have operator
definitions for the factors in the factorization theorem. An example definition is (10.32),
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whose main one-loop graph gives CS�1. A cutoff on the loop momentum k would require
an unpleasantly complicated operator. It is not known how to do this and combine it with
the Ward identities that we use later. Proving Ward identities needs shifts in loop momenta
and uses gauge-invariance properties of the operators; these are difficult to make consistent
with a cutoff. Instead, without cutoffs we are led directly to simple Wilson-line operators
whose gauge-invariance properties are obvious.

10.5.6 Collinear-A term CA

We now construct CA�, corresponding to the gluon being collinear to pA. First we just
apply the approximator for region RA. Using the definitions in the list starting on p. 326 we
get

TA�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

wλ
2

w2 · k + i0

× ūAγ κ (/pA
− /k +m)PBγ μ (−p−B γ+ − γ−k+) γ−k+PBvB

[(pA − k)2 −m2 + i0] [2p−B k+ + i0]

= ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

ūAγ κ (/pA
− /k +m)PBγ μPB(−wλ

2 )vB

[(pA − k)2 −m2 + i0] (w2 · k + i0)
. (10.40)

The collinear approximant changes the quark denominator (pB + k)2 −m2 to 2p−B k+,
because in the hard subgraph it replaces pB and k by massless vectors in the minus and
plus directions, and sets masses to zero. Examining the neglected terms 2p+B k− and k2,
with the knowledge that 2k+k− and k2

T are comparable shows that the relative errors in
this approximation are of order e−2(y−ypB

) and e−(y−ypB
)kT/m. Thus the approximant is

accurate when the gluon rapidity is much larger than the rapidity of the B line. There is
also a degradation for large kT � m, but that concerns the hard-gluon region, to be treated
later.

The region of (y, kT) space for TA�1 is shown in Fig. 10.7(c). Since the eikonal denom-
inator w2 · k is k+, without an additional k− term, the integral has a rapidity divergence,
where the rapidity of the gluon goes to negative infinity.

Our aim is to construct a term for the collinear-to-A region such that CA�1 + CS�1 is
accurate over the whole of the soft and collinear-to-A regions. Observe both of the soft
term and the collinear approximation contribute in each other’s regions. So we compensate
the double counting by subtracting

TATS�1 = ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

nκ
1(−wλ

2 ) ūAPBγ μPBvB

(−n1 · k + i0) (w2 · k + i0)
. (10.41)

The n2/(n2 · k + i0) factor of TS�1 is in the hard subgraph with respect to the collinear-to-A
approximator TA. Hence applying TA, defined by (10.19a) and (10.23), changes n2 to the
light-like vector w2.
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We therefore define the term for the A region by

CA�1 = TA(1− TS)�1

= ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

[
ūAγ κ (/pA

− /k +m)

(pA − k)2 −m2 + i0
− ūAnκ

1

−n1 · k + i0

]

× (−wλ
2 )

(w2 · k + i0)
PBγ μPBvB. (10.42)

This results in the cancellation of the rapidity divergence, justifying our use of a light-like
vector in the collinear approximant. The cancellation is because the soft approximant on
the A side is accurate when the gluon has large negative rapidity relative to pA. Thus we
get a cancellation in the square-bracket term in (10.42) with the result going to zero as the
gluon’s rapidity goes to minus infinity.

The placement of the Dirac projectors PB is also critical to making the formalism work
correctly.

The result is that the CA�1 term is power-suppressed in the soft region; Fig. 10.7(e). The
combination of the terms constructed so far, CS�1 + CA�1, gives a good approximation to
�1 over the whole of the soft and the collinear-A regions, with a restriction to the positive
rapidity side.

We can see this by observing that the remainder is �1 − CS�1 − CA�1 = (1− TA)(1−
TS)�1. The 1− TS factor gives a suppression basically by a power of |k|/Q but with a
degradation to e−(ypA

−y) as we go around the soft PSS and approach the PSS A, given
that y1 is close to ypA

. At this point we restrict to positive gluon rapidity, leaving negative
rapidity to our treatment of CB�1. The 1− TA factor gives a suppression e−y , when kT � m.
At the soft end of the A region, this compensates the worsening of 1− TS factor. It also
gives a power-suppression over the rest of the A region, a power of kT/Q. Thus we get
surfaces of constant error for CS�1 + CA�1 as symbolized in Fig. 10.9(c).

The collinear-to-A term itself is suppressed in the soft region, because of the 1− TS

factor, as illustrated in Fig. 10.7(e). Thus for central rapidity only the CS term is needed to
get a good approximation to �1, which it was constructed to do.

Furthermore, the soft subtraction has ensured that the CA term is also suppressed in the
whole of the opposite collinear region. This is an example of a general result critical to our
general treatment of overlapping regions: CA is suppressed both in regions smaller than A,
i.e., S, and in regions that overlap with it, in this case the B region.

A generally applicable argument is that in applying TA we made the first term in the
expansion of the B propagator in powers of k− and kT. In TA(1− TS)�1, the 1− TS factor
gives a suppression for small k+ and kT from its application to the A side. Going to the
B region involves extrapolating the common B-side factor to large k−. The suppression at
small k+ and kT continues to apply.

Effectively, once the approximator for the A region, TA, is applied, the power-counting
in the B region corresponds to that for the intersection of the two overlapping regions, i.e.,
A ∩ B = S.
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In contrast to these cancellations, there is a contribution in the upper region in
Fig. 10.7(e), where the gluon rapidity is positive, but its k+ is much larger than p+A . Such a
contribution is not present in the original graph, but is an artifact of the soft subtraction, in
the term −TATS�1, as is the divergence when kT →∞. Strange though this contribution
might appear, it will allow us to derive convenient evolution equations by differentiating
with respect to the rapidity cutoffs associated with the vertical lines in Fig. 10.7(b), (e),
and (h). When we add CS , CA, and CB , there is a cancellation of these extra contributions
for the case that kT � Q. This leaves only the region kT � Q, which is the province of
the hard region H , which we have yet to treat, and whose double-counting subtractions
will compensate for the incorrect value of CS + CA + CB in the hard region. There is also
an actual divergence as kT →∞, which we remove by UV renormalization, which will
correspond to conventional UV renormalization defining the operators used to construct
the soft and collinear factors in the factorization property.

Note that when the transverse momentum is large, kT � Q, there is also an important
region of negative gluon rapidity. This is surprising given that CA�1 is intended to deal with
gluons that are collinear to pA, i.e., of positive rapidity. But the problematic region is of
hard momenta, and so its full treatment will also bring in the term CH�1, whose subtraction
terms will correct the apparently problematic regions.

10.5.7 Collinear-B term CB

The collinear-to-B term is constructed exactly similarly to the collinear-to-A term:

CB�1 = TB(1− TS)�1

= ig2

(2π )n

∫
dnk

−gκλ

(k2 −m2
g + i0)

ūAPBγ μPBwκ
1

−w1 · k + i0

×
[

(−/pB
− /k +m)γ λvB

(pB + k)2 −m2 + i0
− −nλ

2 vB

n2 · k + i0

]
. (10.43)

The contributing regions for this term and its components, shown in Fig. 10.7(f)–(h), are,
naturally, a mirror image of those for the A region.

Just as before, the sum of the soft and collinear-to-B terms, i.e., CS�1 + CB�1, gives
a good approximation in the combination of the S and B regions. We next observe that
each of CA�1 and CB�1 is suppressed in both the central soft region and the opposite
collinear region. Thus we can add all three terms to get CS�1 + CA�1 + CB�1 and the
result provides a good approximation to �1 over all three regions, including both positive
and negative rapidity.

10.5.8 Hard term CH

The only degradation in CS�1 + CA�1 + CB�1 as an approximation to �1 occurs as we
move away from the combined S ∪ A ∪ B regions, i.e., as we go into the hard region H of
large transverse momenta and of virtualities of order Q2. We define the approximator TH
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for this region to make a massless approximation. As before, we avoid double counting in
the CH term specific to this region by applying the approximator to �1 only after subtracting
the contributions from smaller regions, i.e.,

CH�1 = TH (�1 − CS�1 − CA�1 − CB�1)

= TH (1− TA − TB)(1− TS)�1. (10.44)

We have seen that CS�1 + CA�1 + CB�1 gives a good approximation to �1 near the
combined S, A, and B regions, so that �1 − CS�1 − CA�1 − CB�1 is power-suppressed in
the distance to any of these regions. Thus the remaining contribution is when the momenta
are hard, i.e., for kT of order Q or larger, i.e., in the H region. So we define the approximator
TH for this region to set masses to zero, and to make pA and pB massless. It also replaces
the n1 and n2 vectors (in the definition of TS) by light-like versions: n1 �→ w1 = (1, 0, 0T),
and n2 �→ w2 = (0, 1, 0T). The soft term TS�1 and the soft subtractions in CA�1 and CB�1

now have the same light-like vectors, so they combine to a single added term, and we get

CH�1 = ig2

(2π )n

∫
dnk

−1

(k2 + i0)
ūAPB

{
γ κ (p+Aγ− − /k)γ μ(−p−B γ+ − /k)γκ

[−2p+Ak− + k2 + i0] [2p−B k+ + k2 + i0]

− γ+(p+Aγ− − /k)

−2p+Ak− + k2 + i0
γ μ −1

k+ + i0
− 1

−k− + i0
γ μ (−p−B γ+ − /k)γ−

2p−B k+ + k2 + i0

+ 1

−k− + i0
γ μ −1

k+ + i0

}
PBvB. (10.45)

10.5.9 UV divergences

The original graph �1 has a UV divergence. This is canceled in a complete calculation of
the one-loop vertex when the correct definition is used for the current at the photon vertex.
The current is a Noether current for a conserved charge, with unit coefficient when the
current is expressed in terms of bare fields: jμ = ψ̄0γ

μψ0. In terms of renormalized fields,
it has a factor Z2: jμ = Z2ψ̄γ μψ , and this factor of Z2 cancels the divergences in the loop
calculations. This is a well-known standard result in renormalization theory.7 This results
in a non-zero anomalous dimension associated with the one-loop graph. In the full form
factor calculation, we must also allow for the LSZ residue factors for the external on-shell
quarks. These are also associated with Z2, but inversely, so that the complete form factor
is RG invariant.

However, the hard, collinear and soft factors in (10.11) all have their own UV renor-
malization and need renormalization that is different from that in the current itself. This
is illustrated by the one-loop quantities computed above, CS�1, CA�1, CB�1, and CH�1.
Their UV divergences are associated with new vertices: where a Wilson line attaches to
an ordinary field (in CA�1 and CB�1) and where two Wilson lines attach to each other (in

7 However, there are some complications beyond the ones seen in most textbooks. See Collins, Manohar, and Wise
(2006) for a correct treatment.
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CS�1 and the subtractions in CA�1 and CB�1). As we will see, all these divergences are
logarithmic. Our ultimate definitions of the region contributions include renormalization
counterterms to remove the UV divergences.

Finally, CH�1 is formed from the original graph together with subtractions for the
smaller regions, all taken in the massless limit. Therefore, in the sum over all regions, i.e.,
CS�1 + CA�1 + CB�1 + CH�1, the extra UV divergences cancel to leave just the same
UV divergence as in �1. This is necessary if this sum is to give a correct large-Q asymptote
for �1.

We will treat the extra UV divergences and their renormalization in more detail later.
But for now we just examine one simple case, the UV divergence for CS�1, and indicate

some interesting properties, notably that it depends on the directions of the Wilson lines,
and more specifically on the hyperbolic angle between them.

In the formula (10.29) for CS�1, the integrals over the longitudinal momenta are readily
performed, e.g., by contour integration over k− followed by an elementary integral over
k+. Without the UV counterterm

CS�1

�0

no c.t.= −g2(2πμ)2ε

8π2
(y1 − y2) coth(y1 − y2)

∫
d2−2ε kT

1

k2
T +m2

g

= −g2

8π2
(y1 − y2) coth(y1 − y2)�(ε)

(
4πμ2

m2
g

)ε

, (10.46)

where �0 is given by (10.31). The UV counterterm in the MS scheme is

g2Sε

8π2ε
(y1 − y2) coth(y1 − y2), (10.47)

so that the renormalized CS�1 is

CS�1

�0

renorm.= −g2

8π2
(y1 − y2) coth(y1 − y2) ln

μ2

m2
g

. (10.48)

Observe the dependence on the difference in rapidities between the lines. (Lorentz
invariance requires that the dependence is on the rapidity difference, not on the rapidities
separately, since we can always transform to a frame in which one rapidity, y2 say, is zero,
in which case the other line’s rapidity is changed to y1 − y2.)

Since e−(y1−y2) ∼ m2/Q2 at large Q, a correct leading-power approximation is to replace
coth(y1 − y2) by unity. This leaves the remaining factor of y1 − y2. Therefore, there is a
further divergence if we take the Wilson lines light-like, an explicit example of a rapidity
divergence.

We call y1 − y2 the hyperbolic angle between the two vectors. The name is appropriate
because if we continue y1 and y2 to imaginary values, with y1 − y2 = iθ , then n1 and n2

are vectors in Euclidean space, and θ is the ordinary angle between them. (Actually θ is
the angle between n1 and −n2.)

We have seen that CS�1 is a one-loop term in the vacuum expectation value (10.32) of
a Wilson line composed of two straight line segments in directions n1 and n2, joined at a
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Fig. 10.10. Notation for derivative of CS�1 with respect to y1. The crossed vertex is defined
as a rapidity derivative of the Wilson line, in (10.49).

cusp. Our calculation has shown that there is a UV divergence associated with the cusp and
that both the divergence and the associated anomalous dimension depend on the hyperbolic
angle between the two lines.

10.5.10 Evolution with respect to Wilson-line rapidity

To illustrate evolution of the soft factor with respect to the direction of a Wilson line,
consider the derivative of the one-loop soft term CS�1 with respect to y1. This is obtained
by differentiating the n1-dependent factor:

∂

∂y1

(
n1

−n1 · k + i0

)
= ∂

∂y1

(
(1,−e−2y1 , 0T)

−k− + e−2y1k+ + i0

)

= −n2
1k̃

(−n1 · k + i0)2
, (10.49)

where k̃
def= (k+,−k−, 0T). Let us represent this object by a vertex with a cross, as in

Fig. 10.10. Then the derivative of CS�1 is

∂ CS�1

∂y1
= ig2

(2π )n

∫
dnk

1

(k2 −m2
g + i0)

−n2
1k̃ · n2 �0

(−n1 · k + i0)2 (n2 · k + i0)
+ UV c.t.

(10.50)

The key to further simplifications in the full evolution equation is that the derivative with
respect to y1 restricts the integral over k to rapidities near y1, to leading power, so that
we can take the limit y2 →−∞ without a rapidity divergence. To see this, we observe
that in the integrand of (10.50), when the rapidity y of the gluon is much less than y1, the
factor 1/(−n1 · k)2 becomes 1/(k−)2 ∝ e2y , which gives a suppression. So (10.50) concerns
gluons of rapidity close to y1.

Therefore in (10.50) we replace n2 by a light-like vector w2 in the minus direction.
The numerator and denominator factors n2 · k̃ and n2 · k both become w−2 k+, and therefore
cancel, so that

∂ CS�1

∂y1
= ig2

(2π )n

∫
dnk

1

(k2 −m2
g + i0)

2�0

(−ey1k− + e−y1k+ + i0)2

+ UV c.t.+O
(
e−2(y1−y2)) . (10.51)
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The unsuppressed first term is independent of y1. The k− and k+ integrals are easy to
evaluate, giving

∂ CS�1

∂y1
= −g2

(2π )n−1

∫
dn−2kT

k2
T +m2

g

�0 + UV c.t.+O
(
e−2(y1−y2)

)
, (10.52)

consistent with (10.46) and (10.48).
We will see that the evolution equation for the soft factor S in the factorization property

(10.11) has the form

∂ ln S

∂y1
= 1

2
K(mg,m,μ, g(μ))+O

(
e−2(y1−y2)

)
, (10.53)

with the kernel K being independent of y1 and y2. The right-hand side of (10.52) is in fact
the first term in the perturbation expansion of 1

2K . In accordance with the convention in
Collins (1989); Collins and Soper (1981); Collins, Soper, and Sterman (1985b), a factor 1

2
is defined to accompany K . The lowest-order value of K , from (10.52), is

K = −g2

4π2
ln

μ2

m2
g

+O(g4). (10.54)

It follows from (10.53) that S depends exponentially on y1 − y2:

S(y1 − y2) = S0e
1
2 (y1−y2)K

[
1+O

(
e−2(y1−y2)

)]
, (10.55)

with S0 independent of y1 − y2.
The quantity K also plays a key role in the evolution of the other factors in (10.11), and

analogous results hold for factorization theorems for other processes, like Drell-Yan with
measured transverse momentum for the lepton pair. In using the factorization theorems, it
will be necessary to use different values of the renormalization scale μ in different factors,
e.g., μ ∼ Q in the hard factor H , but μ ∼ mass in the soft and collinear factors. Thus the
RG equation for K is also important. This has the form

dK

d ln μ
= −γK (g). (10.56)

From (10.52), we read off the one-loop term in the anomalous dimension:

γK = g2

2π2
+O(g4), (10.57)

which plays a central role in applications.
This anomalous dimension has two roles, of the kernel of the RGE for K , and as

controlling the rapidity dependence of the anomalous dimension γS of the soft factor S:

γK = − dK

d ln μ
= −2

d

d ln μ

∂ ln S

∂y1
= −2

∂

∂y1

d ln S

d ln μ
= −2

∂γS

∂y1
, (10.58)

where we have dropped power-suppressed terms of order e−2(y1−y2).
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10.6 Rationale for definition of TR

The definition of the region approximator TR in Sec. 10.4.2 is obtained from the first
term in an expansion in powers of small variables. However, the actual soft-to-collinear
approximators were modified, to use space-like auxiliary vectors in (10.17) and (10.18),
and to have specific i0 prescriptions in (10.20)–(10.24). We now justify these modifications.
The modifications are unique, given some mild assumptions which are used to ensure the
proofs are relatively simple.

Some of the justifications are more readily understood by referring to the one-loop
example in Sec. 10.5.

The Grammer and Yennie (1973) paper gives a general approach to obtaining a leading
approximation for soft gluons (and for related situations). But their approximator (in their
K term) differs significantly in form from what we wrote in Sec. 10.4.2. This indicates that
a variety of alternative approximators are conceivable, and we should justify a particular
choice of approximator.

The Grammer-Yennie method was constructed to deal with IR divergences in QED;
it concerns regions where photon momenta go to zero. In that situation IR photons do
not interact with each other, even via loops of lines for electrons and any other matter
fields. The Ward identities are particularly simple in an abelian theory. Not only do the IR
divergences factorize from the rest of the cross section, but it was shown that the complete
IR factor is the exponential of its one-loop value. The correctly computed divergence
includes contributions from IR photons with rapidities comparable to that of an external
charged line.

In the asymptotic problems treated in this book, what we mean by soft momenta is
much broader; we include momenta whose absolute size may be large, but still much less
than Q. Thus interactions of soft lines are important: the S factor in Fig. 10.3(b) is an
arbitrary multigluon graph. However, we do not require the soft factor to correctly treat
low-energy gluons of high rapidity; these belong in the collinear factors with other high-
rapidity phenomena. The soft factor becomes a matrix element of Wilson lines, as do the
collinear-to-hard gluon couplings. Furthermore the non-abelian Ward identities used in
QCD are more complicated than the Ward identities in QED.

Consider our soft-to-A approximant, (10.21). In comparison, the original Grammer-
Yennie approach would use no approximation of kAS on the A subgraph, and would have
a more complicated non-linear function in place of our denominator kAS, j · n1. We will
also need to justify the particular i0 prescriptions used in the denominators in (10.20)–
(10.24).

10.6.1 Structure of soft and collinear approximants

The structure of all our generalized Grammer-Yennie approximants is

A(k)μS(k)μ �→ A(k̂)μ
uμvν

u · v S(k)ν = A(k̂)μ
k̂μvν

k · v S(k)ν, (10.59)
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where

k̂μ = uμ k · v
u · v . (10.60)

Here u and v are fixed vectors chosen so as to extract the leading behavior of A · S in
the design region of the approximant. (That means, for example, that a soft-to-collinear-
A approximant should give an approximation that is accurate to leading power when the
momenta in S are soft and the momenta in A are collinear-to-A.) The names of the vectors in
(10.59) are changed from our original formula, to indicate that we address general structural
issues, allowing possible modifications of the formalism.

In general, multiple applications of (10.59) are used, one for each gluon joining A and S,
as in (10.21). All the considerations in this section apply equally if the pair AS is replaced
by BS, HA, or HB, merely needing a choice of appropriate auxiliary vectors u and v.

10.6.2 Requirements on soft and collinear approximants

To show that this form is required, and to determine further restrictions on the auxiliary
vectors w1, n1, etc., we apply the requirements on region approximators TR .

1. TR should give an approximation correct to leading power at its design region R.
2. It should be compatible as necessary with contour deformations applied to the original

graph.
We have already dealt with the consequences of this requirement.

3. The conversion of the sum over graphs and regions to a Wilson-line form should be
exact. Compare the derivation of the gauge-invariant parton model in Sec. 7.7.

That is, in applying the Ward identities to Grammer-Yennie approximants, there
should be no remainder terms. Typically such remainder terms are power-suppressed
and hence innocuous in the design region of TR , but can be unsuppressed elsewhere.
These terms are not in principle undesirable, but they make it hard to construct complete
proofs of factorization.

4. The approximant should be exact when applied to the Wilson lines derived from it.
Ward identities applied to the approximated Wilson line give back exactly the Wilson

line, as required by item 3. So the remainders between the graph and approximant must
sum to zero. It avoids a probably hard subsidiary proof if the remainders are not zero
term-by-term.

5. Summing the gluon attachments should actually give a Wilson line with a straight path,
rather than some more general object, at least if this is possible consistently.8

One can imagine more general ways of constructing gauge-invariant operators, e.g.,
by having Wilson lines with non-rectilinear paths, or by having an integral or sum over
Wilson lines with different paths and given endpoints. All such cases are even more
complicated than what we are already dealing with, so we should avoid them if possible.

8 In the applications treated in Ch. 13, the definition of gauge-invariant transverse-momentum-dependent parton densities
will require a minor modification to this assumption, with an extra segment of a Wilson line at infinity. The effects of
the modification will cancel in the ultimate results.
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Fig. 10.11. Hard factor times (a) normal local soft factor, (b) conceivable non-local
soft factor.

6. After applying TR , the hard subgraph should not depend on soft momenta.
Close to the design region of TR , the hard subgraph obviously has a power-suppressed

dependence on soft momenta. But if the dependence is not removed exactly in the
definition of TR , there will be significant dependence of H on soft momenta, and this
will introduce a complicated non-locality in the operator defining the soft factor. From
the sum over Fig. 10.3(b), we will derive a factorization with soft factors defined by the
vacuum matrix element of two Wilson lines joined at a point, so that the hard factor times
soft factor is as in Fig. 10.11(a). But if the hard subgraph H had dependence on momenta
circulating from the soft factor, the hard subgraph would give non-locality between the
otherwise-joined ends of the Wilson lines, as in Fig. 10.11(b). We could avoid this by a
subsidiary expansion of H after the use of Ward identities, but at the expense of hard-
to-control remainders in diagrammatic treatments: the subtraction formalism would not
correspond exactly to factorization. There would also be issues with gauge invariance
of H . It is simpler if we avoid the extra step, as we will be able to.

7. An approximated momentum k̂ is a linear function of the unapproximated momentum
k̂ = P (k). Applying the approximator a second time reproduces k̂, i.e., P (P (k)) = P (k).

One can find other requirements, but these are the ones that impinge most directly on the
issues we wish to discuss. Evidently some of the requirements are not absolute, but are
to prevent us from going outside known general ideas on gauge-invariant parton densities,
etc. unless we are absolutely forced to.

10.6.3 General form of Grammer-Yennie-type approximation

The different cases of a Grammer-Yennie-type approximant are very similar. So to obtain
its general form from the above requirements, it is sufficient to treat the case of a gluon of
momentum k connecting the S to the A subgraph. The relevant approximant is the approxi-
mated A subgraph multiplied by a special factor and the unapproximated S subgraph, as in
(10.59). We regard this as the approximated A subgraph (which is 1PI in the gluon) times
the matrix element with a gluonic operator that defines S. To connect this to the Wilson-line
formulation, the result is to be expressed by a Fourier transformation in terms of an integral
over the coordinate-space gluon field.

The Wilson-line requirement implies that the coordinate-space integral is along a straight
line, of some direction v, which we will identify with the same vector in (10.59) and (10.60).
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That is, in coordinate space the product of S and the approximated A subgraph has the form∫
dλ FA(λ) X(λv), (10.61)

for some function FA, with X(x) being the Fourier transform of S(k),

X(x) =
∫

d4k

(2π )4
eik·x S(k). (10.62)

In momentum space the product of S and approximated A is∫
d4k

(2π )4
fA(k · v)S(k), (10.63)

where

fA(k · v) =
∫

dλ eik·vλFA(λ). (10.64)

Hence the approximated A is a function of v · k. Since k̂ is a linear function of k, it is a
fixed vector times v · k. Reapplication of the approximator reproduces k̂, so k̂ must be of
the form (10.60).

The exactness of the Ward identities in a non-abelian theory requires the vectors u to be
the same at all gluons connecting S to A.

At each gluon between S and A, the approximant therefore has the form

A(k)μS(k)μ �→ A(k̂)μM(k̂)μ
νS(k)ν, (10.65)

where M is some matrix to be determined. The approximant is exact if Aμ is obtained from
a Wilson line in direction v; in that case A is some function of k · v times the vector v.
The function is unchanged by the approximant, since k̂ · v = k · v. So the requirement of
exactness of approximating a Wilson line gives

vμM(k̂)μ
ν = vν, (10.66)

from which we find that Mμ
ν is of the form aμvν/(a · v) for some vector a. For the Ward

identities to work exactly, we need aμ ∝ k̂μ. The structure in (10.59) follows.

10.6.4 Auxiliary vectors in soft approximation

In setting up the soft-to-collinear approximators, (10.21) etc., the natural expansion in small
variables would make the vectors n1 and n2 light-like, in the plus and minus directions. But
to cut off rapidity divergences, we made them non-light-like with rapidities y1 and y2.

We now derive the i0 prescription in (10.20) and (10.22), and determine that n1 and
n2 are space-like. Examination of one-loop examples is sufficient for this. As we saw in
Sec. 5.5.10, the soft approximation fails in the Glauber region, i.e., when |k+k−| � k2

T.
We avoid the Glauber region by deforming the k+ and k− integrals away from the poles
on the quark propagators. The approximators are applied on the deformed contours, so

https://doi.org/10.1017/9781009401845.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.010


10.6 Rationale for definition of TR 349

the denominators in (10.20) and (10.22) must use i0 prescriptions compatible with the
deformed contours.

In (10.28), the simplest deformation is symmetric. Where the real parts of k+ and k−

are in the Glauber region, we deform k+ into the upper half plane away from the pB + k

pole, and we deform k− into the lower half plane away from the pA − k pole:

k+ �→ k+ + i�, k− �→ k− − i�, (10.67)

where � is positive and of order kT. The signs reflect that both the quark and antiquark
are in the final state relative to the hard interaction, and the reversed sign between k+

and k− is because k flows into the A subgraph but out of the B subgraph. In (10.29), the
Grammer-Yennie denominators are

1

(−n1 · k + i0)(n2 · k + i0)
= 1

(−k− + e−2y1k+ + i0)(k+ − e2y2k− + i0)
. (10.68)

Not obstructing the contour deformation determines the k+ + i0 and −k− + i0 parts to be
as written, since e2y2 and e−2y1 are much less than one.

Fourier transformation of the Feynman rules for the Wilson lines shows that in coordi-
nate space they are future-pointing, corresponding to the fact that the external quark and
antiquark are in the final state.

We will also use factorization for other processes, and it is important that, if possible,
we have universality of the collinear and soft factors between processes. Now, as explained
by Collins and Metz (2004), other processes require an asymmetric contour deforma-
tion. As we will see in Sec. 12.14.3, in DIS we would use a contour deformation in k+

only:

k+ �→ k+ + iO(Q), k− �→ k−. (10.69)

The large k+ deformation is away from final-state singularities, but k− is generally trapped
at small values by a combination of initial- and final-state singularities associated with the
hadron target in DIS. This asymmetric deformation takes k from a Glauber configuration to
a collinear-to-A configuration, and hence out of the soft region. But the soft approximant
is to be integrated over all momenta, and it is used in a subtraction in collinear terms, so
auxiliary denominators must not obstruct the contour deformation.

To get maximum universality of the soft and collinear factors, we should avoid changing
the Wilson lines when we change processes, if possible. This requires (Collins and Metz,
2004) that our soft approximant for the Sudakov form factor also be compatible with the
asymmetric deformation (10.69). This is achieved if the relative signs between the i0s and
the k+ terms in (10.68) all be the same, and therefore as written. A similar argument applies
to the k− terms. This determines all the signs in (10.68), from which we deduce that n1 and
n2 are space-like, in agreement with our definitions.

An important advantage is that, since gluon fields commute at space-like separation, the
use of space-like Wilson lines ensures automatic compatibility between the path ordering
defining the Wilson lines and the time ordering used to define Green functions.
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A disadvantage arises when one extends the use of the approximations to cases with
emission of real gluons. Then singularities at k · n = 0 with n space-like occur in the
region of physical gluon emission. But with a time-like vector, the singularity is restricted
to k = 0, because of the positive energy condition on a physical state. (In the rest frame of
n, k · n = k0, which is positive for a physical state.)

If one gave up the argument about universality, one could use time-like auxiliary vectors.
In the Sudakov form factor (and generally in reactions in e+e− → hadrons) one could use
time-like future-pointing vectors. In DIS one would still need a future-pointing vector on
the struck quark side, but a past-pointing vector on the target side. The issues of universality
in this context need further investigation.

10.6.5 Auxiliary vectors in the collinear approximants

As for the collinear-to-hard approximants, subtractions for soft regions cancel the possible
rapidity divergences; we will see this as general result. Therefore it is sufficient to use
light-like vectors in the collinear approximants, as given in (10.19), (10.23), and (10.24).

The i0 prescriptions in (10.23) and (10.24) are determined in the same way as in the soft
approximants. The signs are in fact the same, and correspond to future-pointing Wilson
lines. Although the Glauber region appears to have nothing to do with a collinear region,
the approximators are applied to the graph as a whole with a deformed momentum contour.
The momentum denominators in the collinear approximant must therefore be compatible
with the contour deformation out of the Glauber region.

10.6.6 Alternative definition of the collinear-to-hard approximants

In our definitions in Sec. 10.4.2, we chose all the approximated momenta to be light-like.
Thus in (10.59), the vector u is light-like. Although this is generally the most convenient
choice, other choices are conceivable. However, constraints arise from other requirements.
In the case of the hard-scattering factor, gauge invariance is most conveniently assured, if
its external lines are on-shell. This implies that these lines are light-like given that they are
massless. Practical perturbative calculations are enormously much simpler when masses
are zero and external lines on-shell.

We also used a light-like Wilson-line vector in the hard scattering, i.e., w2 in (10.19a)
and w1 in (10.19b).

A constraint now arises from the requirement that the hard factor does not depend on
the soft momenta, after application of an approximator. This ensures that the hard factor
completely factors from the soft factor. In the notation of (10.59), let uAS and vAS be the
vectors for the soft-to-A approximant, and let uHA and vHA be the vectors for the A-to-H
approximant. In this general case, the approximated momentum in H is

k̂
μ
HA = u

μ
HA

(kHA + k̂HAS) · vHA

uHA · vHA

(10.70)
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Since k̂HAS is proportional to uAS , we only get independence of k̂HA from kAS if

uAS · vHA = 0, (10.71)

i.e., if the approximated soft momentum is orthogonal to the Wilson-line vector for the
A-to-H connections.

This is obviously satisfied for our actual choice, in (10.17) and (10.19a), that uAS and
vHA both equal w2, a light-like vector in the minus direction.

What other possibilities are there? We restrict to vectors in the (+,−) plane, otherwise
we break azimuthal rotation symmetry in our approximators, without having a transverse
vector in the process’s kinematics to give a preferred transverse direction.

If vHA stays light-like, this requires uAS to be light-like in the same direction, which is
our original choice.

Given our results on i0 prescriptions, the other choice is a space-like vector vHA. An
orthogonal vector is time-like. A simple and natural case is to put vHA in the z direction
in the center-of-mass frame. The corresponding Wilson line restricts gluon rapidity in the
A factor to be approximately positive, which is very natural; it gives a natural cutoff of
the rapidity divergence in TA�1 before subtraction. Then we would need uAS ∝ qμ, a not
unnatural choice.

As far as I can see, this is an legitimate alternative possibility.
However, as we will see, it is generally preferable to avoid non-light-like Wilson lines

whenever possible: It makes calculations easier and avoids inhomogeneous terms in evo-
lution equations.

10.7 General derivation of region decomposition

In this section, we prove the main result needed to apply the subtraction formalism. This
is that, for a general Feynman graph for any of the many processes that we consider, the
remainder, (10.5), is actually power-suppressed. That is, it is a power of Q smaller than the
leading power for the process (which is, for example, Q0 for DIS structure functions). This
then demonstrates (10.1), which is the key formula for our later derivations of factorization
of various kinds.

The derivation uses certain properties of the region approximators TR , so effectively we
are finding and using a set of requirements on good approximators.

A general treatment involves regions in a loop-momentum space of arbitrarily high
dimension, and thus necessarily has a high degree of abstraction. As we will see, a recursive,
or inductive, strategy enormously simplifies the proof by reducing it to considering relations
between two generic regions. These can be visualized in a space of two dimensions, and
simple examples, like those in Secs. 10.2 and especially 10.5, give the main ideas for the
generic situation. It would be useful to read those sections concurrently with the present
section to gain better understanding, visualization, and motivation.

Even so, it will become apparent that the rigor of the derivations is insufficient. Mathe-
matically inclined readers are strongly urged to do better; the literature on deriving factor-
ization leaves much to be desired.
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10.7.1 Results so far

So far, we have explicitly defined the main ingredients of the method. The region contribu-
tions CR� were defined in (10.4) in terms of region approximators TR�. Then the asymptotic
behavior of � is intended to be correctly given by the sum over regions: �RCR�. Explicit
definitions of the region approximators were given in Sec. 10.4 for the Sudakov form factor;
these definitions apply with at most minor changes to the many other processes we will
treat.

10.7.2 Overall view

It is important to keep in mind the main motivations for the subtraction formalism. First,
the region approximant TR� is intended to give a good approximation to � near the PSS
R; that is,

� − TR� = O
((

λR +m

Q

)p)
‖�‖, (10.72)

with some qualifications that I will explain in Sec. 10.7.3. Here, λR is the radial variable
for region R. Naturally the approximators we use are such that the soft, collinear and
hard subgraphs of a region correspond to contributions to factors in a phenomenologically
useful factorization property. The error specified in (10.72) improves as λR decreases, but
only until λR becomes of order m. There are additional sources of error in neglecting m

with respect to Q when appropriate. So all these issues are covered by adding m to λR

in (10.72).
The approximant contributes in regions larger than R, but with an inaccurate value. To

handle the consequent double counting, we defined the region contribution CR� by (10.4),
where TR is applied after subtraction of the contributions from smaller regions. This is
also intended to solve the problem that the accuracy of the approximator TR degrades close
to PSSs smaller than R: the region contribution CR� is intended to be leading power at
region R but suppressed in smaller regions. Including the contributions of smaller regions,
CR� +∑R′<R CR′�, is intended to give a correct leading-power approximation near the
whole of R, including smaller regions.

As we saw in Ch. 8, this setup works quite straightforwardly to give factorization, if
the relevant regions are just nested inside each other, i.e., if they have a total ordering.
But, in general, the regions can have more general relations involving overlaps and non-
intersection, as in (5.21). This is responsible for the main complications in the proof. They
are a non-trivial generalization of those involved in dealing with overlapping divergences
in renormalization theory.

The most fundamental problem solved by the subtraction formalism is that the accuracy
of a region approximant TR� degrades in certain places, associated with other regions. An
example is at the approach to a smaller region R1 < R. As we have seen in examples, the
worsening of the accuracy of TR� is compensated in the subtraction formalism. In forming
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CR�, TR is applied to � only after subtractions are used for all the smaller regions. Then it
is the sum CR� +∑R′<R CR′� that gives an accurate approximation to � over the whole
of R, including smaller regions.

Another problem is the large multiplicity of regions, as in Fig. 10.5, a problem that
obviously gets much worse for even higher-order graphs. Our proofs will be inductive, i.e.,
recursive, and a generic step of a proof will only involve a single region and its nearest
neighbors in the region hierarchy. Then the most complicated relation between regions that
we need to discuss explicitly is Fig. 5.32. Most of the time, the relation we treat will be
essentially of the form of Fig. 5.28. So with an appropriate viewpoint, the most general
situation can be reduced to many copies of what happens in one-loop graphs, or at most
two-loop graphs.

Now, our aim is to derive power-law estimates of the accuracy of a factorization state-
ment, i.e., to obtain results that are accurate to some given power of a small ratio (e.g.,
m/Q). But we often have logarithmic integrals interpolating between different regions, and
these worsen basic power-law estimates by some number of logarithms. So it is convenient
to define the following notation:

f (x) = �p(x)g(x) as x → 0, (10.73)

which means that

f (x) = O
(
xp| ln x|α) g(x) as x → 0, (10.74)

for some value of the power α of the logarithm. That is, there are constants C, α and x0,
such that

|f (x)| < C |x|p |ln x|α |g(x)| for all |x| < x0. (10.75)

Normally, p is fixed for the problem we are analyzing (e.g., graphs for the Sudakov form
factor to leading power), but α depends on the graph, being up to two times the number of
loops.

10.7.3 Accuracy of approximator TR

The basic form of the accuracy of a region approximator TR was given in (10.72). We now
modify it to obtain a strictly correct error estimate which will form the basis of the rest of
our work.

Basic error estimate

The accuracy of the approximator for a leading region can be read off from the accuracy
of its individual components, as defined in Sec. 10.4. Since we are working to leading-
power accuracy, the exponent p of the power law is p = 1. Often such errors involve
some transverse momentum relative to Q: kT/Q, and these commonly vanish after an
integral over angle. Then the actual error is one power better: p = 2. We can also imagine
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improved region approximators with an expansion to more orders in small momentum
components, with a correspondingly larger value of p. The precise value of p will not
matter.

There are also non-leading regions, such as RA′ defined in Sec. 5.4 for the one-loop
Sudakov form factor. Since the graph is already non-leading in such a region, we can define
the associated approximator to be zero, e.g., TRA′� = 0. But the use of the integrand � on
the r.h.s. of error estimates such as (10.72) is then not appropriate; rather we need a value
characteristic of the graph integrated over all regions. Thus we replace � on the r.h.s. of
(10.72) by ∥∥∥∥

∫
all

�

∥∥∥∥ . (10.76)

Here the double-bar notation has the same meaning as in (10.39). That is, it is a power-
counting estimate of the size of the integral arranged to avoid dynamical cancellations.
(Thus for DIS, we would write ‖Wμν‖ = O(1), even though some specific components
vanish.)

Correspondingly, we should use an integral for the l.h.s., but now over a range near the
PSS R: ∫

local
(� − TR�). (10.77)

Then λR on the r.h.s. of an error estimate should be interpreted as the maximum value
of the radial variable in the range of integration. The integration is over some range of
all variables, not just λR but also the angular and intrinsic coordinates for R. Naturally,
the integral should be on a deformed contour if we need to avoid a Glauber region. Since
there is the possibility of logarithmic enhancements in such integrals, we must replace the
power-law estimate on the r.h.s. by

�p

(
λR +m

Q

)
. (10.78)

Situations needing adjustment

We now quantify that for a given value of λR , the error estimates need modification for
two situations, as can be obtained from the definitions in Sec. 10.4. First, they generally
degrade when the intrinsic coordinates approach the positions of any particular smaller
PSS R1 < R, since then the conditions for neglecting a small momentum component with
respect to a large component become weaker.

The second issue concerns lines with soft-collinear momenta, as in the example in
Sec. 10.5.4. These lines have both a small energy and a high rapidity. The small energy
allows them to be considered as soft, and the high rapidity allows them to be considered as
collinear. Let R be a region in which the soft-collinear lines are part of the soft subgraph.
Let R2 be the larger region obtained from it by changing the category of the soft-collinear
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lines to the appropriate collinear category. We notate this relation by

R2
SC
> R. (10.79)

In terms of the underlying PSSs, this relation is defined to mean that certain collinear lines
at the PSS R2 are changed to zero momentum to obtain the PSS R.

Soft-collinear lines are at an end of their collinear range in fractional momentum. But
their high rapidity implies that the approximator TR2 continues to be valid, removing the
degradation that would otherwise occur near the smaller region R.

In the approximator TR , the soft-collinear lines are treated as soft, but then their high
rapidity implies that the approximators where they attach to the corresponding collinear
subgraph degrade in accuracy. The errors become of order e−�y , where �y is the rapidity
difference between the soft and collinear lines, with the soft line always being taken as
having rapidity between the two collinear groups of the whole process.

Generalizing our proof from the example in Sec. 10.5.4, we will find that these effects
combine to give correctness of the subtraction method to extract the asymptotics of the
graphs.

Generic degradation near smaller PSSs

The accuracy of the approximator TR defined in Sec. 10.4 degrades when the intrinsic
coordinates appropriate for PSS R approach the positions of any particular smaller PSS
R1 < R. For example, in a hard subgraph, we neglect a collinear transverse momentum
with respect to a large momentum component of order Q. But near R1 we may need
to replace Q by the smaller value λR1 . So in our error estimate we insert a degradation
factor

WR1,R = 1+�p

(
Q

λR1 +m

)
, (10.80)

with one term for each smaller region. Here, I added 1 to the basic degradation factor, so
that the factor WR1,R can be applied universally: close to R1, the �p(. . .) term dominates,
but away from R1, it decreases, leaving WR1,R to relax to unity.

Soft-collinear problem

Surrounding PSS R, consider integrating around a surface of fixed λR , as in Fig. 5.28. Close

to each larger PSS R2 that obeys the soft-collinear relation R2
SC
> R, we get degradation of

the approximation by a factor VR2,R . This factor replaces �p(λR/Q) by �p

(
e−�y

)
, where

�y is the rapidity difference between the soft-collinear lines in the soft subgraph of R and
lines in the collinear subgraph of R to which they attach.

Consider next these same lines in the same momentum region in the other approximator
TR2�. Relative to R2, the configuration is close to the smaller region R, where there is
a default degradation factor WR,R2 . But the approximator applies accurately to the soft-
collinear lines, so we multiply the degraded error estimate by the inverse of the large VR2,R

factor.
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10.7.4 Overall error estimate

Putting all these components together, we have shown that the error in TR is characterized
by∫

local
(� − TR�) = �p

(
λR +m

Q

)

×
[

1+
∑
R1<R

WR1,R

1

1+ VR,R1

]⎡⎢⎣1+
∑

R2
SC
>R

VR2,R

⎤
⎥⎦
∥∥∥∥
∫

all
�

∥∥∥∥ . (10.81)

The 1/(1+ VR,R1 ) factors only appear for subregions obeying R1
SC
< R.

10.7.5 Theorems to be proved

I now state some theorems to be proved inductively. They generalize properties we have
seen in examples. The first three theorems are properties labeled by a region.

Theorem 1R Define
∫

local C̄R�
def= ∫

local(� −
∑

R′<R CR′�) which has subtractions for
smaller regions than R. It is suppressed in all regions R1 smaller than R, but with
degradation for soft-collinear situations that concern regions R or bigger:

∫
local at R1

C̄R� = �p

(
λR1 +m

Q

)⎡⎢⎣1+
∑

R2
SC≥R

VR2,R1

⎤
⎥⎦
∥∥∥∥
∫

all
�

∥∥∥∥ . (10.82)

Theorem 2R The same property applies to CR� = TRC̄R�.
Theorem 3R When we also subtract CR�, there is a suppression at R, and the soft-collinear

degradation only applies on regions strictly bigger than R:∫
local at R

(
� − CR� −

∑
R′<R

CR′�

)
=
∫

local at R

(1− TR)C̄R�

= �p

(
λR +m

Q

)⎡⎢⎣1+
∑

R2
SC
>R

VR2,R

⎤
⎥⎦
∥∥∥∥
∫

all
�

∥∥∥∥ .

(10.83)

The suppression is uniform over the whole of R including smaller regions.
Theorem 4 The sum of CR� over all regions approximates � to power-law accuracy:∫

all

(
� −

∑
R

CR�

)
= �p

(
m

Q

)∥∥∥∥
∫

all
�

∥∥∥∥ . (10.84)
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10.7.6 Proofs of theorems 1Rmin to 3Rmin

We will first prove these theorems for a minimal region, and then prove them for larger
regions given that they hold for all smaller regions.

Minimal regions

For a minimal region Rmin, theorems 1Rmin and 2Rmin are trivial because there are no smaller
regions. Theorem 3Rmin follows directly from the approximation property (10.81); because
of the lack of smaller regions C̄Rmin� = �.

Theorem 1R

For a general region R, we make the inductive hypothesis that theorems 1–3 have already
been proved for regions smaller than R. Then to prove the suppression (10.82), we partition
the terms in C̄R� into three sets according to the relation of the relevant regions to R1, and
then consider each set separately.

First, we note the following structural properties of C̄R� that follow directly from its
definition.

• C̄R� is a sum of terms, each of which involves a product of −TR′ operations applied to
�. Each product involves a sequence of strictly ordered regions, since subtractions in the
definition of any particular region contribution CR′� only involves yet smaller regions.

• A factor TR′ only appears in combinations that combine to form a CR′� factor.

The partitioning of C̄R� is as follows.

• The first set consists of terms in which all the TR′ factors are for regions that are ordered
relative to R1. The sum gives an object of the form:∑∏

R′′
(−TR′′ )(1− TR1 )C̄R1�. (10.85)

The sum is over the ways in which can appear TR′′ factors for regions R′′ bigger than R1

(and necessarily smaller than R). The two terms in the middle parentheses account for
all the terms in which −TR1 does not or does appear.

• The second set has at least one −TR′ overlapping with R1, but none that fail to intersect
R1. We group these terms by the minimal such R′:∑∏

R′′
(−TR′′)CR′�, (10.86)

where R′ overlaps R1, i.e., the intersection R′ ∩ R1 is non-empty and strictly smaller
than both R′ and R1.

• The third set is where there is at least one−TR′ factor for a region that does not intersect
at all with R1. We group these terms by the minimal such R′:∑∏

R′′
(−TR′′)CR′�, (10.87)

where the R′′ regions are larger than R′.
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For the first set, the factor (1− TR1 )C̄R1� is suppressed by theorem 3R1 , which is true
by the inductive hypothesis. But this has the soft-collinear degradation at any R2 obeying

R2
SC
> R1. For those R2 that are also smaller than R, i.e., that obey R2 < R, there are

subtractions in (10.85). By an inductive application of theorem 3 to region R2, we find a

suppression by the 1/VR2,R1 factor. There remain the cases R2 = R, and R2
SC
> R, which

are allowed in (10.82).
For the second set, (10.86), our treatment uses the ideas given in Sec. 10.5.6. There we

found for the one-loop Sudakov form factor that the collinear term CA� was suppressed
in the opposite collinear region RB . In this term, the factor TA acts by first projecting the
loop-momentum configuration down to the intersection RS of the two regions. Then it
extrapolates in the normal coordinates for A, preserving the value of the intrinsic coordi-
nates. A momentum close to RB gives an intrinsic coordinate close to the endpoint RS of the
RA PSS. We then get a suppression because of the suppression of CA� at regions smaller
than RA. This idea applies generally, by changing RA to R′, RB to R1, and RS to R′ ∩ R1.
The approximator TR′ coerces a momentum configuration near R1 to be effectively near
TR′∩R1 .

For the third set, R′ and R1 do not intersect at all. Again the TR′ operation coerces the
momentum configuration to be changed from R1-like to R′-like. The lack of intersection of
R′ and R1 implies that the coerced configuration is a generic one for R′ and that the radial
variable is of order Q. More propagators are off-shell without a change in the integration
measure, so we get a suppression.

This completes the proof of theorem 1R .

Theorem 2R

The application of the approximator TR does not change the suppressions and degradations
in (10.82). So theorem 2R follows.

Theorem 3R

The l.h.s. of (10.83) differs from that of (10.82) by a factor 1− TR . From the basic approxi-
mation property, (10.81), this gives a factor �p((λR +m)/Q) on the r.h.s. The suppression
factors for C̄R� at smaller regions on the r.h.s. of (10.82) cancel the corresponding degrada-
tion terms in (10.81), while the 1/(1+ VR,R1 ) factors cancel the effect of the VR2,R1 factors
in (10.82) for the case that R2 = R.

This gives (10.83).

Theorem 4

Theorem 4, (10.84) is the actual theorem we need to use in proving factorization, since it
states that to power-law accuracy, � is given by the sum of CR� over regions. It is just
theorem 3 applied to the largest possible region RH , where all momenta are hard. For this
region all coordinates are intrinsic, so we must set the radial coordinate to zero: λH = 0.
There are no larger regions, so we need no VR2,R terms. Thus theorem 4 is just an application
of (10.83) for R = RH .
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10.8 Sudakov form factor factorization: first version

The general leading region for the Sudakov form factor was depicted in Fig. 10.3(b). For
each region R of each graph �, we defined a corresponding contribution CR�, and the sum
over � and R gives a correct leading-power approximation to the form factor:

F =
∑
�,R

CR� + power-suppressed. (10.88)

The sum can be specified by independent sums over the region subgraphs H , A, B, and S

in Fig. 10.3 (subject to the constraint that there is a match of the numbers of gluon lines
connecting the different subgraphs). We must convert this sum into the factorized form of
hard, collinear and soft factors, as in (10.11), with definite definitions for the factors as
matrix elements of certain operators containing Wilson lines.

The basis of our method is that the region approximators TR allow Ward identities to
be applied to the connections of gluons from S to the collinear subgraphs A and B, and
to the gluons from A and B to the hard subgraph H . In each case there is a factor of the
gluon momentum contracted with one of the subgraphs, which we will call the destination
subgraph (A, B or H respectively). It is this contraction that allows Ward identities to be
used, generalizing the results of Sec. 7.7.

Elementary Ward identities in an abelian gauge theory are for ordinary Green functions
or matrix elements. Relative to these cases, we have two primary complications. The first
is that our Green functions have subtractions for smaller regions. The second is that the
graphs for A, B, and H are restricted by certain irreducibility requirements: Each collinear
subgraph A and B is one-particle-irreducible (1PI) in the soft lines, while the hard subgraph
H is 1PI separately in the A lines and the B lines.

10.8.1 Statement of definitions of factors

The Ward identities entail definitions for the soft and collinear factors that we state in this
section.

The soft factor is

S(y1 − y2) = 〈0|W (∞, 0, n2)† W (∞, 0, n1) |0〉
W.L. self-energies for n2 and n1

ZS. (10.89)

Here the Wilson-line operators are defined in (10.33), with directions n1 and n2, while ZS

is a UV renormalization factor defined by, say, the MS scheme. The denominator will be
defined in (10.101); it removes graphs that contribute to the numerator but that are not
produced from the Ward-identity argument. Applying Lorentz invariance shows that the
dependence of S and ZS on the Wilson-line rapidities y1 and y2 is only on the difference
y1 − y2. However, it is sometimes convenient to write separate y1 and y2 arguments:
S(y1, y2) instead of S(y1 − y2).
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360 Factorization and subtractions

As for the collinear factors, I first define an unsubtracted collinear factor for the A side:

Aunsub(ypA
− yu2 ) = 〈pA| ψ̄0(0) W (∞, 0, u2)† PB |0〉

(W.L. self-energies for u2) ūAPB

Zunsub
A

= 〈pA| ψ̄(0) W (∞, 0, u2)† PB |0〉
(W.L. self-energies for u2) ūAPB

Zunsub
A Z

1/2
2 . (10.90)

In the first line, the numerator has a matrix element of a bare quark field and a Wilson
line in a space-like direction u2 = (−e2yu2 , 1, 0T). The vector u2 is just like n2 except for
a different rapidity yu2 , and we will later use a limit with yu2 →−∞. There is also a
UV renormalization factor. The second line is simply the first line written in terms of the
renormalized quark field, as appropriate for calculations. As in the soft factor, there is a
denominator to cancel Wilson-line self-energy graphs.

The numerator is actually a Dirac spinor, and contains the factor PB = γ+γ−/2 which
is used to connect the collinear and hard factors. As I now show, the numerator is just a
factor times ūAPB . Therefore we include in the denominator in (10.90) a factor to divide out
the spinor dependence, so that the quantity Aunsub is a numerical-valued scalar quantity. To
derive the spinor structure, we observe that the only vector variables on which the collinear
factor depends are in the (+,−) plane. After the use of parity invariance, the most general
Dirac structure for Aunsub is

ūA(aI + b+γ−)PB. (10.91)

Because of the PB factor, all other combinations of Dirac matrices can either be reduced
to this by anticommutation relations or give zero. By use of ūA(/pA

−m) = 0, it is easily
checked that the most general form is actually proportional to ūAPB .

An unsubtracted B factor is defined exactly similarly:

Bunsub(yu1 − ypB
) = 〈pB |W (∞, 0, u1)PB ψ0(0) |0〉

(W.L. self-energies for u1) PBvB

Zunsub
B

= 〈pB |W (∞, 0, u1)PB ψ(0) |0〉
(W.L. self-energies for u1) PBvB

Zunsub
B Z

1/2
2 , (10.92)

with a Wilson line in the direction u1 = (1,−e−2yu1 , 0T).
Not only do soft and collinear factors like S, Aunsub, and Bunsub depend on the rapidities

of their non-light-like Wilson line(s), but so do their renormalization factors ZS , Zunsub
A ,

and Zunsub
B . For S and ZS this is simply a dependence on y1 − y2, as in (10.47).

The renormalization factors Zunsub
A , and Zunsub

B are mass independent and so variables to
parameterize their dependence on the Wilson-line rapidities must use the massless limit of
pA and pB . Appropriate variables for Zunsub

A , and Zunsub
B are, respectively,

ζA,u2

def= 2(p+A )2e−2yu2 = m2e2(ypA
−yu2 ), (10.93a)

ζB,u1

def= 2(p−B )2e2yu1 = m2e2(yu1−ypB
). (10.93b)

Next we define subtracted collinear factors. Their names, A and B, are decorated with
a superscript “basic” to indicate that the definitions are in a sense preliminary, since in
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later sections we will construct an improved factorization with modified definitions of the
factors. Each subtracted collinear factor is defined by dividing the unsubtracted collinear
factor by a version of the soft factor, and then taking the light-like limits u1 and u2 in a
certain way. Thus the subtracted A factors are

Abasic = 〈pA| ψ̄0(0) W (∞, 0, w2)† PB |0〉 (W.L. self-energies for n1)

〈0|W (∞, 0, w2)† W (∞, 0, n1) |0〉 ūAPB

Zbasic
A

= 〈pA| ψ̄(0) W (∞, 0, w2)† PB |0〉 (W.L. self-energies for n1)

〈0|W (∞, 0, w2)† W (∞, 0, n1) |0〉 ūAPB

Zbasic
A Z

1/2
2 ,

(10.94a)

Bbasic = 〈pB |W (∞, 0, w1)PB ψ0(0) |0〉 (W.L. self-energies for n2)

〈0|W (∞, 0, n2)† W (∞, 0, w1) |0〉 PBvB

Zbasic
B

= 〈pB |W (∞, 0, w1)PB ψ(0) |0〉 (W.L. self-energies for n2)

〈0|W (∞, 0, n2)† W (∞, 0, w1) |0〉 PBvB

Zbasic
B Z

1/2
2 . (10.94b)

The above definitions agree with our one-loop calculations in (10.42) and (10.43). The
renormalization factors Zbasic

A and Zbasic
B depend on ζA,n1/μ

2 and ζB,n2/μ
2 respectively, as

well as on g and ε. Here the ζ variables are defined by (10.93).
We will see that the denominators (10.94) are obtained as a result of the subtractions in

CR� for smaller regions; they have the effect of compensating double counting between the
collinear and soft factors. Closely related to this is that we will find that rapidity divergences
associated with the Wilson lines in light-like directions cancel between the numerators and
denominators. In effect,

Abasic = “lim”
yu2→−∞

Aunsub(ypA
− yu2 )

S(y1 − yu2 )
, (10.95)

and similarly for Bbasic. However, there is a non-uniformity in taking the infinite rapidity
limits and removing the UV regulator, which impacts calculations. As indicated by the
quotation marks, the limit in (10.95) is taken in a special way to be defined in Sec. 10.8.2.

Finally, the hard factor is essentially whatever is left over, in the limit that masses are
neglected:

H = F

AbasicBbasicS

∣∣∣∣
mg=m=0,pA,n1,pB ,n2 light-like

. (10.96)

Originally we choose n1 and n2 to be vectors with approximately the rapidities of pA and
pB . So taking the massless limit for pA and pB implies that we replace n1 and n2 by their
light-like limits, i.e., w1 and w2. Our definition of the collinear factors implies that H

includes factors of spinors ūAPB and PBvB with a Dirac matrix between them.

10.8.2 Limit of infinite rapidity Wilson lines

The limit yu2 →−∞ on the Wilson-line rapidity in (10.95) needs a little care in its
definition concerning the hard region of large transverse momenta: there is non-uniformity
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in combining the limits of infinite rapidities with the removal of a UV regulator. We use
the following procedure to define Abasic and Bbasic.

• For Aunsub and S, apply a UV regulator, e.g., dimensional regularization with n < 4.
• Take the limit yu2 →−∞ on the r.h.s. of (10.95).
• Apply UV counterterms.
• Remove the UV regulator, e.g., take n→ 4.

This corresponds to our procedure for calculating CA�1 and CB�1 in (10.42) and (10.43).
If we reversed the limits, we would need to compensate by an extra hard factor, e.g.,

Abasic = lim
yu2→−∞

[
lim
n→4

Aunsub(ypA
− yu2 )

S(y1 − yu2 )
Z̃A(ζA,n1/μ

2, y1 − yu2 , g(μ), ε)

]
. (10.97)

The factor Z̃A is to be adjusted so that we get the same results as in (10.94a). Now the
non-uniformity of the limits n→ 4 and of infinite Wilson-line rapidities only concerns
the limit of infinitely large transverse momentum; for n < 4, the limits can be exchanged.
Thus the factor Z̃A is a pure UV factor, and can be regarded as a kind of generalized UV
renormalization factor, chosen to make a renormalization prescription that agrees with the
combination of MS renormalization and the opposite order of the limits.

Within the context of low-order perturbation theory, especially at one loop, the first
description works; an example is in the calculation of the one-loop collinear term at (10.42).

An exactly similar procedure applies to the B factor.

10.8.3 Elements of diagrammatic Ward identities

Ward identities can be derived without perturbation theory, as properties of Green functions.
From these we could try to derive identities for the factors, H , A, B, and S in Fig. 10.3, which
are modified Green functions, with appropriate irreducibility properties and subtractions.9

For our present work, it is considerably easier just to give a perturbative proof, valid to
all orders, where we will take full account of the necessary subtractions and irreducibility
properties. The general approach was seen in Sec. 7.7, where we derived a gauge-invariant
parton model in a full non-abelian theory, i.e., QCD with a limited set of graphs.

Here we handle the full set of graphs, but restrict to an abelian theory in a covariant
gauge. In deriving factorization, it will be important to understand which subgraphs are
allowed and which are not, for A, for B, and particularly for H , in Fig. 10.3(b), given a
specification of their external lines. This will modify the derivation of the Ward identities
from the standard derivation, e.g., Sterman (1993, p. 334–340).

Consider one gluon from subgraph S to subgraph A, and its attachment to a quark line,
as in the left-hand side of Fig. 10.12(a). The triangle at the vertex denotes the application
of the soft approximation. For the moment we ignore the subtraction terms.

9 Here Fig. 10.3(b) is treated as specifying the term CR�, with the subgraphs H , A, B, S being those the specify the
region R.
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(a)
k

p
p + k̂

=

p

+

p + k̂

(b) + = 0

Fig. 10.12. Graphical elements of Ward identity: (a) application to line, (b) sum at vertex
(in abelian gauge theory).

Let k be the gluon momentum, and let k̂ be its approximant defined in (10.16). We apply
the following identity:

n
μ
1

k · n1 + i0

i

/p −m+ i0
(−ig/̂k)

i

/p + /̂k −m+ i0

= i(−ign
μ
1 )

k · n1 + i0

[
i

/p −m+ i0
− i

/p + /̂k −m+ i0

]
. (10.98)

Thus one or other quark propagator is canceled, as pictured on the right-hand side of
Fig. 10.12(a). The gluon is now attached to a special vertex that is at one or other end of
the quark line. At this special vertex,10 the double line denotes a factor of a Wilson-line
propagator with an accompanying vertex, and the diagonal single line codes an overall sign.
The sign essentially concerns the charge of the quark field.

We now sum over all places where the gluon can attach to the quark line. Now, when an
S gluon attaches to an A quark, an equally allowed graph is where the S gluon attaches to
the opposite side of a neighboring gluon vertex, as in Fig. 10.13. Note that the other gluon,
of momentum l, may either be part of the A subgraph or the S subgraph; the argument
works equally in both cases. This gives pairs of canceling terms, at each other gluon vertex
on the quark, as illustrated in Fig. 10.12(b). If the quark line goes around in a loop inside
the collinear graph, we get zero. But if the quark line goes out of the collinear graph, we
are left with only the special vertices at the outside end(s) of the quark line. At the on-shell
pA end we in fact get zero, exactly as in the standard textbook case.11 There remains one
term, at the end of the quark line where it enters the hard scattering. The result is just as in
the lowest-order case, (10.29), and is equivalent to a gluon attaching to a Wilson line.

In certain model calculations, we might use a scalar quark. In that case, we must take
account of the vertex with two gluons. The necessary vertex identity is Fig. 10.14, which
replaces Fig. 10.12(b) for spin- 1

2 quarks. It is readily verified from the form of the two-
quark–two-gluon vertex.

10 In the context of diagrammatic proofs of Ward identities (e.g., Sterman, 1993, p. 351) the vertex represents the BRST
transformation of the field at the end of the quark propagator, but in our work it is multiplied by an eikonal denominator.

11 However, the details are not always made explicit in the textbooks!
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Fig. 10.13. Example of graphical structure which leads to the canceling terms in
Fig. 10.12(b).

Fig. 10.14. Vertex sum as in Fig. 10.12(b), but for scalar quark.

10.8.4 Extraction of soft lines from collinear subgraphs

Now consider all the gluons entering collinear subgraph A from the soft subgraph S,
continuing to omit the subtractions. We apply the Ward-identity argument of Sec. 10.8.3
to each gluon in turn, summing over allowed graphs for the A subgraph, given a particular
set of external lines for the subgraph. Then we apply the same argument to the gluons from
S to the other collinear subgraph B, and represent the result in Fig. 10.15(a) and (b). Each
external gluon of the S subgraph now attaches to a Wilson-line factor of the form

i(−ign
μ
1 )

kj · n1 + i0
on A side,

i(ign
μ
2 )

kj · n2 + i0
on B side, (10.99)

where kj is the gluon momentum, defined to flow into the S subgraph.
We convert the result to exactly the Wilson-line form by using the following identity for

the product of elementary Wilson-line propagators:

N∏
j=1

i

kj · n+ i0
=

∑
permutations

i

k1 · n+ i0
× i

k1 · n+ k2 · n+ i0

× · · · × i

k1 · n+ k2 · n+ . . . kN · n+ i0
. (10.100)

This identity is readily proved by induction on N , and is applied separately to the parts of
the diagram with n = n1 and n = n2. The right-hand side is exactly the product of lines
resulting from the Feynman rules for a Wilson line (Sec. 7.6). Wilson-line vertex factors
are exactly the −ign1 and ign2 factors in (10.99).

Next we observe that, with the region approximator TR defined in Sec. 10.4.2, the
approximated hard subgraph H is independent of the soft momenta. Thus we can contract
the free ends of the Wilson lines together to give Fig. 10.15(c). The right-hand factor
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Fig. 10.15. Application of Ward identities to extract S gluons from the collinear subgraph
with the soft approximation in (a). After use of Ward identities we get graph (b), and after
use of (10.100), we get graph (c).

Fig. 10.16. (a) Example of Wilson-line self-energy graph. (b) Denominator of (10.89).

(summed over graphs for S) is just what we already stated as the definition (10.89) of the
soft factor; there is one complication in the proof that I now explain.

Each connected component of an S subgraph joins the A and B sides. So no graph
arises in Fig. 10.15(b) where a component of S just connects n1 lines to themselves, or n2

lines to themselves. However, such graphs do arise from the matrix element of the Wilson
line, the numerator of (10.89), giving for example Fig. 10.16(a). If we were to sum over
all such graphs, they would form extra factors in Fig. 10.15(b), which we call Wilson-line

https://doi.org/10.1017/9781009401845.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.010


366 Factorization and subtractions

self-energy factors. Converting these factors to the Wilson-line form gives the general form
of Fig. 10.16(b), which has the operator form

W.L. self-energy factor = 〈0|W (∞, 0, n2)†|0〉 〈0|W (∞, 0, n1)|0〉 . (10.101)

Since these graphs are not produced by our Ward-identity argument, they must be removed
from the definition of the soft factor. Thus (10.101) is the denominator in the definition
(10.89) of the soft factor.

A careful examination of calculations of the self-energy factor shows that it has a
divergence as the length of the Wilson line goes to infinity. No such divergence arises from
graphs that connect the n1 to the n2 lines. So for a correct definition of the soft factor, we
first replace the occurrences of “∞” in (10.89) and (10.101) by some large finite length L.
Then the soft factor (10.89) is defined with a limit L→∞.

Finally, there are UV divergences in many of the relevant graphs. Just as in the textbook
treatment of conventional Ward identities (e.g., Collins, 1984, Ch. 9) we define these to be
canceled by UV counterterms. Just as in that case, the counterterms preserve the derivation
of the Ward identities, provided that an appropriate renormalization scheme is used, like MS.

10.8.5 Subtractions and the derivation of the soft factor

We have extracted soft gluons from their attachments to the collinear factors. But our
derivation so far has applied to TR�, i.e., to the approximator for region R of graph �,
followed by a sum over graphs. We now examine the effect of the subtractions that convert
TR� to the region term CR�, defined in (10.4). These prevent double counting with the
terms for smaller regions R′ < R. Note that for a general region and graph, the subtraction
terms −CR′� themselves contain subtractions, recursively applied. We now show how
the fundamental elements, Figs. 10.12 and 10.14, in the derivation of the Ward identities
continue to apply in the presence of subtractions.

We represent the relation between a pair of relevant regions in Fig. 10.17. There, diagram
(a) depicts the division of a graph into the hard, collinear, and soft subgraphs associated
with a region R; it is a more abstract representation of Fig. 10.3(b). In a smaller region
R′ < R, either the soft subgraph is bigger than in R, or the hard subgraph is smaller, or
both, as in Fig. 10.17(b).

A generic term in CR� corresponds to a set of nested regions Rj that obey R1 < R2

< · · · < Rn < R, and the corresponding contribution to CR� is

(−1)nTR

n∏
j=1

TRj
�. (10.102)

The TRj
operations are applied from inside out, smallest region to largest. Then CR�

is the sum over possibilities for (10.102), including the case n = 0. This follows from
the definition (10.4) of CR�, exactly as in the theory of renormalization (Collins, 1984).
The differences with renormalization are only in the specification of the regions and in
the definitions of the region approximators.
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Fig. 10.17. (a) Partition of graph for Sudakov form factor by subgraphs for a region R.
(b) Partition for a smaller region R′ < R. The dotted lines indicate the boundaries of the
subgraphs for the first region.

Now each region Rj corresponds to a pinch-singular surface (PSS) in the massless
limit. Its approximator TRj

is obtained from the leading power of the integrand expanded
in powers of the radial variable λRj

for the region, with masses treated as an appropriate
power of λRj

. This expansion is then slightly modified by the following replacements for
soft loop momenta in the collinear subgraphs:

kAS · w1 �→ kAS · n1, kBS · w2 �→ kBS · n2, (10.103)

as in (10.17) and (10.18). We now show that the Ward identities we use for extracting the
soft factor continue to apply in the presence of the subtractions.

Let a gluon of momentum k from the S subgraph of R attach to an A quark. The line
identity, (10.98) and Fig. 10.12(a), has the structure

1

A1
(A1 − A2)

1

A2
= 1

A2
− 1

A1
, (10.104)

up to an overall factor of a phase and a coupling. Here 1/A1 and 1/A2 are the quark
propagators, and A1 − A2 is the vertex factor, k̂−γ+.

Now, to get from TR� to CR� we sum (10.102) over all possibilities for nested sets of
smaller regions. Each term in (10.102) has region approximator(s) applied to the graph,
which contains the l.h.s. of (10.104) as a factor. Each region approximator replaces each
factor in the graph by (the first term) in its expansion in powers of λRj

, supplemented by
the replacements like (10.103). All of these operations can be applied equally well when
the l.h.s. of (10.104) is replaced by one or other of the terms on the r.h.s. Furthermore,
the same collection of operations can be applied to each of the terms in the vertex identity
Fig. 10.12(b) or Fig. 10.14.

This indicates that the Ward identities that apply to
∑

R,� TR� are also valid in the
presence of subtractions, so that the Ward-identity result should also apply to

∑
R,� CR�.

However, there is a potential problem that to use the vertex identity, we are combining
terms obtained from different graphs, and these could have different regions. To see the
difficulty, observe that the canceling terms at a vertex arise from different graphs, e.g.,
from Fig. 10.13. To make the vertex identity work in the presence of subtractions, we must
use a correspondence between the regions for the different graphs. We need to determine
the situations where the correspondence fails to exist, and to deal with the consequences.
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Another related complication is that the region approximator TRj
takes the leading power

in λRj
of the factors in the graph; we must investigate what happens if an approximator

gives a different power of λRj
when applied to A1 and A2 on the r.h.s. of (10.104).

Consider the application of TRj
to (10.104). It takes the leading power in λRj

of each
factor on the l.h.s. For the quantities A1 and A2, let the leading-most terms be Â1 and Â2.
In the most general context, there are three possible cases for the power laws:

• The power of λRj
is the same for both quantities, and for A2 − A1. The line identity

applies equally to the leading-power expansion

1

Â1
(Â1 − Â2)

1

Â2
= 1

Â2
− 1

Â1
. (10.105)

The left-hand side gives the effect of TRj
on the left-hand side of (10.104), and the two

terms on the right are the effect of applying TRj
to the terms on the right-hand side of

(10.104). Effectively, TRj
is a linear operation that commutes with the manipulations

giving the Ward identity. If TRj
had been defined to make different operations on the

vertex factor and the propagators, this result need not be true. The quantity on the left-
hand side and the two terms on the right-hand side have the same power-counting and
therefore do not change the necessary set of subregions.

The above situation is always the case for a soft line connected to a collinear line,
with the one trivial exception that one line, e.g., A2, is an external line. Then we omit
the 1/A2 factor, and replace A2 by zero.

• Another possibility is that the power of λRj
for one line, A2 say, is larger than for the

other line A1. Thus A2/A1 → 0 in the limit of λRj
→ 0. Then the leading power of the

vertex factor A1 − A2 is just Â1, and we must replace (10.105) by

1

Â1
Â1

1

Â2
= 1

Â2
. (10.106)

At the PSS Rj , the Â2 line can be viewed as on-shell, and we get exactly one term on the
right-hand side, just as when such a line is exactly on-shell. The term 1/Â1 is smaller by
a power of λj than 1/Â2, and so is correctly neglected.

• A final possibility is that A2 and A1 are comparable, but A1 − A2 is much smaller. In
that case, no subtraction associated with Rj is actually needed for the original graph. But
for the individual terms on the right-hand side we do need subtractions. Even though Rj

is not actually a leading region for the original graph, we add it to the catalog of leading
regions.

The above treatment applies literally for scalar quarks, for then the quantities A1 and A2 are
scalars, and the definition of their power is unambiguous. For fermions, each is a matrix,
whose inverse is taken in the propagators. A slightly more complicated version of the
argument leads to the same outcome.

Finally we apply the vertex identity. This relates graphs with the same set of denomina-
tors, and hence with the same subtractions. So the vertex identities continue to apply after
all the subtractions for subregions have been applied.
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When applying the vertex identity, we will have canceling terms obtained from applying
the line identity to neighboring lines. In the above derivations we have only examined the
vertex and lines in question. It is important that everything else in the graphs remains the
same. For example, in defining the soft (and collinear) factors, we inserted Wilson-line
denominators with non-light-like directions to cut off rapidity divergences. The success of
the vertex identities depends on these non-light-like lines being the same everywhere they
are encountered, e.g., always the same n1 for a soft gluon connecting to a collinear-to-A
quark.

The final result is that Ward identities apply in the presence of subtractions just as they
did in the elementary case we examined where we ignored subtractions. However, we must
take care to apply subtractions to the resulting factors.

So far we have extracted the soft factor. Since there are no smaller momentum classes
than soft, this factor needs no subtraction. Thus we have completed the proof that the soft
part of the form factor factorizes, and that the soft factor can be defined by (10.89). That
is, after summing over graphs and regions, we get Fig. 10.15(c).

But subtractions are needed in the remaining parts of the graphs, and our next task is to
convert them into hard and collinear factors (which will have subtractions).

10.8.6 Extraction of collinear factors from hard scattering,
without effect of subtractions

We now extract the collinear gluon attachments from the hard scattering and convert them
to attachments to Wilson-line operators, as in (10.94a) and (10.94b). As before, we start
by examining the part of CR� without subtractions, and extract the collinear gluons one-
by-one. The argument will be somewhat modified from that for soft gluons attaching to
a collinear subgraph, because the allowed subgraphs for H have important restrictions by
being 1PI in each set of collinear lines.

Of the two graphical elements for the Ward identity, a line identity like Fig. 10.12(a)
continues to apply, with only the caveat that one of the lines p and p + k̂, inside the H

subgraph, may be set on-shell by the approximator applied to a quark line at the collinear
edge of H . But for the vertex identity, Fig. 10.12(b), we can miss one of the graphs it
implicates.

An example is shown in Fig. 10.18, where we sum over the possible attachments of a B

gluon of momentum k to a one-loop hard subgraph. In graph (a), there is an on-shell quark
to the right of the vertex with the gluon, so that one term in the line identity gives zero, as
usual for an on-shell quark.12 There is then the usual chain of cancellations, with graphs
(b) and (c). But we do not have the graph where gluon k attaches one place to the right
of where it is in (c), i.e., we are missing graph (d). This is because in graph (d), gluon k

attaches to another B line at its lower end, so that vertex is not part of the hard subgraph;

12 Note that in the general case, with a non-trivial collinear-to-B subgraph, the quark in question is on-shell not because it
is an external quark, but because it is the outermost quark line of the hard scattering. Our definition of the approximator
for a region replaces the (possibly off-shell) external quarks of the hard scattering by exactly on-shell quarks.
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Fig. 10.18. Example of sum over attachments of gluon from collinear subgraph to hard
subgraph. The gluon l is in subgraph H , and the gluon k is in subgraph B. The hooks on
the quark lines indicate lines that are approximated as on-shell in the hard subgraph H .
The big arrow at the bottom of line k has the same meaning as in Fig. 10.6(a), except that
it uses the vector w1 instead of n1. Graphs (a)–(c) are summed, while graph (d) is excluded
by the condition that the hard subgraph is 1PI in collinear-to-B lines.

we see here an example of the general result that a hard subgraph is 1PI in lines that are
collinear to a particular direction.

The result is shown in Fig. 10.19, and it shows that the sum over attachments of gluon k

to a hard subgraph has extracted the gluon from the hard scattering and attached it instead
to a Wilson line. The Wilson line has exactly the form that results from the definition,
(10.94b), of the collinear-to-B factor. The remaining factor is a one-loop graph for the hard
subgraph without any extra gluons.

In the general case of a B gluon connecting to any H subgraph, what possibilities are
there? They are when one but not the other of the two graphs in Fig. 10.13 is not allowed,
given that gluon k is in the B subgraph, and that, at least on one side, the quark line is in
the H subgraph. It is easily checked that there are two cases, each where one of the two
subgraphs would have a collinear quark line.

One corresponds to Fig. 10.19(a), where the quark on one side of the vertex for k is in
the B subgraph. This gives the expected Wilson-line vertex.

The other case is where the other gluon l and the quark line on one side are in the A

subgraph, as in Fig. 10.20. We get an extra term in the sum over attachments of the k gluon,
Fig. 10.20(c). This graph is in fact zero. The reason, which applies generally, is that at
the attachment of gluon l the approximator picks out exactly the minus component of the
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Fig. 10.19. Result of sum in Fig. 10.18: (a) in the notation of Fig. 10.12, (b) as an attachment
to a Wilson line.

k

l
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l

k

l

(a) (b) (c)

Fig. 10.20. Simplest example of the other case that the vertex cancellation in the Ward
identity has a missing term. Approximators are applied for the case that k is collinear to B,
and l is collinear to A.

vertex; see (10.23), where the H subgraph is contracted with PHA(kHA), which is exactly in
the w1 direction. But the vertex is now exactly at the edge of the hard subgraph where there
is a quark that is exactly in the plus direction. It has a projection onto on-shell massless
wave functions for the quark, by the matrix PB . Therefore multiplying by the vertex factor
γ− gives zero; this is essentially from the Dirac equation for a massless quark in the plus
direction:

0 = ūA masslessγ
−p+A. (10.107)

Although we have formulated this argument for one graph, and for Dirac quarks, the
argument is actually general. It concerns an approximation where both the quark and the
gluon l have been made exactly massless and collinear in the plus direction in one part of
the hard subgraph. The minus component of the vertex goes to zero under an infinite boost
from a rest frame.

We now repeat the above arguments for all gluons entering the H subgraph from the
collinear subgraphs, first from the collinear-to-B subgraph and then from the collinear-to-A
subgraph. After a sum over all graphs, we get two collinear factors times a hard factor. As
with the soft factor, each collinear factor has a product of one-gluon Wilson-line factors,
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Fig. 10.21. Factorized structure for Sudakov form factor. The double lines are Wilson lines
with the following rapidities:−∞ for A,+∞ for B, y1 and y2 for S. Subtractions in H , A,
and B are not indicated explicitly.

and we use (10.100) to convert them to exactly a Wilson-line matrix element. Again, just
as with the soft factor, Wilson-line self-energies are missing. So we must divide by a
Wilson-line self-energy factor. The Wilson lines are exactly those with light-like directions
that are in the numerators of the previously stated definitions of the collinear factors,
(10.94).

10.8.7 Collinear factors, with subtractions

Subtractions arise in a more complicated way than for the soft factor, and specific examples
in multiloop graphs can become quite elaborate.

The most general method of dealing with subtractions is to appeal to the argument given
in Sec. 10.8.5, which applies quite generally. This is that subtractions apply whenever a
graph would have singularities in the massless limit, and that they are obtained from the
analytic structure of the denominators, together with power-counting. We showed that the
Ward identities apply in the presence of subtractions.

Therefore all we have to do to convert the unsubtracted result is to apply subtractions.
Without the subtractions, the arguments so far give the factorized structure shown in
Fig. 10.21. We have separate hard, collinear and soft factors multiplied together. The
correct formula is obtained simply by applying subtractions to the factors.

For the soft factor, as already explained, no subtractions are needed, because there are
no momentum regions smaller than a soft configuration. (Beyond this we also need the
Wilson-loop denominator in (10.89), to remove the Wilson-line self-energies, which do not
arise from the Ward-identity argument.)

For each collinear factor we have soft subtractions and for the hard factor we have soft
and collinear subtractions.

The easiest way to obtain an operator form for a subtracted collinear factor is to apply
the factorization argument to the unsubtracted collinear factor, e.g., to the limit yu2 →−∞
of (10.90), which has a non-light-like Wilson line, of rapidity yu2 . The leading regions
have the form shown in Fig. 10.22(a). These each have a collinear-to-A subgraph and a
soft graph that connects the Wilson line to the collinear subgraph, by arbitrarily many
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Fig. 10.22. (a) Regions for unsubtracted collinear matrix element (10.90). Here Aus is an
abbreviation for Aunsub. (b) After applying Ward identities to the gluons attaching the soft
subgraph to the collinear subgraph, we get this factorized form. Here Asub denotes the
subtracted collinear factor. Next to each Wilson line is a label indicating its rapidity.

gluons. We define the soft region with respect to u2 rather than the overall center-of-
mass. In accordance with the order of limits specified in Sec. 10.8.2, we take the limit
yu2 →−∞ with fixed space-time dimension 4− 2ε < 4, so that loop corrections to the
hard subgraph are power-suppressed, and we need no hard subgraph, just the connections
from the collinear subgraph to the Wilson line.

Since the collinear-B part is already in a Wilson-line form, it is enough to combine the
soft factor and the collinear-B factor in a new soft factor, denoted S in Fig. 10.22. The usual
Ward-identity argument is applied to gluons entering the collinear-A subgraph from S. The
same argument that we applied to the whole form factor now applies here, and results in a
soft factor times a subtracted collinear factor:

Aunsub(ypA
− yu2 ) = Asub × S(y1 − yu2 ), (10.108)

up to terms that are power-suppressed in the limit yu2 →−∞. The soft factor is the same
as in factorization for the form factor itself, except that the direction of the Wilson line on
the B side is u2 instead of n2. This is depicted in Fig. 10.22(b).

Dividing by the soft factor on both sides of the above equation gives the subtracted A

factor as the unsubtracted matrix element (10.90) divided by the relevant soft factor. Taking
the limit yu2 →∞, i.e., u2 → w2, gives our definition of the subtracted soft factor Abasic in
(10.94a). The subtractions are the same as in the collinear factor used for the form factor,
so it has the same definition. Thus Abasic is to be identified with the graphical factor A both
in Fig. 10.21, and in the factorization formula (10.11).

An exactly similar argument applies to the collinear-to-B factor, of course.

10.8.8 Hard factor

At this point, we have actually proved a form of factorization, (10.11), given in diagrams
in Fig. 10.21, and we have given explicit definitions of the soft and collinear factors.

Now we obtain an explicit formula (10.96) for the hard factor H . The graphs for H

are the same as for the form factor itself, i.e., for the reaction γ ∗ → qq̄, but they have
subtractions for soft and collinear regions. The graphs are to be 1PI in the external quark
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and antiquark, since external propagator corrections are always part of a collinear subgraph.
The formula (10.96) is obtained simply by observing that the power-suppressed corrections
in (10.11) go to zero as masses are taken to zero. Taking the massless limit means not only
setting the quark and gluon masses to zero in graphs, but also taking the light-like limits
for the vectors n1 and n2 in the Wilson lines associated with the quark and antiquark. The
one-loop expansion of (10.96) reproduces the result (10.45) which we already obtained
from the subtraction formalism.

Later, we will find a slightly simpler formula (10.120), after we examine the evolution
equations of the soft factor S with respect to the rapidities of its Wilson lines.

In addition to the kinematic variable Q, the hard factor depends on the renormalization
scale μ. As usual, the μ dependence is governed by an RGE. So we can use the RGE
to set μ of order Q, and then the hard factor would be perturbatively calculable (in
a QCD problem). For the evolution, anomalous dimension are generally perturbatively
calculable.

10.9 Factorization in terms of unsubtracted factors

To compensate double counting between soft and collinear regions, we implemented sub-
tractions in the collinear factors. We then saw that after summing over graphs and regions,
the subtractions were implemented by dividing out a certain factor.

We can write the factorized form factor in terms of the unsubtracted matrix elements:

F ∼ lim
yu1→+∞
yu2→−∞

H
Aunsub(ypA

− yu2 ) Bunsub(yu1 − ypB
) S(y1 − y2)

S(yu1 − y2) S(y1 − yu2 )
. (10.109)

Here, we have indicated the dependence of the factors on the directions of the Wilson lines.
Of course, the dependence on the Wilson-line rapidities must disappear after taking the
product HABS, at least to leading power in Q, since the Wilson lines do not appear in the
original form factor. If the rapidity limits in (10.109) are taken after the UV regulator is
removed, then the definition of the hard factor must be modified, as follows from Sec. 10.8.2.

In the definitions of Aunsub, Bunsub, and S, Wilson-line self-energies are canceled by
dividing each quantity by the appropriate version of (10.101). When we combine all the
factors in (10.109) the self-energies exactly cancel, since there are equal numbers of each
direction of Wilson line in the numerator and denominator of (10.109).

After deriving evolution equations, it will be convenient to reorganize this formula to
give it more convenient properties; see Sec. 10.11.

10.10 Evolution

We need evolution equations for the dependence of the soft and collinear factors on the
rapidities of their Wilson lines. Evolution equations provide much of the predictive power
of factorization.
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10.10 Evolution 375

Fig. 10.23. Graphs for the connected part of the derivative of the soft factor, up to four
loops. The blob on the gluon line in (a) denotes all corrections to the gluon propagator. The
crossed vertex is the same as in Fig. 10.10, and is defined from (10.49). The left-hand ends
of the Wilson lines are intended to be joined together, to implement the l.h.s. of (10.100).

Without the evolution equations, we would have no better predictive power than from
direct perturbative calculations of the form factor, and accuracy would be particularly
compromised by the two logarithms per loop. With the evolution equations including
the RGEs, we can obtain all the factors in terms of quantities that are free of large
logarithms.

The evolution equations given below were first obtained by Collins (1980), but by
different and less general methods, and with different, but closely related, gauge-dependent
definitions of the factors.

10.10.1 Evolution of basic soft factor

We start with the dependence on y1 or y2 of S(y1 − y2). Deriving its evolution equation is
a fairly simple generalization of our one-loop calculation in Sec. 10.5.10.

Since we are in an abelian theory, we use the identity (10.100) to write the value of a
Wilson line as the product of elementary one-vertex Wilson lines. Then S is the exponential
of its irreducible connected part:

S(y1 − y2) = exp(Sconn). (10.110)

Differentiating with respect to y1 gives

∂S(y1 − y2)

∂y1
= S

∂Sconn

∂y1
. (10.111)

As illustrated in Fig. 10.23, graphs for ∂Sconn/∂y1 have one vertex for a differentiated
Wilson line, just as in the lowest-order case, Fig. 10.10, together with at least one Wilson-line
vertex on the other side, and any number of extra Wilson-line vertices, but no Wilson-line
self-energies. Notice that the corrections at two- and three-loop order only arise from
corrections to the gluon propagator.

We now perform a region analysis for ∂Sconn/∂y1. Because of the restriction to connected
graphs and because of the differentiated vertex, this analysis is very simple. As usual, graphs
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for ∂Sconn/∂y1 can have H , A, B, and S subgraphs.13 These subgraphs must be connected
to each other, and this must occur through one or more quark loops, since the connections
to the Wilson line are to single line segments, after we used (10.100).14 Therefore, if a
region for ∂Sconn/∂y1 has more than one of the subgraphs H , A, B, and S, we get zero,
after applying a Ward identity to the sum over graphs. Exactly as in the one-loop case,
the differentiation with respect to y1 at the crossed vertex forces the gluon line at the
differentiated vertex to have rapidity close to y1; thus it is either collinear-to-A (i.e., to n1)
or hard. It follows that the only two leading regions are where the whole of ∂Sconn/∂y1 is
collinear-to-A or where it is all hard.

Thus the situation we saw for the one-loop case in Sec. 10.5.10 immediately generalizes
to all orders:

• The limit y2 →−∞ can be taken, so that we can write the evolution equation in terms
of a rapidity-independent kernel

K
(
mg,m,μ, g(μ)

) def= 2 lim
y2→−∞

∂Sconn

∂y1
, (10.112)

plus power-suppressed corrections. Thus in Fig. 10.23, the upper Wilson line can be
taken light-like in the minus direction without encountering any divergence.

The above definition of K is asymmetric between the two Wilson lines of S, and we
will later make a symmetric definition in (10.122), which leads to the same numerical
results for calculations in a covariant gauge.

• The kernel K has an additive anomalous dimension γK , as in (10.56).

Hence the previously stated results (10.53) and (10.56) apply generally.
It follows that at large y1 − y2, the y1 − y2 and μ dependence of the soft factor has the

form

S = S0(mg,m,μ0, g(μ0))

× exp

{
−y1 − y2

2

[∫ μ

μ0

dμ′

μ′
γK (g(μ′))−K(mg,m,μ0, g(μ0))

]}
, (10.113)

where μ0 is a fixed reference value of the renormalization scale, and S0 is independent of
y1 − y2. Because of power-suppressed corrections, S0 does not equal the value of S when
y1 = y2 and μ = μ0.

Naturally, we could equally well have performed the differentiation with respect to y2

instead of y1. In that case there would be a change of sign, and the Feynman rules would
have the crossed vertex in Fig. 10.23 on the opposite Wilson line. We will redefine K

more symmetrically later, in Sec. 10.11.3; the redefinition also remedies a lack of gauge
independence of K when one uses a non-covariant gauge.

13 It should be possible to simplify this by a classification of lines by rapidity: collinear-to-B, and n1-rest-frame.
14 An example would be Fig. 10.23(b), when the quark loop and the lines to the lower Wilson lines are collinear-to-A,

but one or both of the upper gluons are soft.
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Fig. 10.24. Leading regions for ∂B(y1 − ypB
)/∂y1, (10.114). In (b), the soft subgraph has

at least one gluon attachment to the main Wilson line, but we do not show this, to avoid
complicating the graph.

10.10.2 Evolution of collinear factor

We now obtain an equation for the derivative with respect to y1 of the unsubtracted collinear
factor Bunsub(y1, ypB

). The effect of differentiating the Wilson line is

∂Bunsub(y1 − ypB
)

∂y1
= (10.114)

As in Fig. 10.23, the left-hand end of the differentiated Wilson-line element is attached to
the main quark-Wilson-line vertex, and we used (10.100) to allow us to treat each vertex
of the Wilson line independently.

We now apply the same arguments as we used for factorization. But we simplify the
argument by using a frame where n1 has zero rapidity, so that the momentum categories are
soft, hard, and collinear-to-B. A soft momentum has rapidity comparable to y1, and there
is now no separate collinear-to-A category. As usual, the momentum k at the differentiated
vertex is restricted to have a rapidity close to y1, so that it is either soft or hard. There
correspond two types of leading region, shown in Fig. 10.24(a) and (b) respectively.

For the case that k is soft, graph (a), we examine the component of the soft subgraph to
which is attaches, and apply Ward identities for all the gluons that couple it to the collinear
subgraph. This gives a factor of exactly the kernel 1

2K for the evolution of the soft factor,
and it multiplies the original collinear factor.

When k attaches to the hard subgraph, we use Ward identities to extract the collinear
gluon attachments. The result is a factor times the original collinear factor. To this must
be applied subtractions for the soft-gluon part. Since there are now no collinear or soft
contributions to the hard factor, we can apply the massless limit to it. This gives the
following evolution equation (Collins, 1980):

∂Bunsub(yu1 − ypB
)

∂yu1

= 1

2

[
K(m,mg,μ)+G(ζB,u1 , μ)

]
Bunsub

+ non-leading power of ζB,u1 , (10.115)

where ζB,u1 is defined in (10.93b).
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Since G only involves hard momenta, it can be defined in terms of Bunsub by a massless
limit as

G = 2 lim
m→0
mg→0

[
∂ ln Bunsub(ζpB,u1 )

∂yu1

−K

]
. (10.116)

Here the massless limit is taken with ζpB,u1 fixed, and thus with p−B fixed. (Note that
ypB

would not be a good variable to use, since the rapidity of a massless momentum is
infinite.)

If we dimensionally regulate, G decreases like a power of ζB,u1/μ
2. But the power-

suppression goes away when n→ 4. This gives another view of how, in defining Abasic

and Bbasic, we took the yu1 →∞ and yu2 →−∞ limits. The limits are of Aunsub(ypA
−

yu2 )/S(y1 − yu2 ) and Bunsub(yu1 − ypB
)/S(yu1 − y2). In accordance with Sec. 10.8.2, these

limits are taken with n < 4. With n < 4 the evolution equations only involve the K terms
in the infinite rapidity limit. Since the u2 (or u1) Wilson line appears in both numerator
and denominator, the evolution equation shows that the K terms cancel, so that the infinite
rapidity limits exist. This is consistent with and confirms what we earlier derived by another
method.

The companion equation for A has a reversed sign:

∂Aunsub(ypA
− yu2 )

∂yu2

= − 1

2

[
K(m,mg,μ)+G(ζA,u2 , μ)

]
Aunsub

+ non-leading power of Q and ζA,u2 , (10.117)

where ζA,u2 was defined in (10.93a).
These equations bring under control the dependence of the collinear factors on the

Wilson-line rapidities. We then use the RG to tame the logarithms of μ: to set μ to be
a fixed scale in K and in the collinear factors, but to be of order Q in G and H . We
will discuss this in more detail after we perform a final reorganization of the factorization
formula.

10.11 Sudakov: redefinition of factors

The above formalism has some defects, particularly in its generalization to measurable
cross sections in QCD:

1. The soft factor has no independent experimental consequences. It always appears mul-
tiplied by two collinear factors.

In QCD applications of factorization, the soft factor is non-perturbative. Although the
values of non-perturbative quantities are in principle predicted by QCD, our ability to
actually calculate them is currently close to zero. So generally we have to measure them
from experiment, and rely on universality to make predictions for the same reactions at
different energies and for different reactions. But there is no experimental probe of the
soft factor by itself.
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2. Feynman rules for the soft factor involve non-light-like Wilson lines. Perturbative cal-
culations of such quantities are more difficult than when at least one Wilson line is
light-like. (But, of course, with light-like Wilson lines, there must be subtractions to
cancel rapidity divergences.)

3. Associated with the non-light-like Wilson lines in S are power-suppressed corrections
to the evolution equation (10.53).

4. The definitions of the factors involve removal of Wilson-line self-energies (10.101).
However, these cancel in the complete factorization formula, which suggests a non-
optimality in the formulation.

5. The removal of Wilson-line self-energies makes the factors gauge-dependent.
6. Related to this is that although the evolution kernel K defined in (10.112) is gauge inde-

pendent when restricted to covariant gauges, it changes when the gauge is transformed
to an axial or Coulomb gauge. See problem 10.9.

These defects are to be regarded not as errors in the formalism, but as practical problems
that make the formalism more complicated to use.

We will now perform a redefinition of the soft, collinear, and hard factors to remove
these defects as much as possible. A useful starting point is (10.109), where factorization
is given in terms of unsubtracted collinear factors and three occurrences of the basic soft
factor S with different rapidity arguments. We can use (10.113), which shows that S has
exponential rapidity dependence, to reorganize the factors of S.

Then we will absorb the S factor(s) into redefined collinear factors, to give a new
factorization formula with no soft factor:

F = HAB + power-suppressed. (10.118)

This overcomes the lack of experimental probes of the soft factor.
The definitions of the new collinear factors are at first sight surprisingly complicated. I

will first state the definitions (which supersede those proposed by Collins and Hautmann,
2000). Then I will show how they correspond to the previous factorization formula in the
form (10.109). After that I will give the rationale for the new definitions; they are unique
given certain reasonable requirements.

10.11.1 Collinear factors

The redefined collinear factors A and B involve an arbitrary rapidity parameter yn. We
assign yn the physical significance of separating left- and right-moving quanta; the A factor
contains the effects of right-movers and B the effects of left-movers. The new collinear
factors depend on the difference in rapidity between their particle (pA or pB) and yn.

We will find that the dependence of each collinear factor on yn is governed by an
exactly homogeneous evolution equation involving the kernel K . Thus we can express each
collinear factor in terms of its value when its particle has the same rapidity as yn. This gives
an optimal form of factorization.
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The redefined collinear factors are

A(m,mg, g, μ, ypA
− yn)

def= lim
ε→0

lim
y1→+∞
y2→−∞

ZA Aunsub, bare(ypA
− y2)

√
Sbare(y1 − yn)

Sbare(y1 − y2) Sbare(yn − y2)

= Aunsub(ypA
,−∞)

√
S(+∞, yn)

S(+∞,−∞) S(yn,−∞)
, (10.119a)

B(m,mg, g, μ, yn − ypB
) = Bunsub(+∞, ypB

)

√
S(yn,−∞)

S(+∞,−∞) S(+∞, yn)
. (10.119b)

As in Sec. 10.8.2, we first take the limits of infinite rapidity, and then we remove the UV
regulator ε → 0, with the aid of renormalization factors ZA and ZB . This order of limits
entails adjusting the renormalization coefficients relative to our previous definitions. Thus
it is convenient to write the new definitions in terms of bare soft and collinear factors,
i.e., quantities defined without the renormalization factors ZS , Zunsub

A , and Zunsub
B used in

(10.89), (10.90), and (10.92). It is convenient to use a notation with infinite rapidities for
the Wilson lines, as in the third and fourth lines of (10.119). It implies the limits given on
the second line.

Each of the factors on the r.h.s. of (10.119) was originally defined to have Wilson-
line self-energies divided out. It can be shown that the self-energy factors cancel in the
combinations used in (10.119). (The total power of self-energy factors for each direction
of Wilson line is zero. The only complication is that the Wilson lines for direction n are
for opposite charges, but charge-conjugation invariance can be used to show that this is
irrelevant.)

I now show that the product of A and B defined in (10.119) equals the product of the
soft and collinear factors in our first form of factorization, when it is expressed in terms of
unsubtracted collinear factors in (10.109).

First we examine the limits yu1 →∞ and yu2 →−∞ in (10.109), by using the evolution
equations (10.53), (10.115) and (10.117). The K terms cancel for the yu1 and yu2 dependence
in (10.109). This leaves just the G terms from (10.115) and (10.117). These concern a
hard momentum region, and are effectively absorbed in UV renormalization factors. From
(10.53), we see that the y1 and y2 dependence also cancels in (10.109). Thus the unsubtracted
collinear factors are the same in (10.109) and in the product of (10.119a) and (10.119b).

After that, we apply the solution (10.113) for S, to show that the combination of S

factors in (10.109) agrees with the combination of S factors in the product of (10.119a) and
(10.119b).

Hence the two forms of factorization agree.
Notice that Wilson-line self-energies cancel for each of the different types of Wilson

line in (10.119), so we do not need to insert any Wilson-loop factor to cancel Wilson-line
self-energies, unlike our previous definitions. In fact, the definitions above are unique given
the following requirements:
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Fig. 10.25. Directions of Wilson lines in the factors in (10.119a): the solid lines are the
Wilson lines (which should extend to infinity), which are either light-like or in the direction
n, which is here drawn with a slightly positive rapidity yn. The shaded part of (a) is intended
to suggest the final-state quark itself, which moves in a time-like direction.

1. A collinear factor is a product of an unsubtracted collinear factor and powers of S-type
objects.

2. Non-light-like Wilson lines only appear in S factors with one light-like and one non-
light-like line.

3. Rapidity divergences cancel.15

4. Only one light-like direction yn is used.
5. The definitions obey charge-conjugation symmetry; thus the definition of B is obtained

from the definition of A, simply by changing Aunsub, bare to Bunsub, bare and by exchanging
the roles of y1 and y2.

6. The factorization formula is HAB, without any soft factor.

The actual directions of the Wilson lines are shown in Fig. 10.25. In all the S objects,
the two Wilson lines are at space-like separations. All the Wilson lines are either space-like
or are obtained from a limit of space-like lines. Thus we do not have to be concerned with
the ordering of the gauge-field operators on the Wilson lines. At least in covariant gauge,
the fields commute at space-like separation. Thus the path ordering on the lines creates
no conflict with the time ordering needed to define Green functions that use time-ordered
fields. There is also maximum compatibility with Euclidean lattice gauge theory, which is
important for attempts to compute non-perturbative collinear factors in QCD.

One perhaps unexpected feature is that the Wilson lines of rapidity yn in the numer-
ator and denominator of each collinear factor have opposite directions. For example, in
(10.119a), yn in the numerator factor S(y1 − yn) corresponds to a Wilson line related to the
antiquark. Therefore it has the charge of the antiquark and goes in the direction of a vector
nB = (−eyn , e−yn , 0T) whose minus component is positive. But yn in the denominator factor
S(yn − y2) corresponds to a Wilson line with the charge of the quark and in the direction
of a vector nA = (eyn ,−e−yn , 0T) whose plus component is positive. Thus the cancellation
of Wilson-line self-energies for the yn lines in (10.119a) is not as transparent as it would
be if the lines were in exactly the same direction. This should be investigated.

In Sec. 10.8.2 was mentioned a non-uniformity of the limits of infinite rapidity and of
n→ 4. For the newly defined collinear factors, we can see this from Fig. 10.26, which

15 Except for regions of kT →∞, which can be canceled by UV renormalization.
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Fig. 10.26. Like Fig. 10.7, but showing the main regions for the one-loop contributions
to (10.119a), with yn chosen slightly positive. The diagrams are written before the limits
y1 →∞ and y2 →−∞ are taken. The scale is reduced from Fig. 10.7.

shows the regions in gluon kT and rapidity that contribute at one-loop order to the factors
in (10.119a). In the region of low transverse momentum, the S terms combine to give a
negative contribution running between y2 and yn that cancels the corresponding contribution
from the one-loop term in the A term. This cancels the rapidity divergence as y2 →−∞.
But as the transverse momentum increases, the upper limit on gluon rapidity decreases in
the A term, but not in the sum of the S terms. This weakens the cancellation, leaving an
uncanceled contribution from a triangular region above the diagonal line in Fig. 10.26(d).
With a UV regulator applied (e.g., n < 4) the integral is convergent at large kT, so the limit
y2 →−∞ exists.

When the UV regulator is removed, the contribution of the triangle is a doubly logarith-
mic infinity, to be canceled by a UV counterterm. As in Sec. 10.8.2 the limits are applied
in the order y2 →−∞ and then n→ 4. Because of the doubly logarithmic divergence,
the UV divergence has the two poles of ε = 2− n/2 per loop instead of the conventional
single pole, and it is energy dependent. See (10.139).

10.11.2 Factorization and re-examination of hard factor

The new collinear factors (10.119a) and (10.119b) are obtained from the original collinear
and soft factors by reorganizing the S factors. Changes are only by power-suppressed
corrections. Thus the hard factor H is unchanged. But we can convert the old formula for
H , (10.96), to use the new version of factorization:

H (Q,μ, g(μ)) = lim
massless

F

AB
= lim

massless

F S(+∞,−∞)

Aunsub(−∞)Bunsub(+∞)
. (10.120)
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As before, the notation of infinite rapidity for the Wilson lines includes the definition that
the infinite rapidity limit is applied before the removing the UV regulator by ε → 0.

10.11.3 Evolution kernel K

The final versions of the collinear factors A and B in (10.119) depend on the rapidity
parameter yn, only via the factors S(y1 − yn) and S(yn − y2), in the limit y1 →∞, y2 →
−∞. So to get an equation for the dependence on yn, we need the kernel K defined earlier.

This earlier definition was appropriate for differentiating S(y1 − y2) with respect to y1,
and thus the diagrammatic definition was not symmetric between the positive and negative
rapidity directions. However, since S depends on the difference of the two rapidities an
equal result is obtained by differentiating with respect to the other rapidity argument, except
for a sign. For use with the new collinear factors, we now make a more symmetric definition
of K , and we put it into an operator form. We first define the vector n = (eyn ,−e−yn , 0T),
and define a differentiated vector

δn
def= dn

dyn

= (eyn , e−yn , 0T). (10.121)

Then we redefine

K
(
mg,m,μ, g(μ)

) def= ∂

∂yn

ln
S(yn,−∞)

S(+∞, yn)

=
〈
0 T W (∞, 0, w2)† W (∞, 0, n) (−ig0)

∫∞
0 dλ �1(nλ) 0

〉
〈
0 T W (∞, 0, w2)†W (∞, 0, n) 0

〉
+
〈
0 T W (∞, 0,−n)† W (∞, 0, w1) (ig0)

∫∞
0 dλ �2(−nλ) 0

〉
〈
0 T W (∞, 0,−n)†W (∞, 0, w1) 0

〉
with renormalization, (10.122)

where w1 and w2 are the light-like vectors defined in (10.15a), and

�1(x) = δnμA(0)
μ (x)+ λδnνnμ

∂A(0)
μ (x)

∂xν
with x = λn, (10.123a)

�2(x) = δnμA(0)
μ (x)− λδnνnμ

∂A(0)
μ (x)

∂xν
with x = −λn. (10.123b)

The Feynman rules for the special vertices are given in Fig. 10.27.
See problem 10.9 for the gauge independence of K with the new definition.

10.11.4 Factorization, evolution equations: Final form

In this section, we collect all the results in their final form: the factorization formula,
and the evolution equations for the dependence on the Wilson-line rapidity and on the
renormalization scale. The evolution equations are the key to practical applications. We
will refer back to the definitions of all the factors.
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Fig. 10.27. Feynman rules for special vertices for K . See Fig. 10.23 for examples using the
vertex labeled 1. The first rule agrees with that in (10.49).

The factorization equation is

F = H (Q,μ, g(μ)) A
(
ypA
− yn,mg,m,μ, g(μ)

)
× B

(
yn − ypB

,mg,m,μ, g(μ)
)+ power-suppressed, (10.124)

where A and B are defined in (10.119) and H in (10.120).
Initially, the rapidity yn might be taken to be zero in the overall center-of-mass frame, so

that the collinear factors A and B can be characterized as giving the contribution of quanta
of, respectively, positive and negative rapidities. Then both the rapidity difference arguments
ypA
− yn and yn − ypB

are ln(Q/m). Evolution equations, that we now summarize, enable
us to adjust the values of yn differently for each collinear factor, and thereby express them
in terms of values with fixed rapidity-difference arguments. Similarly, we will use RG
equations to make suitable (and different) choices for the scale μ in each factor.

From the results in Sec. 10.11.3, it follows that the evolution equations with respect to
yn for the collinear factors are

∂A

∂yn

= −1

2
K
(
mg,m,μ, g(μ)

)
A, (10.125a)

∂B

∂yn

= 1

2
K
(
mg,m,μ, g(μ)

)
B, (10.125b)

where K is defined by (10.122). It follows that the product AB that appears in the factor-
ization formula is independent of yn.

The RG equations have the form

dK

d ln μ
= −γK (g(μ)) , (10.126a)

dA

d ln μ
= γA

(
ζA/μ2, g(μ)

)
A, (10.126b)

dB

d ln μ
= γB

(
ζB/μ2, g(μ)

)
B. (10.126c)

The anomalous dimensions can be obtained from the renormalization counterterms for
K , A and B. Now, the renormalization factors for the two collinear factors are energy
dependent, for reasons explained earlier with the aid of Fig. 10.26. This causes energy
dependence in the anomalous dimensions. Since the anomalous dimensions are determined
by UV phenomena, they involve only the large components of quark momenta, i.e., p+A and
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p−B . So we write the energy dependence in terms of

ζA
def= 2(p+A )2e−2yn = m2e2(ypA

−yn), (10.127a)

ζB
def= 2(p−B )2e2yn = m2e2(yn−ypB

), (10.127b)

which are versions of (10.93a) and (10.93b), but now defined relative to the single rapidity
yn. Note that these differ by power-suppressed corrections from the corresponding defini-
tions in Collins and Soper (1981) and Soper (1979), which are ζA,CS = |4pA · n2/n2|, and

ζB,CS = |4pB · n2/n2|. Note also that ζAζB = (2p+Ap−B )2 = Q4

(
1
2 + 1

2

√
1− 4m2/Q2

)4

�
Q4.

Since the collinear factors differ only by an exchange of plus and minus coordinates and
by a charge-conjugation transformation, the anomalous dimensions γA and γB of A and B

are the same.
The final ingredient we need is an equation for the energy dependence of γA. This is

obtained by applying d/d ln μ to (10.125a) and then exchanging the order of differentiation:

d

d ln μ

∂A

∂yn

= 1

2
γKA− 1

2
KγAA, (10.128a)

∂

∂yn

dA

d ln μ
= ∂γA

∂yn

A− 1

2
KγAA. (10.128b)

Hence

∂γA

(
ζA/μ2, g(μ)

)
∂yn

= − ∂γA

∂ ln ζ
1/2
A

= 1

2
γK

(
g(μ)

)
, (10.129)

thereby completely determining the energy dependence of γA (and γB):

γA

(
ζ/μ2, g(μ)

) = γB

(
ζ/μ2, g(μ)

) = γA(1, g(μ))− 1

4
γK (g(μ)) ln

ζ

μ2
. (10.130)

The above equations, together with the definitions of A, B, H , and K , are a complete
formulation of factorization.

10.11.5 Solution

We now use the evolution equations to set the arguments of H , A and B to avoid large
logarithms.

• In H , we set μ proportional to Q: μ = C2Q.
• In A, B, and K we set μ to a fixed value μ0, of order the particle masses.
• In A, we set yn = ypA

.
• In B, we set yn = ypB

.
• In γA and γB , we set the ζ/μ2 argument to 1/C2

2 , as with H .

For the coefficient of proportionality C2 between μ and Q, the notation C2 is that of Collins
and Soper (1981).
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It can be readily deduced from the evolution equations that

F = H (1/C2, g(C2Q)) A
(
ypA
− yn,mg,m,C2Q,g(C2Q)

)
× B

(
yn − ypB

,mg,m,C2Q,g(C2Q)
)

= H (1/C2, g(C2Q)) A
(
0,mg,m,μ0, g(μ0)

)
B
(
0,mg,m,μ0, g(μ0)

)
× exp

{
−
∫ C2Q

μ0

dμ

μ

[
ln

C2Q

μ
γK (g(μ)) − 2γA

(
1/C2

2 , g(μ)
)]}

× exp

[
1

2
(ypA
− ypB

) K
(
mg,m,μ0, g(μ0)

)]
, (10.131)

where power-suppressed corrections are ignored.

10.11.6 Properties and use of solution

Results of the same structure appear in many important problems in QCD (Chs. 13 and
14). So we now examine the solution (10.131) with a view to QCD applications.16 In QCD,
the effective coupling is large at small momenta, and is small at large momenta. Thus
perturbative calculations are not valid for collinear factors for light particles in QCD.

By setting the renormalization scale proportional to Q in the hard scattering H , we
removed large logarithms in the perturbative expansion of H . This enables effective pertur-
bative predictions to be made for H .17 But then the collinear factors have Q dependence;
see the first line of (10.131).

We remedied this by using the evolution equations to give different values of μ and yn

in the different factors, in the lower three lines of (10.131). There, each of the collinear
factors has a Q-independent value of the renormalization mass and of the rapidity difference
argument. In a weak-coupling situation, this enables a perturbative calculation to be made
without logarithms. In QCD, it allows us to use universality to make predictions: the same
collinear factors appear at all values of Q and in all processes with the same kind of
factorization. Thus determination of a collinear factor can be made from experimental data
in one process at one energy, and the value used for the otherwise unknown quantity both
in the same process at other energies, and in different processes.

The exponential in (10.131) shows that our solution radically differs from a straightfor-
ward use of perturbation theory, in a way that is much stronger than in cases containing
only ordinary RG logarithms. The anomalous dimensions γK and γA are to be used in
the weak-coupling regime, so that low-order perturbation calculations are effective. The
generally biggest term in the exponent is the γK term; it has a logarithm relative to γA.

There remains the term involving K in the exponent. It gives a substantially energy-
dependent factor:

exp

[
1

2
(ypA
− ypB

) K
(
mg,m,μ0, g(μ0)

)] = (
Q2

m2

) 1
2 K(mg,m,μ0,g(μ0))

. (10.132)

16 But (10.131) is also useful in a QED-like theory with a coupling that is weak at all relevant scales.
17 The coefficient C2 can be adjusted to further optimize perturbative coefficients.
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In QCD this would give a power-law dependence on Q with a non-perturbative exponent.
The exponent K(μ0) can be determined from the derivative of the amplitude with respect
to energy, at one value of energy. Then the same exponent is used at all energies and
in other processes. Determination of generalizations of K to other process appear as a
critical element of good phenomenology (e.g., Landry et al., 2003) for the Drell-Yan and
other processes. It gives a substantial and characteristic energy dependence to the shape of
Drell-Yan cross sections differential in transverse momentum.

If the IR coupling were weak, as in QED, the exponent K would be perturbatively
calculable.

10.11.7 Asymptotic large Q behavior

The biggest term in the exponent in (10.131) is the one with γK . It implies that at large
enough Q, the factorized formula for the form factor goes to zero faster than any power
of Q; this happens both for our form factor in an abelian theory (at least if we stay in a
weak-coupling regime), and for analogous quantities in an asymptotically free theory.

However, the derivation ignored power-suppressed corrections, which therefore have
the potential to be asymptotically larger than the final factorized answer: the leading-power
contributions have undergone a strong cancellation. Thus beyond some energy, the precise
numerical result of the factorization formula is phenomenologically irrelevant.

To assess the significance of such a factorization in QCD, we observe that in e+e−

annihilation to hadrons, the Sudakov form-factor graphs give the component of the cross
section that has a pure quark-antiquark final state. But in the total cross section we found
a cancellation of all IR-sensitive regions, with the total cross section going to a constant
at large Q; see Ch. 4. This cancels the strong decrease of the Sudakov form factor in
the quark-antiquark component. At high energy the cross section for e+e− → hadrons is
dominantly highly inelastic.

In Chs. 13 and 14, we will investigate reactions where the amount of cancellation of
IR-sensitive effects depends on the value of a measurable transverse-momentum variable.
In these situations, a generalization of the factorization derived in this chapter will be very
useful.

10.11.8 Relation of factorization to LLA

From (10.131), we see systematically how all logarithms arise. We derive the leading-
logarithm approximation (LLA) as follows: (a) expand γK to lowest order in coupling;
(b) ignore the running of the coupling; (c) neglect the other terms in the exponent; (d) set
the outside H , A and B factors to their lowest-order values (i.e., unity). This reproduces
(10.38), when μ0 is of the order of particle masses.

There are important gains from the factorization formalism relative to the LLA, partic-
ularly in generalizations in QCD. In the first place the factorization formalism shows how
corrections arise, and how they may be made systematically. The corrections are in the
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Fig. 10.28. One-loop graphs for K . The vertical heights of the graphs are adjusted to
symbolize the rapidities of the light-like lines. The rules for the vertices with a cross are
given in Fig. 10.27.

exponent, and also in non-logarithmic corrections to the H , A and B factors preceding the
exponential.

In contrast, the logic of the LLA alone gives no information on non-leading logarithms.
For example, the LLA itself does not prevent there from being an additive correction, e.g.,

g2 × constant, (10.133)

which does not vanish as Q→∞. This would completely change the qualitative behavior.
Such a phenomenon actually occurs for the Drell-Yan and related cross sections at zero
transverse momentum. There the LLA gives a cross section that vanishes at zero transverse
momentum, but the true result from a correct factorization theorem is non-zero (Collins
and Soper, 1982a).

An important result is that the factorization method indicates how non-perturbative
effects should affect the Q dependence in analogous QCD problems, by the factor (10.132).
Of course our formal derivation stayed within perturbation theory. But the structures we
use have a much more general appearance.

10.12 Calculations for Sudakov problem

In this section we show how the Feynman rules for H , A, B and K work out at one-loop
order.

10.12.1 Evolution kernel K

First we calculate the evolution kernel K . From the rules given in Fig. 10.27, we have the
one-loop graphs shown in Fig. 10.28. They give

K = ig2μ2ε

(2π )4−2ε

∫
d4−2εk

1

(k2 −m2
g + i0) (−n · k + i0)2

×
[

n+δn · k − δn+n · k
k+ + i0

+ n−δn · k − δn−n · k
−k− + i0

]
+ UV c.t.+O(g4)

= ig2μ2ε

(2π )4−2ε

∫
d4−2εk

−2n2

(k2 −m2
g + i0) (−n · k + i0)2

+ UV c.t.+O(g4)
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= −g2 �(ε)

4π2

(
4πμ2

m2
g

)ε

+ g2 Sε

4π2ε
+O(g4)

= − g2

4π2
ln

μ2

m2
g

+O(g4). (10.134)

(In obtaining this, note the reversal of the direction of k compared with Fig. 10.27, and
remember the reversed sign of the ordinary vertex on a Wilson line that corresponds to
an antiquark.) The calculation of the integral can be done by contour integration on k−

followed by an elementary integral for k+. Then the kT integral gives a beta function. The
result agrees with our previous calculation at (10.54), but now we used our updated Feynman
rules. Note that the evolution equation has no power corrections, in contrast with (10.53).

As an exercise the reader can show that the sole two-loop graph gives the O(g4) term in
γK :

γK = g2

2π2
− 10

9

(
g2

4π2

)2

+O
(
g6
)
. (10.135)

10.12.2 Collinear factor A

We now calculate the collinear factor A at one-loop order. This will illustrate the peculiar
energy dependence of the counterterm. The graphs, obtained from the definition (10.119a),
are shown in Fig. 10.29. To this is to be added a term associated with the external propagator
correction.

The graphs in Fig. 10.29(a) give

A1a = ig2μ2ε

(2π )4−2ε

1

ūAPB

∫
d4−2εk

1

(k2 −m2
g + i0)

ūA

×
{

γ+(/pA
− /k +m)

[(pA − k)2 −m2 + i0] (k+ + i0)
+

1
2e−yn

(−k− + i0) (k+e−yn − k−eyn + i0)

−
1
2eyn

(−k−eyn + k+e−yn + i0) (k+ + i0)
−

1
2

(−k− + i0) (k+ + i0)

}
PB, (10.136)

to which is to be added a UV counterterm. The e±yn factors in the exponents arise from the
vertices for the Wilson lines of rapidity yn. As usual, we use the residue theorem to perform
the k− integral. This gives

A1a = −g2(2πμ)2ε

8π3

∫
d2−2ε kT

×
{∫ 1

0

dx

x

[
1− x

k2
T +m2

g(1− x)+m2x2
+ 1

−k2
T −m2

g + 2(xp+Ae−yn )2 + i0

]

+
∫ ∞

1

dx

x

1

−k2
T −m2

g + 2(xp+Ae−yn )2 + i0

}
+ UV c.t., (10.137)

https://doi.org/10.1017/9781009401845.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.010


390 Factorization and subtractions

Fig. 10.29. Graphs for A at one-loop, including subtractions and the counterterm for
canceling the UV divergence. Next to each double line representing a Wilson line is a
label for its rapidity, −∞, +∞ or yn. The factors of 1

2 multiplying the Wilson-line terms
arise from the one-loop expansion of the factors in the square root in (10.119a). The upper
Wilson lines have the charge of an antiquark. The LSZ term is a self-energy graph for the
on-shell quark.

where the potential divergence at x = 0 has canceled. Much of the x integral, including all
the Wilson-line terms, can be performed by very elementary methods to give

A1a = −g2(2πμ)2ε

8π3

∫
d2−2ε kT

k2
T +m2

g

{
−
∫ 1

0
dx

k2
T +m2x

k2
T +m2

g(1− x)+m2x2

+ 1

2
ln

2(p+Ae−yn )2

k2
T +m2

g

− i
π

2

}
+ UV c.t. (10.138)

The remaining x integral is well behaved.
A simple computation of the UV counterterm in the MS scheme uses the techniques of

Sec. 3.4. The UV divergence is governed by the leading large kT behavior of the integrand,
which is therefore independent of the masses:

UV c.t. = −MS pole part of integral in (10.138)

= −MS pole part of
−g2(2πμ)2ε

8π3

∫
kT>μ

d2−2ε kT

k2
T

[
−1+ 1

2
ln

2(p+Ae−yn )2

k2
T

− i
π

2

]

= g2Sε

8π2

[−1

2ε2
+ 1

ε

(
−1+ 1

2
ln

2(p+Ae−yn )2

μ2
− i

π

2

)]
. (10.139)

As in Sec. 3.4, the use of the lower limit μ on the kT integral gives exactly the MS pole
part with its accompanying factor of Sε with no further finite part. This relies on exactly
our specific definition of Sε in (3.18).

The kT integral in (10.138) is readily performed. To get the complete one-loop contri-
bution to the collinear factor, the LSZ reduction formula tells us to add half the one-loop
residue of the quark propagator:

1

2
�1 = g2

8π2

{
1

4
+
∫ 1

0
dx

1

2
(1− x) ln

m2
g(1− x)+m2x2

μ2
+
∫ 1

0
dx

m2x(1− x2)

m2
g(1− x)+m2x2

}
.

(10.140)
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Then the full one-loop contribution to A at n = 4 is

A1 = −g2

8π2

{
−
∫ 1

0

dx

x
ln
(
1− x + x2m2/m2

g

)

+
∫ 1

0
dx

1

2
(1+ x) ln

m2
g(1− x)+m2x2

μ2
−
∫ 1

0
dx

m2x(1− x2)

m2
g(1− x)+m2x2

− 1

4
+ 1

4
ln2 2(p+Ae−yn )2

m2
g

− 1

4
ln2 2(p+Ae−yn )2

μ2
+ i

π

2
ln

m2
g

μ2

}
. (10.141)

We can now check the evolution and RG equations. First, we see from (10.94a), and
its generalization to the new definition of A, that the counterterm in (10.139) gives the
one-loop contribution to ZAZ

1/2
2 . With the aid of (3.23) for Z2, we find that

ZA = 1+ g2Sε

8π2

[−1

2ε2
+ 1

ε

(
−3

4
+ 1

2
ln

2(p+Ae−yn )2

μ2
− i

π

2

)]
+O(g4). (10.142)

From this we get the anomalous dimension:

γA = d ln A

d ln μ
= d ln ZA

d ln μ

= ∂ ln ZA

∂ ln μ
+ dg2/16π2

d ln μ

∂ ln ZA

∂g2/16π2

= g2

8π2

[
3

2
− ln

2(p+Ae−yn )2

μ2
+ iπ

]
+O(g4) (at ε = 0), (10.143)

where the first line uses A = ZAA0 and the RG invariance of A0, defined in terms of bare
fields, while the third line uses (3.44) for d(g2/16π2) / d ln μ. The explicit μ dependence
of the single-pole counterterm was needed to get finiteness of γA. It is readily checked that
the dependence on yn is as predicted from (10.129) with the calculated value of γK from
(10.135).

10.12.3 Hard factor

From the definition, (10.120), we find that the one-loop hard-scattering coefficient arises
from the graphs in Fig. 10.30. This gives

H1 = −ig2μ2ε

(2π )4−2ε

∫
d4−2εk

ūAPB IH (k) PBvB

k2 + i0
, (10.144)

where

IH (k) = γ κ (p+Aγ− − /k)γ μ(−p−B γ+ − /k)γκ

(−2p+Ak− + k2 + i0) (2p−B k+ + k2 + i0)
+ −γ μ

(−k− + i0) (k+ + i0)

− γ+(p+Aγ− − /k)γ μ(−1)

(−2p+Ak− + k2 + i0) (k+ + i0)
− γ μ(−p−B γ+ − /k)γ−

(−k− + i0) (2p−B k+ + k2 + i0)
. (10.145)
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pBpB

pApA

q
k +

−∞

+∞

− k

pA − k

−∞

− k

pB + k

+∞

Fig. 10.30. Graphs for one-loop hard coefficient.

The factors of (−1) in two of the numerators are for the negative charges of the upper
Wilson lines. To (10.144) is to be added a UV counterterm, as usual.

The integrals over k− and k+ can be performed analytically, to give

H1 = −g2(4πμ2)ε ūAPBγ μPBvB

8π2�(1− ε)

∫ ∞
0

dk2
T

(k2
T)1+ε

×
⎧⎨
⎩ln

k2
T

Q2
E

+ 1+ (3+ 2ε)k2
T/Q2

E√
1+ 4k2

T/Q2
E

ln

√
1+ 4k2

T/Q2
E + 1√

1+ 4k2
T/Q2

E − 1

⎫⎬
⎭ , (10.146)

where Q2
E = −Q2 − i0: the integral is defined by continuing from a positive value of Q2

E

to−Q2 approaching from the appropriate side of the real axis. Observe that the Wilson-line
terms combine to remove the divergence at kT = 0.

From the behavior of the integrand at large kT, it can be computed that the necessary
MS counterterm is

H1, c.t. = g2SεūAPBγ μPBvB

8π2

[
1

ε2
+ 1

ε

(
− ln

Q2
E

μ2
+ 3

2

)]

= g2SεūAPBγ μPBvB

8π2

[
1

ε2
+ 1

ε

(
− ln

Q2

μ2
+ iπ + 3

2

)]
. (10.147)

This is exactly equal and opposite to the sum of the one-loop contributions to ZA and ZB , so
that for the one-loop contribution to HAB the total counterterm is zero. This corresponds
to the non-renormalization theorem for matrix elements of a conserved current. Notice
that the counterterm has a logarithm, just as for the collinear factors. Thus the one-loop
anomalous dimension of H is also momentum dependent:

γH (Q2/μ2, g)
def= d ln H

d ln μ

= g2

8π2

(
2 ln

Q2

μ2
− 2iπ − 3

)
+O(g4)

= −γA

(
ζA/μ2, g(μ)

)− γB

(
ζB/μ2, g(μ)

)
, (10.148)

with the last line being a general result following from the RG invariance of the whole form
factor, and hence of its factorized form HAB. Observe that the dependence of γH on the
ratio Q2/μ2 can be derived from the ζ dependence of γA and γB . Thus from (10.129) we
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have

∂γH

(
Q2/μ2, g

)
∂ ln(Q2/μ2)

= 1

2
γK (g), (10.149)

so that

γH

(
Q2/μ2, g

) = γH

(
1, g

)+ 1

2
γK (g) ln

Q2

μ2
. (10.150)

10.13 Deduction of some non-leading logarithms

Our formalism gives a lot of information on the structure of non-leading logarithms even
in the absence of explicit Feynman-graph calculations beyond lowest order. To see some
of the results, we examine the perturbation series for the logarithm of the form factor.
We keep the logarithmic dependence on Q, expressing the coefficients as polynomials in
t = ln(−Q2/μ2), with power corrections dropped:

ln F = g2

4π2

(
C12t

2 + C11t + C10
)

+
(

g2

4π2

)2 (
C24t

4 + C23t
3 + C22t

2 + C21t + C20
)+O(1/Q2), (10.151)

where the coefficients may depend on m, M and μ, but not on Q.
The leading logarithm results imply that C24 = 0. But we can deduce considerable more

from the factorization formula (10.124) and the evolution equations (10.125). We do this
by deducing an equation for the Q dependence of ln F :

∂ ln F

∂ ln Q
= ∂ ln JA

∂ ln Q
+ ∂ ln JB

∂ ln Q
+ ∂ ln H

∂ ln Q
+ power correction

= K(mg,m, g, μ)+G(Q/μ; g)+ power correction, (10.152)

where G is a purely UV quantity that obeys dG / d ln μ = −γK . Now, from (10.151) we
have

∂ ln F

∂ ln Q
= g2

4π2
(4C12t + 2C11)+

(
g2

4π2

)2 (
6C23t

2 + 4C22t + 2C21
)+ . . . (10.153)

In order that G in (10.152) be independent of the masses m and M , C12, C23 and C22 must
be independent of m and M (and hence of μ). Furthermore, once one puts in the one-loop
values, the requirement that G satisfies its RG equation implies that

C23 = − 1

36
. (10.154)

Hence the new information for the form factor F at two loops is two logarithms down
from the leading logarithm, i.e. it is in C22 and the less leading coefficients, C21 and C20. The
double logarithm coefficient C22 is related to the two-loop term in γK , given in (10.135);
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this was the result of a relatively easy calculation. Hence

C22 = 5

36
. (10.155)

The remaining information, for which a full two-loop calculation of the form factor is
needed, is in the terms with one and no logarithms of Q. These are three and four logarithms
down from the leading ln4 Q term.

10.14 Comparisons with other work

In this section, I give a brief comparison between the present treatment of the Sudakov
and other work on the same and related problems. I restrict attention to work that aims at
something like a complete factorization theorem, rather than just obtaining a LLA.

The first treatment in a similar fashion was in Collins (1980). There I used Coulomb
gauge in a frame with a time-like rest vector n, where the numerator of the gluon propagator
is

−gμν + (nμkν + kμnν)n · k
n · k2 − k2n2

− kμkνn2

n · k2 − k2n2
. (10.156)

The collinear factors are defined by formulae like (10.90) and (10.92) except that the Wilson
lines are removed, so that the matrix elements are 〈pA|ψ̄0(0)|0〉 and 〈pB |ψ0(0)|0〉. Thus
the rapidity of the vector n plays the same role as yn in our final definitions (10.119).
Factorization and evolution equations of a similar kind were derived, differing from those
in Sec. 10.11 essentially by a change of scheme. But the old evolution equations had power-
suppressed corrections, rather than being exactly homogeneous. There was also a separate
soft factor, which we have now eliminated.

A treatment in covariant gauge with Wilson lines was given in Collins (1989). The
collinear factors were now defined as what are here called the “unsubtracted” collinear
factors (10.90) and (10.92), but with the Wilson lines now having a rapidity yn corresponding
to that in our final definitions (10.119). In this formalism, it is the soft factor that has
the subtractions, which is harder to justify from a systematic approach. The evolution
equations continue to have power-suppressed corrections, and the factorization formula
has a separate soft factor. They also have not only the K we use, but also a G term, as
in (10.117).

An earlier approach is found in Mueller (1979), but the methods are less general,
particularly as regards their extension to inclusive processes in QCD.

When the methods of Collins (1980) were extended (Collins and Soper, 1981) to inclu-
sive processes in QCD, it was found convenient to replace Coulomb gauge by a non-light-
like axial gauge, where the numerator of the gluon propagator is

−gμν + kμnν + nμkν

k · n − kμkμn2

(k · n)2
. (10.157)

This gives definitions (Collins and Soper, 1982b; Soper, 1979) of parton densities and
fragmentation functions exactly like those in a non-gauge theory, i.e., without Wilson lines.
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Essentially these are equivalent to gauge-invariant definitions with Wilson lines in direction
n. Applied to the Sudakov form factor, these definitions amount to using our unsubtracted
definitions (10.90) and (10.92) as the actual collinear factors in the factorization formula,
but with the Wilson lines having rapidity yn. The factorization formula still has a subtracted
soft factor. Again the evolution equation for a collinear factors has power-suppressed
corrections and a G term. The use of a non-light-like vector rather than a light-like vector
in the collinear factors complicates calculations. The singularity in (10.157) at k · n = 0 is
defined as a principal value, which causes problems with the Glauber region; the definitions
are not exactly equivalent to the definition with a Wilson line going to infinity in a definite
direction. The difficulties have become particularly apparent when inclusive processes with
transversely polarized beams are treated (Secs. 13.16 and 13.17). Furthermore, it was not
realized that there is a need for the equivalent of what in Feynman gauge is the removal of
Wilson-line self-energies. A version of this formalism was applied to semi-inclusive DIS
in Meng, Olness, and Soper (1996), with a gauge-invariant version being given in Ji, Ma,
and Yuan (2005).

Exercises

10.1 Show explicitly how the formulae in Sec. 8.9, like (8.70) and (8.74), give particular
cases of the general formulae for the subtraction method in Sec. 10.1.

10.2 (**) This problem refers both to material in this chapter and related material in
Ch. 13. Work out more details of the comparison with other work summarized in
Sec. 10.14, and with any other papers you can find. Compare the various definitions
of the collinear and soft factors. To what extent do they agree up to an allowed
scheme change? Are there important differences or errors?

10.3 Assume that a solution of the form of (10.131) applies to some quantity in QCD,
with the standard results for the numerical value the effective coupling as a function
of μ. Deduce the form of the asymptotic large-Q behavior of the form factor. It
would be appropriate to use the same one-loop value of γK we derived above,
except for an insertion of a factor CF . This would arise exactly as in the calculations
of e+e− → hadrons in Sec. 4.1.

10.4 Estimate the fractional error in the LLA for the Sudakov form factor. When does the
LLA give a usefully accurate approximation to the true form factor, in the following
different types of theory?
(a) In the QED-like situation where the coupling is weak over the whole range of

scales involved, and the coupling is smallest in the infra-red.
(b) In the QCD-like asymptotically free situation when the coupling is small only

in the UV.
(c) In an asymptotically free situation, like QCD, except that the masses are large,

so that the largest relevant effective coupling is g(M), where M is a scale
characterizing the masses of the theory.
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10.5 In momentum space the renormalization of the collinear factor A is by a P+-
dependent multiplicative factor. What does this correspond to in coordinate
space?

10.6 In our standard definition of the soft approximations we used space-like auxiliary
vectors n1 and n2, for maximum universality with QCD factorization theories.
(a) Show that, for the Sudakov form factor, time-like vectors work.
(b) Take these vectors to be (proportional) to the external particle momenta (i.e.,

n1 = pA and n2 = pB). Examine the IR divergence when the gluon mass goes
to zero. Show that the divergence is completely contained in the soft factor.

(c) In contrast, examine the case that the auxiliary vectors are space-like or are
not proportional to the external momenta. Use the version of the definition of
H where masses are preserved, but collinear and soft subtractions are made.
Show that there is a power-suppressed divergence as mg → 0. (It should be
proportional to something like (m2/Q2) ln m2

g . The divergence is associated
with the gluon mass, but the power-suppression with the quark mass.)

10.7 Verify the two-loop term in (10.135) by explicit calculation.

10.8 When masses are retained in a hard scattering, the external lines are approximated
by massive on-shell lines. Show that appropriate choices of the projectors for Dirac
fields are as follows.

• For a Dirac particle of momentum k̂ leaving H to A:
γ+(/̂k +m)

2k̂+
. Here the

collinear function and the actual wave function ūA are on the left.

• For a Dirac antiparticle of momentum k̂ entering H from A:
(/̂k −m)γ+

2k̂+
. Here

the collinear function and the actual wave function vA are on the right.

• For a Dirac particle of momentum k̂ leaving H to B:
γ−(/̂k +m)

2k̂−
. Here the

collinear function and the actual wave function ūB are on the left.

• For a Dirac antiparticle of momentum k̂ entering H from B:
(/̂k −m)γ−

2k̂−
. Here

the collinear function and the actual wave function vB are on the right.
A general projector has to project onto an on-shell wave function from a general
spinor, and should be non-singular in the limit m→ 0.

10.9 A change of gauge condition in an abelian theory can be implemented by changing
the numerator of the gluon propagator by

−gμν �→ −gμν + fμkν + kμfν, (10.158)

for some vector function f of momentum. In a covariant gauge, f μ is proportional
to kμ times a function of the scalar k2. There are also more general gauges; such
non-covariant gauges are exemplified by the Coulomb and axial gauges.

It can be proved that physical matrix elements of gauge-invariant operators
are unchanged under such a change of gauge condition, i.e., that they are gauge
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independent.18 Our definitions of collinear and soft factors etc (S, Aunsub, Bunsub,
Abasic, Bbasic, A, B, and K) involve operators that are not exactly gauge invariant,
since the operators in them have open Wilson lines.

In this problem, investigate to what extent these quantities are gauge independent
at the one-loop level.

As an example, you should find that K with its first definition (10.112) is gauge
dependent, but with the second definition (10.122) it is gauge independent. But with
a restriction to covariant gauges, even the first definition is gauge independent, and
the two definitions agree.

10.10 (**) Consider those quantities that in the previous problem you found to be gauge
independent at one-loop order. Try to prove gauge independence to all orders of
perturbation theory.

18 Note carefully that gauge invariance and gauge independence are distinct concepts.
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