INTERSECTION THEOREMS FOR SYSTEMS OF SETS

BY JOEL SPENCER

ABSTRACT. Let *n* and *k* be positive integers, $k \ge 3$. Denote by $\varphi(n, k)$ the least positive integer such that if *F* is any family of more than $\varphi(n, k)$ sets, each set with *n* elements, then some *k* members of *F* have pairwise the same intersection. In this paper we obtain a new asymptotic upper bound for $\varphi(n, k)$, *k* fixed, *n* approaching infinity.

1. Introduction. We shall say, following [2], that k sets form a Δ -system if the sets have pairwise the same intersection. We say a family F does not contain a k element Δ -system if no k sets in F form a Δ -system. Erdös and Rado [2] proved that to each pair of positive integers n, k, $k \ge 3$ there corresponds a least integer $\varphi(n, k)$ so that if F is a family of distinct n-element sets, $|F| > \varphi(n, k)$, then F contains a k-element Δ -system. As the case k = 3 is of particular interest, we shall set $\varphi(n) = \varphi(n, 3)$. They showed

(1.1)
$$(k-1)^n \le \varphi(n,k) \le n! (k-1)^n \left\{ 1 - \sum_{t=1}^{n-1} \frac{t}{(t+1)! (k-1)^t} \right\}$$

We shall restrict our attention to asymptotic results for fixed k. Abbott, Hanson, and Sauer [1] showed

(1.2)
$$\varphi(n) > [\sqrt{10} - o(1)]^n$$

and

(1.3)
$$\varphi(n,k) \le (n+1)! \left\{ \frac{k-1+(k^2+6k-7)^{1/2}}{4} \right\}^n$$

So, in particular,

(1.4)
$$\varphi(n) \leq (n+1)! \left(\frac{1+\sqrt{5}}{2}\right)^n$$

We shall prove:

THEOREM 1. For fixed k, $\varepsilon > 0$ there exists C so that

(1.5)
$$\varphi(n,k) \le Cn! (1+\varepsilon)^n$$

for all n.

7

Received by the editors February 9, 1976 and, in revised form, June 23, 1976.

249

J. SPENCER

Our proof shall follow the lines of [1]. In [2] Erdös and Rado ask if $\varphi(n) < K^n$ for some universal constant K. While our efforts were inspired by this question, we cannot resolve it.

2. The case k = 3. Let $\varphi(n)$ be as previously defined. Let $\gamma(n)$ be the least integer so that if F is a family of n element sets, no two disjoint, $|F| > \gamma(n)$, then F contains a Δ -system.

We shall make frequent use of the following reduction principle: Suppose F does not contain a Δ -system and $X \subseteq A_i \in F$, $1 \le i \le m$. Then $\{A_i - X : 1 \le i \le m\}$ does not contain a Δ -system. (If, say, $A_1 - X$, $A_2 - X$, $A_3 - X$ formed a Δ -system, so would A_1 , A_2 , A_3 in F.) In particular, setting $X = \{x\}$, if F does not contain a Δ -system at most $\varphi(n-1)$ sets in F can contain a given point x.

LEMMA 1. $\varphi(n) \leq n\varphi(n-1) + \gamma(n)$.

Proof. Let $|F| = \varphi(n)$, F not containing a Δ -system. Fix $S \in F$. At most $\varphi(n-1)$ $T \in F$ contain any particular $x \in S$, thus at most $n\varphi(n-1)$ $T \in F$ intersect S. If $T_1, T_2 \in F$, both disjoint from S, then $T_1 \cap T_2 \neq \varphi$, as otherwise S, T_1, T_2 form a Δ -system. Hence at most $\gamma(n)$ $T \in F$ are disjoint from S.

Let $F = \{S_1, \ldots, S_{\gamma}\}$, $\gamma = \gamma(n)$, be a family of non-disjoint *n*-sets not containing a Δ -system. Let *t* be the average $|S_i \cap S_i|$, $1 \le i \le j \le \gamma$. Formally

(2.1)
$$t = {\gamma \choose 2}^{-1} \sum_{1 \le i < j \le \gamma} |S_i \cap S_j|$$

Lemma 2.

$$\gamma \leq \frac{n}{t} \varphi(n-1).$$

Proof.

(2.2)
$$t = \frac{1}{\gamma} \sum_{I=1}^{\gamma} \left[\frac{1}{\gamma - 1} \sum_{j \neq i} |S_i \cap S_j| \right]$$

Hence for some i, say i = 1,

(2.3)
$$\frac{1}{\gamma-1}\sum_{j\neq 1}|S_1\cap S_j|\geq t.$$

For $x \in S_1$, let

(2.4)
$$n(x) = |\{j : x \in S_j, 1 \le j \le \gamma\}|$$

Then

(2.5)
$$\sum_{x \in S_1} n(x) = \sum_{j=1}^{\gamma} |S_1 \cap S_j| = n + \sum_{j \neq 1} |S_1 \cap S_j| \ge n + t(\gamma - 1) \ge t\gamma$$

250

Hence some $n(x) \ge t\gamma/n$. But, by the Reduction Principle, all $n(x) \le \varphi(n-1)$.

LEMMA 3. For $1 \le s \le \gamma$,

(2.7)
$$\gamma \leq t \binom{s}{2} \varphi(n-1) + (n-1)^{s} \varphi(n-s).$$

Proof. For $X \subseteq \{1, \ldots, \gamma\}, |X| = s$ set

(2.8)
$$g(X) = \sum_{\substack{i,j \in X \\ i < j}} |S_i \cap S_j|$$

By linearity of expected value the average g(X) is $t\binom{s}{2}$. Formally

(2.9)
$$\Sigma^* g(X) = \sum_{1 \le i < j \le \gamma} |S_i \cap S_j| \binom{\gamma - 2}{s - 2} = t\binom{\gamma}{2} \binom{\gamma - 2}{s - 2} = t\binom{\gamma}{s} \binom{s}{2}$$

where Σ^* runs over $X \subseteq \{1, \ldots, \gamma\}, |X| = s$. Thus some X has

$$g(X) \le t \binom{s}{2}.$$

Renumber so that $X = \{1, \ldots, s\}$ for convenience. Set

(2.11)
$$Y = \bigcup_{1 \le i < j \le s} S_i \cap S_j, \text{ so } |Y| \le T {s \choose 2}.$$

For $1 \le i \le \gamma$ either

(i) $S_i \cap Y \neq \varphi$. There are at most $|Y| \varphi(n-1) \le t \binom{s}{2} \varphi(n-1)$ such *i* or,

(ii) $S_i \cap Y = \varphi$. Then there exist (not necessarily unique) $x_1, \ldots, x_s; x_j \in S_i \cap (S_j - Y)$ (as $S_i \cap S_j \neq \varphi$ and $S_i \cap Y = \varphi$). These x's are distinct since the $(S_j - Y)$ are disjoint. There are at most $\prod_{j=1}^{s} |S_j - Y| \leq (n-1)^s$ possible sequences and at most $\varphi(n-s)$ sets with the same sequence (i.e. a common s points); thus at most $(n-1)^s \varphi(n-s)$ such *i*.

We now prove Theorem 1 (for k=3) using Lemmas 1, 2, 3. Let C be such that (1.5) holds for $n \le n_0$ where $n_0 = n_0(\varepsilon)$ shall be determined later. We assume (1.5) holds for all n' < n and proceed by induction. By Lemmas 1, 2

(2.12)
$$\varphi(n) \le n\varphi(n-1)\left(1+\frac{1}{t}\right)$$

so that if $t \ge \varepsilon^{-1}$ (1.5) follows by induction. We therefore assume $t < \varepsilon^{-1}$. From Lemmas 1, 3

(2.13)
$$\varphi(n) \le n\varphi(n-1) + t \binom{s}{2} \varphi(n-1) + (n-1)^s \varphi(n-s)$$

(2.14)
$$\leq n\varphi(n-1) + \varepsilon^{-1} {\binom{s}{2}} \varphi(n-1) + (n-1)^{s} \varphi(n-s).$$

7 Å

By induction

(2.15)
$$\varphi(n) \le C(1+\varepsilon)^n n! \, \psi(n, \varepsilon, s)$$

where

(2.16)
$$\psi(n, \varepsilon, s) = (1+\varepsilon)^{-1} + \varepsilon^{-1} {\binom{s}{2}} (1+\varepsilon)^{-1} n^{-1} + (1+\varepsilon)^{-s} (n-1)^{s} / (n)_{s}$$

For ε , s fixed

(2.17)
$$\lim_{n \to \infty} \psi(n, \varepsilon, s) = (1+\varepsilon)^{-1} + (1+\varepsilon)^{-s}.$$

Fix $s = s(\varepsilon)$ so that $(1+\varepsilon)^{-1} + (1+\varepsilon)^{-s} < 1$. Then select $n_0 = n_0(\varepsilon, s) = n_0(\varepsilon)$ so that $\psi(n, \varepsilon, s) < 1$ for $n > n_0$. Then by (2.15), our induction is complete.

By a more careful analysis one can show, using only Lemmas 1, 2, 3, that $5 - 675 + 6(1)^2$

(2.18) $\Phi(N) < n! \exp[n^{0.75+o(1)}]$

3. The general case. In this section we prove Theorem 1. As the proof is basically a generalization of the case k = 3, we shall be somewhat sketchy. The term " Δ -system" shall refer to "k-element Δ -system." We note that the reduction principle applies to k-element Δ -systems.

DEFINITION. For $2 \le i \le K$ let $\varphi_i(n, k)$ denote the least integer so that if F is a family of n element sets, no i pairwise disjoint, $|F| > \varphi_i(n, k)$, then F contains a Δ -system.

We observe

(3.1)
$$\varphi_2(n,k) \leq \varphi_3(n,k) \leq \cdots \leq \varphi_k(n,k) = \varphi(n,k).$$

For k = 3, $\varphi_2 = \gamma$, $\varphi_3 = \varphi$ in the notation of §2.

LEMMA 5. For $2 \le i \le k$, $n \ge 1$ there exists t so that

(3.2)
$$\varphi_i(n,k) \leq \frac{n}{t} \varphi(n-1,k)$$

and such that for all integral $s \leq \varphi_i(n, k)$

(3.3)
$$\varphi_i(n,k) \le t {s \choose 2} \varphi(n-1,k) + (n-1)^s \varphi(n-s,k) + s \varphi_{i-1}(n,k)$$

(where for i = 2, $\varphi_1(n, k)$ is interpreted as zero).

Proof. Let F be a family of $\varphi_i(n, k)$ n-sets, no *i* pairwise disjoint, not containing a Δ -system. Set *t* equal the average $|S \cap T|$ where S, $T \in F$, $S \neq T$. Then (3.2) follows as in Lemma 2. For any $s \leq \varphi_i(n, k)$ we find (as in Lemma 3)

https://doi.org/10.4153/CMB-1977-038-7 Published online by Cambridge University Press

June

 $S_1, \ldots, S_s \in F$ so that, setting

(3.4)
$$Y = \bigcup_{1 \le \mu < \nu \le s} S_{\mu} \cap S_{\nu}$$

we have

$$|Y| \le t \binom{s}{2}$$

All sets in F either

(i) intersect Y; at most $|Y| \varphi(n-1, k) \le t {s \choose 2} \varphi(n-1, k)$ such sets, or

(ii) are disjoint from Y but intersect S_1, \ldots, S_s ; at most $(n-1)^s \varphi(n-s, k)$ such sets, or

(iii) are disjoint from S_{μ} for some $1 \le \mu \le s$. For fixed μ there are at most $\varphi_{i-1}(n, k)$ such sets (as if those sets contained i-1 pairwise disjoint sets with S_k there would be *i* pairwise disjoint sets); at most $s\varphi_{i-1}(n, k)$ such sets.

The remainder of the proof is purely analytic using Lemma 5.

Select $C_2, C_3, \ldots, C_k = C$; s_2, s_3, \ldots, s_k positive integers such that

(3.6)
$$0 < C_{i-1} < [C_i - C(1+\varepsilon)^{-s_i}]/s_i, \quad 3 \le i \le k$$
$$0 < [C_2 - C(1+\varepsilon)^{-s_2}]s_2$$

(E.g., select $C_k = C$ arbitrarily; having chosen C_i choose s_i so that $C_i - C(1+\varepsilon)^{-s_i} > 0$ and C_{i-1} satisfying (3.6)). Let K be such that

(3.7)
$$\varphi_i(n,k) \leq KC_i(1+\varepsilon)^n n!$$

for $2 \le i \le k$ and all $n \le n_0(\varepsilon)$ where $n_0(\varepsilon)$ shall be determined. We show (3.7) holds for all n by a double induction on n and i. Assume (3.7) holds for all n' < n and for n with i' < i. By (3.2)

(3.8)
$$\varphi_i(n,k) \le K(C/t)n! (1+\varepsilon)^{n-1} < KC_i(1+\varepsilon)^n n!$$

if $t > C/C_i$. Now assume $t \le C/C_i$. By (3.3), with $s = s_i$

(3.9)
$$\varphi_i(n,k) \leq Kn! (1+\varepsilon)^n \psi_i(n,s_i,\varepsilon)$$

where

(3.10)
$$\psi_i(n, s_i, \varepsilon) = \frac{(C/C_i)(2^{s_i})C}{n} + C(1+\varepsilon)^{-s_i} \frac{(n-1)^{s_i}}{(n)_{s_i}} + s_i C_{i-1}$$

(for $i = 2, C_1 = 0$). Then

(3.11)
$$\lim_{n\to\infty}\psi_i(n,s_i,\varepsilon) = C(1+\varepsilon)^{-s_i} + s_iC_{i-1} < C_i$$

by (3.6). We choose $n_0(\varepsilon)$ so that

(3.12) $\psi_i(n, s_i, \varepsilon) < C_i \quad \text{for} \quad 2 \le i \le k, n \ge n_0(\varepsilon).$

(Note that the C_i , s_i depended only on ε .) Then (3.7) holds for n, i by (3.10), (3.12) and (1.5) holds with constant KC.

References

1. H. L. Abbott, D. Hanson, and N. Sauer, Intersection theorems for systems of sets, J. Combinatorial Theory 12 (1972), 381-389.

2. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.

DEPT. OF MATH., STATE UNIVERSITY OF NEW YORK AT STONY BROOK, STONY BROOK, NEW YORK 11794 U.S.A.

254