INTERSECTION THEOREMS FOR SYSTEMS OF SETS

BY
JOEL SPENCER

Abstract

Let n and k be positive integers, $k \geq 3$. Denote by $\varphi(n, k)$ the least positive integer such that if F is any family of more than $\varphi(n, k)$ sets, each set with n elements, then some k members of F have pairwise the same intersection. In this paper we obtain a new asymptotic upper bound for $\varphi(n, k), k$ fixed, n approaching infinity.

1. Introduction. We shall say, following [2], that k sets form a Δ-system if the sets have pairwise the same intersection. We say a family F does not contain a k element Δ-system if no k sets in F form a Δ-system. Erdös and Rado [2] proved that to each pair of positive integers $n, k, k \geq 3$ there corresponds a least integer $\varphi(n, k)$ so that if F is a family of distinct n-element sets, $|F|>\varphi(n, k)$, then F contains a k-element Δ-system. As the case $k=3$ is of particular interest, we shall set $\varphi(n)=\varphi(n, 3)$. They showed

$$
\begin{equation*}
(k-1)^{n} \leq \varphi(n, k) \leq n!(k-1)^{n}\left\{1-\sum_{t=1}^{n-1} \frac{t}{(t+1)!(k-1)^{t}}\right\} \tag{1.1}
\end{equation*}
$$

We shall restrict our attention to asymptotic results for fixed k. Abbott, Hanson, and Sauer [1] showed

$$
\begin{equation*}
\varphi(n)>[\sqrt{ } 10-o(1)]^{n} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi(n, k) \leq(n+1)!\left\{\frac{k-1+\left(k^{2}+6 k-7\right)^{1 / 2}}{4}\right\}^{n} \tag{1.3}
\end{equation*}
$$

So, in particular,

$$
\begin{equation*}
\varphi(n) \leq(n+1)!\left(\frac{1+\sqrt{ } 5}{2}\right)^{n} \tag{1.4}
\end{equation*}
$$

We shall prove:
Theorem 1. For fixed $k, \varepsilon>0$ there exists C so that

$$
\begin{equation*}
\varphi(n, k) \leq C n!(1+\varepsilon)^{n} \tag{1.5}
\end{equation*}
$$

for all n.

Received by the editors February 9, 1976 and, in revised form, June 23, 1976.

Our proof shall follow the lines of [1]. In [2] Erdös and Rado ask if $\varphi(n)<K^{n}$ for some universal constant K. While our efforts were inspired by this question, we cannot resolve it.
2. The case $k=3$. Let $\varphi(n)$ be as previously defined. Let $\gamma(n)$ be the least integer so that if F is a family of n element sets, no two disjoint, $|F|>\gamma(n)$, then F contains a Δ-system.

We shall make frequent use of the following reduction principle: Suppose F does not contain a Δ-system and $X \subseteq A_{i} \in F, 1 \leq i \leq m$. Then $\left\{A_{i}-X: 1 \leq i \leq m\right\}$ does not contain a Δ-system. (If, say, $A_{1}-X, A_{2}-X, A_{3}-X$ formed a Δ-system, so would A_{1}, A_{2}, A_{3} in F.) In particular, setting $X=\{x\}$, if F does not contain a Δ-system at most $\varphi(n-1)$ sets in F can contain a given point x.

Lemma 1. $\varphi(n) \leq n \varphi(n-1)+\gamma(n)$.
Proof. Let $|F|=\varphi(n), F$ not containing a Δ-system. Fix $S \in F$. At most $\varphi(n-1) T \in F$ contain any particular $x \in S$, thus at most $n \varphi(n-1) T \in F$ intersect S. If $T_{1}, T_{2} \in F$, both disjoint from S, then $T_{1} \cap T_{2} \neq \varphi$, as otherwise S, $T_{1}, \quad T_{2}$ form a Δ-system. Hence at most $\gamma(n) \quad T \in F$ are disjoint from S.

Let $F=\left\{S_{1}, \ldots, S_{\gamma}\right\}, \gamma=\gamma(n)$, be a family of non-disjoint n-sets not containing a Δ-system. Let t be the average $\left|S_{i} \cap S_{j}\right|, 1 \leq i<j \leq \gamma$. Formally

$$
\begin{equation*}
t=\binom{\gamma}{2}^{-1} \sum_{1 \leq i<j \leq \gamma}\left|S_{i} \cap S_{j}\right| \tag{2.1}
\end{equation*}
$$

Lemma 2.

$$
\gamma \leq \frac{n}{t} \varphi(n-1)
$$

Proof.

$$
\begin{equation*}
t=\frac{1}{\gamma} \sum_{I=1}^{\gamma}\left[\frac{1}{\gamma-1} \sum_{j \neq i}\left|S_{i} \cap S_{j}\right|\right] \tag{2.2}
\end{equation*}
$$

Hence for some i, say $i=1$,

$$
\begin{equation*}
\frac{1}{\gamma-1} \sum_{j \neq 1}\left|S_{1} \cap S_{j}\right| \geq t \tag{2.3}
\end{equation*}
$$

For $x \in S_{1}$, let

$$
\begin{equation*}
n(x)=\left|\left\{j: x \in S_{j}, 1 \leq j \leq \gamma\right\}\right| \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{x \in S_{1}} n(x)=\sum_{j=1}^{\gamma}\left|S_{1} \cap S_{j}\right|=n+\sum_{j \neq 1}\left|S_{1} \cap S_{j}\right| \geq n+t(\gamma-1) \geq t \gamma \tag{2.5}
\end{equation*}
$$

Hence some $n(x) \geq t \gamma / n$. But, by the Reduction Principle, all $n(x) \leq \varphi(n-1)$.
Lemma 3. For $1 \leq s \leq \gamma$,

$$
\begin{equation*}
\gamma \leq t\binom{s}{2} \varphi(n-1)+(n-1)^{s} \varphi(n-s) \tag{2.7}
\end{equation*}
$$

Proof. For $X \subseteq\{1, \ldots, \gamma\},|X|=s$ set

$$
\begin{equation*}
g(X)=\sum_{\substack{i, j \in X \\ i<j}}\left|S_{i} \cap S_{j}\right| \tag{2.8}
\end{equation*}
$$

By linearity of expected value the average $g(X)$ is $t\binom{s}{2}$. Formally

$$
\begin{equation*}
\Sigma^{*} g(X)=\sum_{1 \leq i<j \leq \gamma}\left|S_{i} \cap S_{j}\right|\binom{\gamma-2}{s-2}=t\binom{\gamma}{2}\binom{\gamma-2}{s-2}=t\binom{\gamma}{s}\binom{s}{2} \tag{2.9}
\end{equation*}
$$

where Σ^{*} runs over $X \subseteq\{1, \ldots, \gamma\},|X|=s$. Thus some X has

$$
\begin{equation*}
g(X) \leq t\binom{s}{2} \tag{2.10}
\end{equation*}
$$

Renumber so that $X=\{1, \ldots, s\}$ for convenience. Set

$$
\begin{equation*}
Y=\bigcup_{1 \leq i<j \leq s} S_{i} \cap S_{j} \text {, so }|Y| \leq T\binom{s}{2} . \tag{2.11}
\end{equation*}
$$

For $1 \leq i \leq \gamma$ either
(i) $S_{i} \cap Y \neq \varphi$. There are at most $|Y| \varphi(n-1) \leq t\binom{s}{2} \varphi(n-1)$ such i or,
(ii) $S_{i} \cap Y=\varphi$. Then there exist (not necessarily unique) $x_{1}, \ldots, x_{s} ; x_{j} \in$ $S_{i} \cap\left(S_{j}-Y\right)$ (as $S_{i} \cap S_{j} \neq \varphi$ and $S_{i} \cap Y=\varphi$). These x 's are distinct since the $\left(S_{j}-Y\right)$ are disjoint. There are at most $\prod_{j=1}^{s}\left|S_{j}-Y\right| \leq(n-1)^{s}$ possible sequences and at most $\varphi(n-s)$ sets with the same sequence (i.e. a common s points); thus at most $(n-1)^{s} \varphi(n-s)$ such i.

We now prove Theorem 1 (for $k=3$) using Lemmas $1,2,3$. Let C be such that (1.5) holds for $n \leq n_{0}$ where $n_{0}=n_{0}(\varepsilon)$ shall be determined later. We assume (1.5) holds for all $n^{\prime}<n$ and proceed by induction. By Lemmas 1, 2

$$
\begin{equation*}
\varphi(n) \leq n \varphi(n-1)\left(1+\frac{1}{t}\right) \tag{2.12}
\end{equation*}
$$

so that if $t \geq \varepsilon^{-1}$ (1.5) follows by induction. We therefore assume $t<\varepsilon^{-1}$. From Lemmas 1, 3

$$
\begin{align*}
\varphi(n) & \leq n \varphi(n-1)+t\binom{s}{2} \varphi(n-1)+(n-1)^{s} \varphi(n-s) \tag{2.13}\\
& \leq n \varphi(n-1)+\varepsilon^{-1}\binom{s}{2} \varphi(n-1)+(n-1)^{s} \varphi(n-s) . \tag{2.14}
\end{align*}
$$

By induction

$$
\begin{equation*}
\varphi(n) \leq C(1+\varepsilon)^{n} n!\psi(n, \varepsilon, s) \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(n, \varepsilon, s)=(1+\varepsilon)^{-1}+\varepsilon^{-1}\binom{s}{2}(1+\varepsilon)^{-1} n^{-1}+(1+\varepsilon)^{-s}(n-1)^{s} /(n)_{s} \tag{2.16}
\end{equation*}
$$

For ε, s fixed

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \psi(n, \varepsilon, s)=(1+\varepsilon)^{-1}+(1+\varepsilon)^{-s} \tag{2.17}
\end{equation*}
$$

Fix $s=s(\varepsilon)$ so that $(1+\varepsilon)^{-1}+(1+\varepsilon)^{-s}<1$. Then select $n_{0}=n_{0}(\varepsilon, s)=n_{0}(\varepsilon)$ so that $\psi(n, \varepsilon, s)<1$ for $n>n_{0}$. Then by (2.15), our induction is complete.

By a more careful analysis one can show, using only Lemmas 1, 2, 3, that

$$
\begin{equation*}
\Phi(N)<n!\exp \left[n^{0.75+o(1)}\right] \tag{2.18}
\end{equation*}
$$

3. The general case. In this section we prove Theorem 1. As the proof is basically a generalization of the case $k=3$, we shall be somewhat sketchy. The term " Δ-system" shall refer to " k-element Δ-system." We note that the reduction principle applies to k-element Δ-systems.

Definition. For $2 \leq i \leq K$ let $\varphi_{i}(n, k)$ denote the least integer so that if F is a family of n element sets, no i pairwise disjoint, $|F|>\varphi_{i}(n, k)$, then F contains a Δ-system.

We observe

$$
\begin{equation*}
\varphi_{2}(n, k) \leq \varphi_{3}(n, k) \leq \cdots \leq \varphi_{k}(n, k)=\varphi(n, k) . \tag{3.1}
\end{equation*}
$$

For $k=3, \varphi_{2}=\gamma, \varphi_{3}=\varphi$ in the notation of $\S 2$.
Lemma 5. For $2 \leq i \leq k, n \geq 1$ there exists t so that

$$
\begin{equation*}
\varphi_{i}(n, k) \leq \frac{n}{t} \varphi(n-1, k) \tag{3.2}
\end{equation*}
$$

and such that for all integral $s \leq \varphi_{i}(n, k)$

$$
\begin{equation*}
\varphi_{i}(n, k) \leq t\binom{s}{2} \varphi(n-1, k)+(n-1)^{s} \varphi(n-s, k)+s \varphi_{i-1}(n, k) \tag{3.3}
\end{equation*}
$$

(where for $i=2, \varphi_{1}(n, k)$ is interpreted as zero).
Proof. Let F be a family of $\varphi_{i}(n, k) n$-sets, no i pairwise disjoint, not containing a Δ-system. Set t equal the average $|S \cap T|$ where $S, T \in F, S \neq T$. Then (3.2) follows as in Lemma 2. For any $s \leq \varphi_{i}(n, k)$ we find (as in Lemma 3)
$S_{1}, \ldots, S_{s} \in F$ so that, setting

$$
\begin{equation*}
Y=\bigcup_{1 \leq \mu<\nu \leq s} S_{\mu} \cap S_{\nu} \tag{3.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
|Y| \leq t\binom{s}{2} \tag{3.5}
\end{equation*}
$$

All sets in F either
(i) intersect Y; at most $|Y| \varphi(n-1, k) \leq t\binom{s}{2} \varphi(n-1, k)$ such sets, or
(ii) are disjoint from Y but intersect S_{1}, \ldots, S_{s}; at most $(n-1)^{s} \varphi(n-s, k)$ such sets, or
(iii) are disjoint from S_{μ} for some $1 \leq \mu \leq s$. For fixed μ there are at most $\varphi_{i-1}(n, k)$ such sets (as if those sets contained $i-1$ pairwise disjoint sets with S_{k} there would be i pairwise disjoint sets); at most $s \varphi_{i-1}(n, k)$ such sets.

The remainder of the proof is purely analytic using Lemma 5.
Select $C_{2}, C_{3}, \ldots, C_{k}=C ; s_{2}, s_{3}, \ldots, s_{k}$ positive integers such that

$$
\begin{align*}
0<C_{i-1}< & {\left[C_{i}-C(1+\varepsilon)^{-s_{i}}\right] / s_{i}, \quad 3 \leq i \leq k } \\
0 & <\left[C_{2}-C(1+\varepsilon)^{-s_{2}}\right] s_{2} \tag{3.6}
\end{align*}
$$

(E.g., select $C_{k}=C$ arbitrarily; having chosen C_{i} choose s_{i} so that C_{i} -$C(1+\varepsilon)^{-s_{i}}>0$ and C_{i-1} satisfying (3.6)). Let K be such that

$$
\begin{equation*}
\varphi_{i}(n, k) \leq K C_{i}(1+\varepsilon)^{n} n! \tag{3.7}
\end{equation*}
$$

for $2 \leq i \leq k$ and all $n \leq n_{0}(\varepsilon)$ where $n_{0}(\varepsilon)$ shall be determined. We show (3.7) holds for all n by a double induction on n and i. Assume (3.7) holds for all $n^{\prime}<n$ and for n with $i^{\prime}<i$. By (3.2)

$$
\begin{equation*}
\varphi_{i}(n, k) \leq K(C / t) n!(1+\varepsilon)^{n-1}<K C_{i}(1+\varepsilon)^{n} n! \tag{3.8}
\end{equation*}
$$

if $t>C / C_{i}$. Now assume $t \leq C / C_{i}$. By (3.3), with $s=s_{i}$

$$
\begin{equation*}
\varphi_{i}(n, k) \leq K n!(1+\varepsilon)^{n} \psi_{i}\left(n, s_{i}, \varepsilon\right) \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{i}\left(n, s_{i}, \varepsilon\right)=\frac{\left(C / C_{i}\right)\left(2^{s_{i}}\right) C}{n}+C(1+\varepsilon)^{-s_{i}} \frac{(n-1)^{s_{i}}}{(n)_{s_{i}}}+s_{i} C_{i-1} \tag{3.10}
\end{equation*}
$$

(for $i=2, C_{1}=0$). Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \psi_{i}\left(n, s_{i}, \varepsilon\right)=C(1+\varepsilon)^{-s_{i}}+s_{i} C_{i-1}<C_{i} \tag{3.11}
\end{equation*}
$$

by (3.6). We choose $n_{0}(\varepsilon)$ so that

$$
\begin{equation*}
\psi_{i}\left(n, s_{i}, \varepsilon\right)<C_{i} \quad \text { for } \quad 2 \leq i \leq k, n \geq n_{0}(\varepsilon) . \tag{3.12}
\end{equation*}
$$

(Note that the C_{i}, s_{i} depended only on ε.) Then (3.7) holds for n, i by (3.10), (3.12) and (1.5) holds with constant $K C$.

References

1. H. L. Abbott, D. Hanson, and N. Sauer, Intersection theorems for systems of sets, J. Combinatorial Theory 12 (1972), 381-389.
2. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.

Dept. of Math., State University of New York at Stony Brook, Stony Brook, New York 11794 U.S.A.

