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ON INDECOMPOSABLE PROJECTIVE MODULES

BY
JOHN D. O’NEILL

ABSTRACT. If P is an indecomposable projective R-module generated
by a countable set X, then, for some countable subring S of R, P contains
an indecomposable projective S-module generated by X. The subring S may
be chosen to inherit many standard ring-theoretic properties from R.

Let R be a ring and let P be an indecomposable projective R-module. It is well-known
(by Theorem 1 in [3]) that P has a countable generating set X. We show here that, for
some countable subring S of R, P contains an indecomposable projective S-module
generated by X. Moreover S may be chosen so that many standard ring-theoretic
properties, if possessed by R, are inherited by S.

In this note all rings are associative with unity and all modules are left unital
modules. A ring is local (semilocal) if the sum of any two non-units in it is a non-unit
(if it contains only a finite number of maximal ideals). By J(R), U(R) and N(R) we
mean the Jacobson, nil and prime radical of R respectively. Other terminology may be
found in [1 and 4].

THEOREM. Let R be a ring and let P be an indecomposable projective R-module
generated by the countable set X. Then R contains a countable subring S such that P
contains an indecomposable projective S-module M generated by X and S has the
following properties:

(a) An element in S is left or right invertible or is a left or right zero-divisor in S if
itisinR.

(b) If I # J are left ideals in S, then RI + RJ in R. The corresponding statements
for right and two-sided ideals are also true.

(c) If R has the ascending or descending chain condition on left, right or two-sided
ideals, then S has the corresponding chain condition.

(d) If R is a prime, local or semilocal ring, then so is S.

(e) If J(R), U(R) or N(R) is zero, then J(S), U(S) or N(S) is zero respectively.

(f) If R is a commutative domain and R is a principal ideal domain or a Dedekind,
Priifer or Bezout ring, then S is the corresponding type of ring.
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CONSTRUCTION OF S AND M. Write P @ Q = @, Re,, a free R-module, and let Y
be a countable generating set in Q. Each element in X and Y is a linear combination over
R of the e,’s. Express each e, as a linear combination (not necessarily unique) of
elements in X and Y. Let S, be the subring of R generated by the coefficients in these
expressions of the e,’s and of the elements in X and Y. Then S, is countable and we let
M, and N, be the Sy-modules generated over S, by X and Y respectively.

We next let S| be the countable subring of R generated by S, and elements selected
from R, if possible, as follows:

(1) For each finite subset in Sy, say x,, . . ., x,, and each y in S, select finite sets {a;},
{b;} and {c;, d;} so that Zax;, Zx;b;, Zcx;d; each equal y,

(2) For each x and y in S select a so that xay # 0,

(3) For each x in S, and each positive integer n select a, so that (a,x)" # 0.

(4) For each x in S, select a and b so that axb is not nilpotent.

(5) If R is a commutative domain, for each finite subset F in S, choose a finite set
E from R so that, in the ring generated by E and S, the ideal generated by F is invertible
and also principal if possible.

(6) For each two finite subsets, say {u,,...,u,} and {v,,...,v,} in My U N,,
choose, if possible, elements a, and b; from R so that 2a,u; = Zb,v; ¥ 0.

In the above selection process at each step we chose just one finite (countable in step
3) set of elements from R for each finite subset. As a result the ring S, generated by
Sy and the a’s, b’s, ¢’s, d’s and E’s chosen in the steps above is a countable ring. Let
M, and N, be the S;-modules generated over S, by X and Y respectively. We now
inductively construct ring S, and S,-modules M, and N, for each positive integer n by
repeating the above process relative to S, ,, M,_,, and N,_,. Let S = U;S,,
M = UjM,and N = Uy N,.

PROOF OF THE THEOREM. We have M @ N = @] Se,.. Also S is countable and M and
N are generated over S by X and Y respectively. We claim M is S-indecomposable.
Suppose M = A @ B as an S-module. Since X is in M, P = RA + RB. Since P is
R-indecomposable, Za;u; = Zbu; # 0 for some a;, b; in R and u; in A and v; in B. But,
by step (6) of our construction, there are elements a; and b/ in S such that 0 + Za/u;
= 2Zb/v; and A N B # 0, a contradiction. So M is S-indecomposable (if Q is R-
indecomposable, N is also S-indecomposable).

We now verify the second part of the Theorem. We shall refer repeatedly to the steps
in our Construction above.

(a) This follows from step 1 with n = 1 and with y = 1 or 0 in R.

(b) We just treat the left ideal case. Suppose y € J\I. By step 1 then y & RI.
So RI + RJ.

(c) This follows from (b).

(d) Suppose R is a prime ring and x and y are nonzero elements in S. Then
xRy # 0 (see p. 164 ex. 10 in [1]). By step (2) then xSy # 0 and S is prime. Suppose
R is local and x,y are non-units in S. By (a) above x and y are non-units in R and,
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since R is local, x + y is a non-unit in R and also in . Therefore S is local. Suppose
R is semilocal. If / is a maximal ideal in S, then RIR is proper in R by step (b) and
ICRIRCM ; R for some maximal ideal M in R. As aresult / = M N §. Thus, if
R has only a finite number of maximal ideals, so does S.

(e) Let {I,}, k € K, be the set of maximal left ideals in R. By arguing as in (d) for
left (instead of two-sided) ideals we see that the maximal left ideals in S are precisely
the ideals I, N S for k € K. If J(R) = 0, then

J(S)=ﬂ(lkﬂS)=(ﬂlk>ﬂS=J(R)ﬂS=0.
K K

Suppose U(R) = 0 and x is a non-zero element in S. The ideal R, R is not nil in R. By
(4) S,S is not nil in S so U(S) = 0. If N(R) = 0, then R contains no non-zero left
nilpotent ideal (see ex. 14 on p. 176 in [1]). Neither does S by step (3). So
N(S) = 0.

(f) Suppose [ is an ideal in S generated by a finite set F'. If R/ is invertible or principal
in R, then / is invertible or principal in S by step (5). Also by (c) above S is Noetherian
if R is. Now (f) follows from the definitions of the particular rings (as may be found
in [4]).

COROLLARY. Any ring R contains a countable subring S with properties (a)—(f) listed
in the Theorem above.

PROOF. Let S, be the subring of R generated by 1. Let S, be the subring of R generated
by Sy and elements selected from R as in steps (1)—(5) in the Construction above.
Similarly construct S, forn = 2,3, ... by buildingon S, _,. Let S = UffS,,. Now apply
the proof of the Theorem beginning with the second paragraph.

EXAMPLE. Let R be the ring of real-valued continuous functions on the unit interval.
R contains an ideal P which is an indecomposable projective R-module which is not
finitely generated (see p. 31 of [2]). By our theorem R contains a countable subring S
and P contains a countable subset M such that M is an indecomposable projective
S-module which is not finitely generated.
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