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ON INDECOMPOSABLE PROJECTIVE MODULES 

BY 

JOHN D. O'NEILL 

ABSTRACT. If P is an indecomposable projective /^-module generated 
by a countable set X, then, for some countable subring S of R, P contains 
an indecomposable projective S-module generated by X. The subring S may 
be chosen to inherit many standard ring-theoretic properties from R. 

Let R be a ring and let P be an indecomposable projective /^-module. It is well-known 
(by Theorem 1 in [3]) that P has a countable generating set X. We show here that, for 
some countable subring S of R, P contains an indecomposable projective S-module 
generated by X. Moreover S may be chosen so that many standard ring-theoretic 
properties, if possessed by R, are inherited by S. 

In this note all rings are associative with unity and all modules are left unital 
modules. A ring is local (semilocal) if the sum of any two non-units in it is a non-unit 
(if it contains only a finite number of maximal ideals). By J(R), U(R) and N(R) we 
mean the Jacobson, nil and prime radical ofR respectively. Other terminology may be 
found in [1 and 4]. 

THEOREM. Let R be a ring and let P be an indecomposable projective R-module 
generated by the countable set X. Then R contains a countable subring S such that P 
contains an indecomposable projective S-module M generated by X and S has the 
following properties: 

(a) An element in S is left or right invertible or is a left or right zero-divisor in S if 
it is in R. 

(b) Ifl^J are left ideals in S, then RI 41 RJ in R. The corresponding statements 
for right and two-sided ideals are also true. 

(c) IfR has the ascending or descending chain condition on left, right or two-sided 
ideals, then S has the corresponding chain condition. 

(d) IfR is a prime, local or semilocal ring, then so is S. 
(e) IfJ(R), U(R) or N(R) is zero, then J(S), U(S) or N(S) is zero respectively. 
(f ) IfR is a commutative domain and R is a principal ideal domain or a Dedekind, 

Prufer or Bezout ring, then S is the corresponding type of ring. 
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CONSTRUCTION OF S AND M. Write P © Q = © " Reny a free fi-module, and let Y 
be a countable generating set in Q. Each element in X and Y is a linear combination over 
R of the e„'s. Express each en as a linear combination (not necessarily unique) of 
elements in X and Y. Let S0 be the subring of R generated by the coefficients in these 
expressions of the e„'s and of the elements in X and Y. Then S0 is countable and we let 
M0 and N0 be the ^-modules generated over SQ by X and Y respectively. 

We next let S\ be the countable subring of R generated by S0 and elements selected 
from R, if possible, as follows: 

(1) For each finite subset in S0, say X\,.. . , xn, and each y in S0 select finite sets {a,}, 
{bj} and je,, d,} so that Sa,x;, 2x;Z?;, Sc/jt/d,- each equal v, 

(2) For each JC and j in S0 select a so that xay ± 0, 
(3) For each x in So and each positive integer n select an so that (awjc)w =£ 0. 
(4) For each x in 50 select « and b so that orb is not nilpotent. 
(5) If R is a commutative domain, for each finite subset F in S0 choose a finite set 

E from P so that, in the ring generated by E and S0, the ideal generated by F is invertible 
and also principal if possible. 

(6) For each two finite subsets, say { « , , . . . , un} and {v{,. . . , vm} in M0 U N0, 
choose, if possible, elements af and bt from 7? so that 2<Z/W/ = Sfe/V/ =£ 0. 

In the above selection process at each step we chose just one finite (countable in step 
3) set of elements from R for each finite subset. As a result the ring S\ generated by 
S0 and the a's, Z?'s, c's, d's and £"s chosen in the steps above is a countable ring. Let 
M\ and N} be the S\-modules generated over S\ by X and Y respectively. We now 
inductively construct ring S„ and ^-modules Mn and JV77 for each positive integer n by 
repeating the above process relative to Sn-\, M„_,, and ^V„_i. Let S — U Q ^ , 
M = UO°M„andyV = UoNn. 

PROOF OF THE THEOREM. We have M ©N = ®^Sen. Also S is countable and M and 
N are generated over S by X and Y respectively. We claim M is S-indecomposable. 
Suppose M — A © B as an S-module. Since X is in M, P = RA + RB. Since P is 
P-indecomposable, 2a, w, = 2 ,̂-M,- ^ 0 for some ah bt in R and w, in A and v, in 5 . But, 
by step (6) of our construction, there are elements a\ and b\ in S such that 0 =£ Sa/w, 
= 2&/v/ and A H 5 i= 0, a contradiction. So M is S-indecomposable (if g is R-
indecomposable, Â  is also ^-indecomposable). 

We now verify the second part of the Theorem. We shall refer repeatedly to the steps 
in our Construction above. 

(a) This follows from step 1 with n = 1 and with y = 1 or 0 in R. 
(b) We just treat the left ideal case. Suppose y E J\I. By step 1 then y (£ RI. 

So RI ± RJ. 
(c) This follows from (b). 
(d) Suppose R is a prime ring and x and y are nonzero elements in S. Then 

xRy =t= 0 (see p. 164 ex. 10 in [1]). By step (2) then xSy ^ 0 and S is prime. Suppose 
R is local and x,y are non-units in S. By (a) above x and y are non-units in R and, 
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since R is local, x + y is a non-unit in R and also in S. Therefore S is local. Suppose 
R is semilocal. If / is a maximal ideal in S, then RIR is proper in R by step (b) and 
I CRIR CM ^Rfor some maximal ideal M in R. As a result / = M D S. Thus, if 
R has only a finite number of maximal ideals, so does S. 

(e) Let {Ik}, k E Â  be the set of maximal left ideals in R. By arguing as in (d) for 
left (instead of two-sided) ideals we see that the maximal left ideals in S are precisely 
the ideals Ik H S for k E K. If J(R) = 0, then 

j(S) = H (/* n s) = (H h) n s = j(R) n s = o. 

Suppose U(R) = 0 and x is a non-zero element in 5. The ideal RXR is not nil in R. By 
(4) SXS is not nil in S so £/(£) = 0. If N(R) = 0, then /? contains no non-zero left 
nilpotent ideal (see ex. 14 on p. 176 in [1]). Neither does S by step (3). So 
N(S) = 0. 

(f ) Suppose / is an ideal in S generated by a finite set F. If RI is invertible or principal 
in R, then / is invertible or principal in S by step (5). Also by (c) above S is Noetherian 
if R is. Now (f) follows from the definitions of the particular rings (as may be found 
in [4]). 

COROLLARY. Any ring R contains a countable subring S with properties (a)—(f) listed 
in the Theorem above. 

PROOF. Let S0 be the subring ofR generated by 1. Let S] be the subring of/? generated 
by So and elements selected from R as in steps (1)—(5) in the Construction above. 
Similarly construct S„ for n = 2 , 3 , . . . by building on Sn_ i. LetS = UQS„. Now apply 
the proof of the Theorem beginning with the second paragraph. 

EXAMPLE. Let R be the ring of real-valued continuous functions on the unit interval. 
R contains an ideal P which is an indecomposable projective /^-module which is not 
finitely generated (see p. 31 of [2]). By our theorem R contains a countable subring S 
and P contains a countable subset M such that M is an indecomposable projective 
S-module which is not finitely generated. 
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