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Mobile networks are universally used for personal communications, but also increas-
ingly used in the Internet of Things and machine-to-machine applications in order to
access and control critical services. However, they are particularly vulnerable to signaling
storms, triggered by malfunctioning applications, malware or malicious behavior, which
can cause disruption in the access to the infrastructure. Such storms differ from con-
ventional denial of service attacks, since they overload the control plane rather than the
data plane, rendering traditional detection techniques ineffective. Thus, in this paper we
describe the manner in which storms happen and their causes, and propose a detection
framework that utilizes traffic measurements and key performance indicators to identify
in real-time misbehaving mobile devices. The detection algorithm is based on the ran-
dom neural network which is a probabilistic computational model with efficient learning
algorithms. Simulation results are provided to illustrate the effectiveness of the proposed
scheme.

1. INTRODUCTION

In mobile communications, signaling refers to the message exchanges that occur between
mobile devices and a network to setup, maintain and release connections. It provides basic
functions such as mobility management, radio resource control (RRC), authentication,
accounting, etc., which form the control plane of the network. Recently, the number of
mobile devices and applications requiring constant access to the Internet has been grow-
ing exponentially, placing greater demands on the data and signaling infrastructures of
service providers. While operators benefit from such growth in data and billing-related
signaling, since it directly correlates to their increased revenues and can be handled effec-
tively through capacity engineering, they are struggling with RRC-based signaling storms
caused by malfunctioning applications, malware and malicious behavior. Such storms can
cause disruption in the access to the infrastructure, through sudden overload in the signaling
backbone of mobile networks [4,40] and potentially the wireless bandwidth of users, and may
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also deplete the battery power of mobile devices [21] and increase the energy consumption
of base stations and core networks (CNs) [36].

Mobile networks are also increasingly used in the Internet of Things (IoT) and machine-
to-machine (M2M) applications in order to access and control critical industrial and
commercial environments. As such they are a key part of our critical infrastructure which
can be compromised by these signaling storm effects. On the other hand, IoT and M2M
applications could also be responsible for degrading the performance of mobile networks,
due to the large number of devices to be supported that may act in a synchronized manner
inherent in signaling storms.

These and other challenges [5] require the development of new technical solutions to
make mobile networks more resilient and reliable. This is particularly the case with sig-
naling storms which are difficult to detect using traditional denial of service (DoS) defense
mechanisms [3,35,47,51,52], since they overload the control plane while leaving the data
plane mostly unaffected.

Thus, this paper introduces a signaling storm detection system based on the random
neural network (RNN) introduced by Gelenbe in [23]. The RNN is a probabilistic com-
putational model which was inspired by the spiking behavior of neurons, and which has a
well-developed mathematical theory [23,24,31] and efficient learning algorithms for recurrent
networks [25,33,38]. The RNN has been successfully applied to several problems in engineer-
ing and information sciences, including pattern recognition [9,10,30,34], classification [32],
image/video processing and compression [15–17,29,37], DoS attack detection [35,51,52], and
others that can be found in numerous reviews on the subject [26,27,61].

1.1. Contributions of the Paper

In this paper, we develop a supervised RNN-based approach for detecting mobile devices
that generate excessive RRC signaling, without directly monitoring the control plane itself.
In contrast to signaling-based techniques [19,28] which can be more effective but costly,
the present approach intercepts packets at the edge of the mobile network using standard
monitoring technologies. This offers the advantages of not requiring to decode lower radio
related layers, lack of network encryption, and fewer number of nodes to monitor [60].
Moreover, the algorithm relies mainly on timestamps and packet header information to
classify users, and does not require knowledge of the application generating a packet nor
its service type, thus eliminating the need to use a commercial deep packet inspection
tool which may result in considerable overhead. It also interacts with existing network
management systems to reduce computational overhead, storage requirements and false
alarm rate. The use of a supervised learning RNN is motivated by its capability of classifying
known patterns such as signaling storms whose characteristics and root causes are well
understood [4,5,21,40], and also its previous success in detecting traditional DoS attacks in
the Internet [35,52].

The rest of this paper is organized as follows. We discuss the characteristics and causes of
signaling storms, and review related work in Section 2. Section 3 provides a brief summary of
the RNN model as applied to our problem of distinguishing between normal and misbehaving
mobile devices. The core of the detection technique is presented in Section 4, including the
classification process, the choice of input features, and the parameters that can influence
the performance of the algorithm. In Section 5, we evaluate our detection mechanism using
data generated by a detailed discrete-event mobile network simulator [39,40]; we describe
the user and attack models, and present experimental results. Finally, we summarize our
findings in Section 6.
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2. BACKGROUND

2.1. The RRC Protocol

In mobile networks, the RRC protocol is used to manage resources in the radio access net-
work (RAN). It performs functions such as setup, configuration, maintenance and release
of radio bearers between the user equipment (UE) (i.e., mobile device) and the network,
and carries non-access stratum signaling to the CN for mobility, session and identity man-
agement. In order to perform these functions, the RRC protocol associates to each UE
a state machine in which different states have different amounts of radio resources and
power consumption levels. State promotions occur when a UE sends or receives traffic,
while state demotions are triggered by inactivity timers. The state machine is designed to
allow efficient use of available spectrum and battery power of UEs, by freeing up resources
when they are not being used, but the cost in terms of signaling load is paid during state
transitions.

Typically, there are at least two RRC states: idle and connected. In the idle mode, the
UE does not have a signaling connection with the network, consumes negligible amount of
energy, and its location in not known precisely by the network. Thus, traffic destined for
a UE in idle mode will require paging in order to locate the UE at the cell level. In the
connected mode, the UE has a signaling connection, its location is known at the level of a
single cell, and it can communicate at a data rate which depends on traffic load, quality of
service requirements, mobility, etc. There can be multiple sub-states within the connected
mode, depending on the mobile technology employed and the specific implementation of
each network operator.

Figure 1 shows two possible implementations of the RRC state machines in 3G/UMTS
and 4G/LTE systems, and the typical number of signaling messages exchanged within the
RAN for each transition. One can observe that promotions from idle to connected are
quite expensive in terms of signaling, thus motivating the introduction of sub-states in
the connected mode. In UMTS, there are usually three sub-states: a low-energy cell PCH
state which allows the UE to stay in the connected mode without being able to transfer
data, a low bandwidth cell FACH state, and a high bandwidth cell DCH state. In LTE,
the UE has the ability to go into short and long discontinuous reception (DRX) states
while in the connected mode, where it sleeps most of the time and periodically wakes up
to check if there is data to be transferred, with longer sleep periods in long DRX than in
short DRX.

(a) (b)

Figure 1. RRC state machines in UMTS and LTE, where the values on the arrows indicate
the typical number of signaling messages exchanged within the RAN for each transition.
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2.2. Causes of Signaling Storms

The vulnerability of mobile networks to deliberate signaling DoS attacks is not new, and
much work has been done to identify intrinsic characteristics of the networks’ normal oper-
ations that could be exploited, for example, paging [58], service requests [62] and RRC
[45,57]. However, such threats remained largely unsubstantiated, due to (i) the lack of
financial incentives for cyber-criminals to bring down the infrastructure that they use to
launch profitable attacks, and (ii) the difficulty of spreading malware onto a sizeable number
of devices before the proliferation of application marketplaces. This situation changed with
the advent of smart devices and applications, and many operators have since experienced
unintentional signaling storms that have the same effect as a DoS attack. Such storms occur
when a large number of mobile devices make successive connection requests that time-out
because of inactivity, triggering repeated RRC signaling to allocate and de-allocate radio
channels and other resources in the network.

Poorly designed mobile applications are one of the most common triggers of signaling
overloads [7] that lead to performance degradation and even network outages [18,22]. Such
applications constantly poll the network even when users are inactive in order to enable
continuous connectivity [50], user behavior measurement and advertisements [14]. A com-
mon issue with those “chatty”, signaling-intensive applications is that developers are not
familiar with the control plane of mobile networks, which prompted the mobile industry
to promote best practices for developing network-friendly applications [8,20,41,43]. Similar
problems have been reported with M2M systems which periodically transmit small amounts
of data [44,59], motivating the development of new standards for M2M communications [1].

However, industry guidelines for developers are not sufficient, since well-designed appli-
cations could also trigger a storm, when an unexpected event occurs in the Internet.
Examples of such events include outages in cloud services [12,55] and VoIP peer-to-peer
networks [13], where a large number of mobile devices attempt to recover connectivity
to the application servers, generating significantly more keep-alive messages [6] and an
unexpectedly high signaling load in the process.

In addition, signaling storms may occur as a by-product of malicious activity that is not
intended to cause a signaling DoS incident. For example, unwanted traffic in the Internet [56]
(e.g., port scans, spam campaigns, etc.) can create a storm upon reaching a mobile network,
which is possible because many operators [54,63] allow mobiles to be probed from the
Internet, by either assigning them public IP addresses, allowing IP spoofing, or permitting
device-to-device probing within the network. Large-scale mobile malware infections may
also trigger a storm, if the malware exhibit frequent communications as in premium SMS
diallers, spammers and adware which are among the top encountered threats on smart
devices [48]. This is confirmed by a recent analysis of mobile subscribers’ traffic in China [46]
which indicated a positive correlation between the frequency of signaling-intensive traffic
and malicious activities such as private data upload and billing fraud. Finally, signaling
storms may follow and hence prolong network outages from cyber-attacks, due to the large
number of user devices that will attempt to reconnect after the service is restored [19].

2.3. Prior Work on Storm Detection and Mitigation

Online detection of deliberate signaling attacks was first studied in [45], where connection
inter-setup times for each mobile are estimated from IP metrics in order to detect the
intention of a remote host to launch an attack. A general framework for anomaly detection
was presented in [13] based on time-series analysis and change detection algorithms. While
the goal of [13,45] is to identify large-scale events by aggregating and analyzing statistics
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from all hosts and mobile users, respectively, our approach aims to identify users that
are contributing to a problem, namely signaling overload, rather than detect the problem
itself. The work in [42] considered the detection of mobile-initiated signaling attacks via
a supervised learning approach, which monitors transmissions that trigger a radio access
bearer setup procedure, and extracts from the corresponding packets features relating to
destination IP and port numbers, packet size and response-request ratio. We utilize similar
attributes in our approach, but we do not assume knowledge of the effect that a packet
has on the control plane (i.e., whether it has triggered a connection setup procedure), thus
simplifying the deployment of our solution in operational networks. In a previous work,
[28], we developed a technique which directly monitors the control plane of each active
mobile device; it counts the number of successive signaling transitions that do not utilize
allocated bandwidth, and temporarily blocks devices that exceed a certain threshold to avoid
overloading the network. Although such a signaling-based approach can be more effective in
detecting and mitigating storms, it requires changes to network equipment and/or protocols
[19,49] which can be slow and costly to implement.

A number of commercial solutions also started to appear in response to recent incidents
of signaling storms, which can be classified into three groups. First, anomaly detection
and mitigation systems [19] such as [28] and the one presented in this paper. Second,
air interface optimization solutions which aim to increase the number of simultaneously
connected devices in the access network. Such solutions are constantly evolving with new
standards, specifications and proprietary admission/congestion control and scheduling algo-
rithms added all the time; our approach operates on top of and is complimentary to such
air interface technologies. Third, dedicated signaling infrastructures to handle the expected
growth in CN signaling due to policies, charging, mobility management and other new
services offered for the first time in LTE networks. However, it is expected that routing,
congestion management and load balancing in the CN will be less of an issue, with the
trend towards network functions virtualization that will enable dynamic resource scaling as
required by network load.

3. THE RNN

The RNN is a biologically inspired computational model, introduced by Gelenbe [23], in
which neurons exchange signals in the form of spikes of unit amplitude. In RNN, positive
and negative signals represent excitation and inhibition respectively, and are accumulated
in neurons. Positive signals are canceled by negative signals, and neurons may fire if their
potential is positive. A signal may leave neuron i for neuron j as a positive signal with
probability p+

ij , as a negative signal with probability p−ij , or may depart from the network
with probability di, where

∑
j [p

+
ij + p−ij ] + di = 1. Thus, when neuron i is excited, it fires

excitatory and inhibitory signals to neuron j with rates:

w+
ij = rip

+
ij ≥ 0, w−

ij = rip
−
ij ≥ 0,

where
ri = (1 − di)−1

∑

j

[w+
ij + w−

ij ].

The steady-state probability that neuron i is excited is given by:

qi =
Λi +

∑
j qjw

+
ji

λi + ri +
∑

j qjw
−
ji

,

https://doi.org/10.1017/S0269964816000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000140


DETECTING NETWORK-UNFRIENDLY MOBILES 519

where Λi and λi denote the rates of exogenous excitatory and inhibitory signal inputs into
neuron i, respectively.

A gradient descent supervised learning algorithm for the recurrent RNN has been
developed in [25]. For a RNN with n neurons, the learning algorithm estimates the n × n
weight matrices W+ = {w+

ij} and W={w−
ij} from a training set comprising K input-output

pairs (X,Y). The set of successive inputs to the algorithm is X = (x(1), . . . ,x(K)), where
x(k) = (Λ(k),λ(k)) are the pairs of exogenous excitatory and inhibitory signals entering each
neuron from outside the network:

Λ(k) = (Λ(k)
1 , . . . ,Λ(k)

n ), λ(k) = (λ(k)
1 , . . . , λ(k)

n ).

The successive desired outputs are Y = (y(1), . . . ,y(K)), where the kth vector y(k) =
(y(k)

1 , . . . , y
(k)
n ), whose elements y

(k)
i ∈ [0, 1] correspond to the desired output values for each

neuron. The training examples are presented to the network sequentially, and the weights
are updated according to the gradient descent rule to minimize an error function:

E(k) =
1
2

n∑

i=1

ai[q
(k)
i − y

(k)
i ]2, ai ≥ 0.

The update procedure requires a matrix inversion operation for each neuron pairs (i, j)
and input k which can be done in time complexity O(n3), or O(mn2) if m-step relaxation
method is used, and O(n2) for feed-forward networks.

4. THE DETECTION SYSTEM

Figure 2 shows the basic architecture of the packet-switched domain of mobile networks,
which consists of the following elements: the UEs; the RAN which is connected to the CN
through a backhaul network; the mobile gateway which allows packets to be exchanged
with external networks such as the Internet; and the operation and support system (OSS)
which provides network management functions such as monitoring, configuration, service
provisioning, etc.

Also shown in Figure 2 is the positioning of the proposed detection system within
the mobile network, which intercepts packets directed to/from the network gateway; in

Figure 2. The detection system and its interactions with the components of a mobile
network.
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3GPP standards, the user data transported over this interface are encapsulated in GTP-U
(a simple IP-based tunneling protocol) packets. The detector also utilizes information from
the OSS to reduce search space and optimize performance, and periodically produces a list of
anomalous users to the OSS for root cause analysis and mitigation. The detection algorithm
consists of three data processing stages: (i) user filtering and parameter selection based on
network configuration settings and key performance indicators (KPIs) related to signaling
load on various network components, (ii) feature generation and (iii) user classification with
a trained RNN model. For reasons that should become apparent, we describe these different
data processing steps in a logical order rather than the order in which they happen during
run time.

4.1. Online RNN Classification

The RNN-based algorithm monitors the activity of a set of mobile devices, specified
by the data filter, and calculates expressive features that describe various characteristics
of the users’ behavior. Time is divided into slots, each of duration Δ seconds, in which
summary statistics of several quantities related to the IP traffic of each user are collected.
The algorithm stores the most recent w set of measurements, and uses them to compute
the current values of the input features, that is, the features for time slot τ are computed
from measurements obtained for time slots τ, τ − 1, . . . , τ − (w − 1) so that the observation
window of the algorithm is W = wΔ. Let z(τ) denote a measured or calculated quantity for
time slot τ , then the ith input feature x

(τ)
i is obtained by applying a statistical function φi

of the following form:

x
(τ)
i = φi

(
z(τ), z(τ−1), . . . , z(τ−w−1)

)
.

Hence, by employing different operators φi on different statistics z stored over the obser-
vation window of w slots, it is possible to capture both instantaneous (i.e., sudden) and
long-term changes in the traffic profile of a user. In our experiments, we have applied a
number of simple statistical functions including:

• The mean and standard deviation of z across the entire window.
• An exponential moving average filter in which the current feature is computed as

x
(τ)
i = αx

(τ−1)
i + (1 − α)z(τ), where α is some constant 0 < α < 1 typically close to

1, with higher values discounting older observations faster.
• Shannon entropy which measures the uncertainty or unpredictability in the data;

it is defined as x
(τ)
i = −∑τ

t=τ−w−1 pz(t) log pz(t) , where pz(t) is the probability of
observing data item z(t) within the window, which can be estimated from the his-
togram of the data. Entropy is typically interpreted as the minimum number of bits
required to encode the classification of a data item, thus a small entropy indicates
deterministic behavior which is often associated with signaling anomalies [22,55].

• Anomaly score based on how close the measured quantities are to a range of values
considered to be suspicious.

Once the input features for a slot have been computed, they are fused using a trained
feed-forward RNN architecture such as the one presented in Figure 3 to yield the final
decision. The input neurons receive the features computed for the current time slot as
exogenous excitatory signals, while all exogenous inhibitory signals are set to zero. The
output neurons correspond to the probabilities of the input pattern belonging to any of two
traffic classes (i.e., attack or normal). The final decision about the traffic observed in the
time slot is determined by the ratio of the two output nodes, which is q14/q15 in the figure:
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Figure 3. The feed-forward RNN structure used for anomaly detection, with eight input
nodes, five hidden neurons and two output nodes corresponding to attack and normal traffic.
The learning algorithm processes the input training patterns in sequence and updates the
weights. The kth training set consists of a feature vector x(k) = (x(k)

1 , . . . , x
(k)
8 ) comprising

exogenous excitatory signals (Λ(k)
1 , . . . ,Λ(k)

8 ), and its classification y(k) = (y(k)
14 , y

(k)
15 ) which

is set to (1, ε) for attack and (ε, 1) for normal samples where ε � 0. All other exogenous
signals are set to zero.

it is classified as attack if the ratio is greater than 1 and normal otherwise. We have used
an implementation of the RNN provided in [2].

4.2. Feature Selection

Selecting highly informative features for any classification problem is one of the most impor-
tant parts of the solution. The features that we wish to use should capture the RRC signaling
dynamics of users, be easy to measure or calculate without high computational or storage
cost, and reflect both the instantaneous behavior and the long term trend of the traffic. For
each mobile under observation, we extract information related to inter-arrival times, lengths
and destination IP addresses of packets, which have been suggested previously [13,42,56]
as good indicators of signaling misbehavior. The specific features that we have used are
described below.

4.2.1. Inter-arrival Time. RRC signaling occurs whenever the UE sends or receives
packets following an inactivity period that exceeds an RRC timer. Thus, the volume of
traffic exchanged by a UE does not map directly into signaling load which is more influenced
by the frequency of intermittent transmissions. To capture this coupling between the data
and RRC signaling planes, we define a burst as a collection of packets whose inter-arrival
times are less than δ seconds, where δ is smaller than the RRC timers, typically in the order
of few seconds. Thus, for a sequence of packets whose arrival instants are {t1, t2, . . .}, we
group all packets up to the nth arrival into a single burst, where n = inf{i : ti − ti−1 > δ},
and then proceed in a similar manner starting from the (n + 1)th packet arrival. Note
that a burst may not necessarily generate signaling, even if it arrives after the time-out,
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due to potential network delays that may modify inter-arrival times of packets. However,
packets within a single burst are likely not to trigger any control plane messages, while
inter-arrival times of bursts will be correlated with the actual signaling load generated by
the UE. In this manner, we remove any bias regarding the volume of traffic sent or received
by the UE, and put more emphasis on the frequency of potentially resource-inefficient
communications.

The features based on the times between bursts are then calculated as follows. The
algorithm stores the mean and standard deviation of the inter-burst times in each slot
then, using the most recent w values, it computes (i) entropy of these average values, (ii)
moving average of the standard deviations and (iii) moving average of an anomaly score for
the average values computed based on the RRC timer T in the high bandwidth state. In
particular, the anomaly score a(z(t)) of the average inter-burst time in slot t is set to zero
when z(t) < T , reflecting the fact that such shortly spaced bursts may not have generated
many RRC transitions; it is high when z(t) is slightly larger than T , indicating potentially
resource-inefficient bursts; and it drops quickly when z(t) is few seconds larger than T . We
obtain this effect using for example a Pareto or gamma density functions that assert z(t)

must be greater than T − ε, but not too much greater, which can be controlled by adjusting
the parameters of the density function.

4.2.2. Packet Size. The packet size distribution for a normal device can be markedly
different from that of a device that runs a misbehaving application. For example, when
signaling storms occur due to unexpected events in the Internet such as cloud outages
[13,55], the client application attempts to reconnect to its servers more frequently, causing
significant increase in the number of TCP SYN packets sent by the user. This in turn
changes the randomness associated with the size of packets, and can be used to identify
misbehaving mobiles in the event of a storm. Our algorithm computes the average size of
packets sent by a UE within each slot, and evaluates a feature based on the entropy of the
most recent w measurements.

4.2.3. Burst Rate. Another obvious characteristic of signaling storms is the sudden
sustained rate acceleration of potentially harmful bursts generated by a misbehaving user.
Moving average of the burst rate per slot and entropy of the rates across the observation
window are used as features in order to capture, respectively, the frequent and repetitive
nature of nuisance transmissions. Furthermore, a misbehaving application may change the
traffic profile of a user in terms of the ratio of received and sent bursts (known as response
ratio), as in the case of the outage induced storm described above where many SYN packets
will not generate acknowledgments. Hence, we also use as a feature the mean of the response
ratios within the window of w slots.

4.2.4. Destination Address. The number of destination IP addresses for a normally
functioning mobile device can be very different from that of an attacker [42], whether the
attack originates from the mobile network due to a misbehaving application, or from the
Internet as in the case of unwanted traffic reaching the mobile network [56]. In the former,
the number of destination IP addresses will be very small compared to the frequency of
bursts, while in the latter this number is high. Thus, we calculate the percentage of unique
destination IP addresses contacted within each time slot, and use the average of the most
recent w values as a feature.
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4.3. User Filtering and Parameter Selection

Information about the “health” of network servers is typically available to mobile operators
in the form of KPIs, which can be fed to the algorithm to determine the users that should
be monitored (e.g., those attached to signaling overloaded parts of a network). Also, using
KPIs the detector can be switched off when signaling loads are below a certain threshold,
effectively eliminating the need to continuously analyze users’ traffic. In the following, we
summarize the parameters of the RNN algorithm and discuss how they should be selected
adaptively, based on both KPIs and RRC configurations, and also how the choice of each
parameter influences the performance of the detector:

• Slot size Δ: This defines the resolution of the algorithm and the frequency at which
classification decisions are made. It should be long enough for the measured sta-
tistical information to be significant, but not too long to make the algorithm react
slowly to attacks. In our experiments we set Δ = 1 min.

• Window size W = wΔ: This determines the amount of historical information to
be included in a classification decision. The choice of the window size presents a
trade-off between speed of detection and false alarm rate, since a small window
makes the algorithm more sensitive to sudden changes in the traffic profile of a user,
which in turn increases both detection and false alarm rates. This trade-off can be
optimized by adjusting W according to the level of congestion in the control plane,
with shorter windows for higher signaling loads to enable the algorithm to quickly
identify misbehaving UEs. The value of w used in our experimental results is 5,
but we also experimented with other values which confirmed the aforementioned
observations.

• Maximum packet inter-arrival time within a burst δ: This should be selected based on
the RRC timers, so that potentially resource-inefficient transmissions can be tracked.
In our simulations of a UMTS network, the timers in cell DCH and cell FACH states
are set to, respectively, T1 = 6s and T2 = 12s based on [53]. We have evaluated
different values of δ in 0.5min(T1, T2) < δ < min(T1, T2), which all led to similar
detection performance, but training time tends to drop as δ is increased within this
range. This is because the time between malicious transmissions in our training
dataset is slightly greater than min(T1, T2), so that the difference between attack
and normal traffic becomes more pronounced in the features as δ approaches this
value, leading to shorter training times. However, while large values of δ will reduce
computational overhead, they may result in the loss of valuable information due to
traffic aggregation.

5. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of our detection technique using the mobile
network simulator developed in [39,40]. We first present the traffic models that characterize
the normal user behavior, and two attack models that represent both malicious and misbe-
having UEs. Then we discuss the results of applying the algorithm on the dataset produced
by the simulator.

Since the impact of signaling storms on mobile networks has been analyzed extensively
in [4,21,40], the objective of the present simulation setup is to evaluate the performance
of our detection algorithm, and therefore only a small scenario has been considered. In
particular, we simulated 200 3G/UMTS UEs in an area of 2 × 2 km2 which is covered by 7
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base stations connected to a single radio network controller (RNC). The CN consists of the
SGSN and the GGSN (the mobile gateway) which is connected to 37 Internet hosts acting
as application servers, five of which for instant messaging (IM), and two are contacted by
the attacking UEs.

5.1. Model of the User

The user model consists of three popular mobile services that are active simultaneously in
order to create realistic traffic profiles. The model can also support a diurnal pattern for
UE behavior, where the UE is active for a certain duration every 24 h, and is inactive the
rest of the time during which the user does not generate or respond to traffic. This pattern
represents the day/night cycle of users, and can be varied from one user to another based
on a random distribution.

5.1.1. Web Browsing. The interactive web browsing behavior is based on the self-
similar traffic model described in [40] and assumes Zipf-like distribution for web server
popularity, which has been widely used in the literature since it was first suggested in [11].

5.1.2. Instant Messaging. IM applications are characterized by frequent, small data
transmissions and a long tail distribution representing messages with media rich contents
such as videos and photos. The IM application model consists of two distinct but related
parts: message generator and responder. Each UE generates messages to chosen destinations,
and also responds to received messages with a given probability. The message generator
works based on sessions and waves. A session represents the duration that the user is actively
generating messages, and consists of one or more waves where the messages are actually
sent. At each wave, the user generates and sends one or more messages, the number and
length of which are configurable with random distributions, to a single destination (mobile
user) chosen at random. The time between waves within a session, the session duration and
the time between user sessions are all given by random distributions. On the other hand, the
UE responds to each received message with a given probability, and this response behavior
is independent of message generation, and can occur both inside and outside of the user’s
IM sessions.

The final destination of a message can be another mobile in the same network (explicitly
simulated) or a mobile in another network; mobiles in different networks are represented
by one or more servers in the simulation, which act on behalf of these users. Regardless of
its final destination, each message passes through an Internet chat server, which forwards
the message to its final destination, that is, another mobile user. We simulate multiple
chat servers representing popular chat applications and services such as WhatsApp, Skype,
etc., and currently assume that each message belongs to a chat application that is chosen
uniformly at random from the available applications. The simulation model supports more
generic message-to-application assignment based on other random distributions.

5.1.3. Short Message Service. The SMS application operates in the same manner as
the IM application, but differs in that there is a single intermediate server within the
mobile network that handles all SMS messages for that network, that is, the SMSC server.
SMS messages are also different than IM messages in their types, which can be in-network
mobile, out-network mobile, premium, etc. In-network mobiles are naturally represented by
the UEs explicitly simulated, while all other destinations are represented by servers outside
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the simulated mobile network, with one or more servers representing each class. Therefore,
the type of a sent or received SMS can be inferred from its source and destination addresses
(numbers). The type of the SMS message the UE generates is chosen at random based on
the parameters of the SMS application. Note that while SMS traffic affects the signaling
behavior of users, it is not monitored by our detection system.

5.2. Attack Model

We consider two types of cell DCH attacks which overload the control plane by causing
superfluous promotions to the high bandwidth cell DCH state. The first attack is aggressive
in the sense that a malicious device knows when an RRC state transition occurs, and
launches the next attack once a demotion from high to low bandwidth states is detected.
To perform the attack, we assume that the attacker has inferred the values of the RRC
timers, and is monitoring the user’s activity in order to estimate when a transition occurs
so as to trigger a new one immediately afterwards. However, there could be an error between
the actual transition time and the estimated one, which we represent by an exponentially
distributed random variable with mean 2s. When the attacker “thinks” that a transition
has occurred, it sends a high data rate traffic to one of its Internet servers in order to cause
a promotion to the high bandwidth state. This model is used mainly for training the RNN.

The second attack type is based on a poorly designed mobile application or operating
system that sends periodic messages whenever the user is inactive, with the transmission
period set to be slightly larger than the cell DCH timer in order to increase the chances
of triggering state transitions. This behavior represents, for example, the case where a
pull mechanism is used to fetch updates periodically, and the update period happens to
“synchronize” with the RRC timer. However, unlike aggressive attackers, this behavior
does not guarantee the generation of signaling traffic for each data transfer, since (i) it
only starts when local user activity stops but there can be downlink traffic that may have
restarted the timer at the signaling server; and (ii) the data volume may not be large
enough to trigger a promotion to cell DCH state. In both cases, the periodic transmissions
may become completely out of sync with the RRC state machine, therefore not generating
significant signaling traffic.

The two distinct attack models allow us to represent both malicious and benign behav-
iors that may lead to a storm, but the first is well distinguishable and separable from the
behavior of a normal user, in terms of both temporal and traffic volume characteristics.
On the other hand, the second attack model captures the signaling behavior of legitimate
applications and operating systems that are much more similar to an “attack” rather than
to a “normal” behavior, but are difficult to detect from user plane dynamics. Thus we use
this model to test the performance of our algorithm.

5.3. Results

The RNN algorithm provides at the end of a time slot the probabilities that the input
features belong to an attack and normal behavior, and the final decision about the traffic
is then determined by the ratio of the two output nodes: It is classified as attack if the
ratio is greater than 1 and normal otherwise. Figure 4 shows the classifier output (top)
and the actual RRC state transitions (bottom) of a misbehaving UE as captured during a
simulation run. It can be observed that when the malfunctioning application is active, the
number of state transitions significantly increases, with most transitions occurring between
the cell FACH and cell DCH states in this attack scenario. This alternating behavior causes
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Figure 4. Classifier output (top) and state transitions (bottom) for a misbehaving UE.

excessive signaling load in the mobile network, while predominantly generating normal traf-
fic volume, rendering traditional DoS defense techniques ineffective. However, our detection
mechanism is able to track very accurately the RRC state transitions of the UE, and to
identify quickly when excessive signaling is being generated, despite the fact that it does
not directly monitor these transitions but rather infers them from the features that we
have described. One can also observe that the classifier’s output sometimes drops close to 1
during an attack epoch, which is attributed to other normal applications generating traffic
in those time instants, thus reducing the severity of the attack. As mentioned earlier, the
detection speed and tolerance to signaling misbehavior can be adjusted by modifying the
size of the observation window, which in this scenario is set to 5 min.

Figure 5 shows results when there is no attack, where the number of state transitions
in a given period are small and due to normal traffic generated and received by the UE. In
this case, the classifier does not generate any alarms regarding the signaling behavior of the
UE as one would expect.

Next we examine in Figure 6 how our algorithm performs when presented with a normal
user that generates moderately more state transitions than the average normal user in the
simulations. Interestingly enough, the classifier outputs a single alarm (out of 360 samples)
when the corresponding state transitions are indeed excessive. Since the detection algorithm
is supposed to be active only when there is a signaling overload condition, such classification
decisions may not always be considered as false alarms, as the goal would be to identify
users that are causing congestion, regardless of whether they are attacking deliberately or
not.

Finally, Figure 7 illustrates the accuracy of our classifier, namely the proportion of cor-
rect decisions (both true positives and true negatives) out of all test samples. The figure
shows results for 50 UEs, where each data point represents the average of 360 classifi-
cation decisions taken during the simulation experiment which lasted for 6 hours (note
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Figure 5. Classifier output (top) and RRC state transitions (bottom) for a normal UE.

Figure 6. Classifier output (top) and state transitions (bottom) for a heavy normal UE.

the resolution of the detector is Δ = 1 min). The evaluation is based on a strict criterion
whereby for each UE, we assume that if it generates at least 1 attack packet within a time
slot, then the corresponding output of the classifier should be greater than 1, otherwise a
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Figure 7. The accuracy of the RNN algorithm, measured as the fraction of correct
decisions over the activity period of 6 h, for 50 misbehaving UEs.

false classification decision is declared. The results indicate an accuracy between 88% and
98% with an average of 93% over the 50 test cases. This fluctuation can be attributed to the
fact that our algorithm does not classify an attack as such until few time slots have passed
(depending on the number of slots w within the window), and therefore misbehaving UEs
with many silent periods will produce higher false positives; fortunately, these less aggres-
sive UEs will generate lower signaling load. In fact, the fraction of normal instances that
have been mistakenly classified as attack (false positive rate) is zero for all but one case,
while the fraction of attack instances that have been correctly identified (true positive rate)
is on average 90% which can be improved, at the cost of higher false positives, by reducing
the window size W .

6. CONCLUSIONS

This paper proposed an online approach for detecting mobile devices that contribute to
signaling overload, based on the RNN [23,25]. The method relies on the analysis of data
packets traversing the mobile CN, which can be performed using standard traffic monitor-
ing tools, in order to infer the signaling dynamics of users. This offers the advantages of
not requiring to decode/decrypt lower control plane layers, and fewer number of nodes to
monitor. In the algorithm, summary statistics about the behavior of each observed mobile
device are collected and stored in a moving window at fixed time intervals (slots), from
which a number of features are calculated to capture both sudden and long term changes
in the user’s signaling behavior. The features for the most recent time slot are subsequently
fused using a trained RNN to produce the final classification decision. Using a discrete-event
mobile network simulator, we have shown that our technique achieves a very high detec-
tion rate with almost zero false alarms. The proposed approach is also flexible, providing
a number of parameters to optimize the trade-off between detection speed, accuracy and
overhead, based on signaling overload conditions in the network.
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