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Ophélia Fabre1,2, Simon Prunet1,3 and Jean-Philippe Uzan1,3

1 Institut d’Astrophysique de Paris,
98 bis boulevard Arago, 75014, Paris, France
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9 avenue Charles André, Saint-Genis Laval, F-69230, France
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Abstract. The global shape, or topology, of the universe is not constrained by the equations of
General Relativity, which only describe the local universe. As a consequence, the boundaries of
space are not fixed and topologies different from the trivial infinite Euclidean space are possible.
The cosmic microwave background (CMB) is the most efficient tool to study topology and test
alternative models. Multi-connected topologies, such as the 3-torus, are of great interest be-
cause they are anisotropic and allow us to test a possible violation of isotropy in CMB data. We
show that the correlation function of the coefficients of the expansion of the temperature and
polarization anisotropies in spherical harmonics encodes a topological signature. This signature
can be used to distinguish an infinite space from a multi-connected space on sizes larger than
the diameter of the last scattering surface (DLS S ). With the help of the Kullback-Leibler diver-
gence, we set the size of the edge of the biggest distinguishable torus with CMB temperature
fluctuations and E-modes of polarization to 1.15 DLS S . CMB temperature fluctuations allow us
to detect universes bigger than the observable universe, whereas E-modes are efficient to detect
universes smaller than the observable universe.

Keywords. cosmic microwave background, methods: statistical, topology, Kullback-Leibler di-
vergence, detectability

1. Introduction
In the standard model of cosmology, the universe is described by a 6-parameter Λ-

CDM model. The universe is assumed to be isotropic, homogeneous and Gaussian at
very large scales. These properties are expected to be found in the CMB. The CMB is
emitted from a sphere all around us, the last scattering surface (of diameter DLSS ). The
last scattering surface is the limit of the observable universe. By studying the CMB,
via its temperature and polarization anisotropies, we can extract information about the
properties of our universe. This work used the Healpix package and CAMB software.

CMB. The most convenient way to work with the CMB is to project its temperature
and polarization fluctuations on the spherical harmonic basis to get the T�,m , E�,m and
B�,m coefficients (see Hu & White 1997). These coefficients arise from initial conditions
in the primordial universe to which a transfer function, describing the local perturbation
(Sachs-Wolfe, ISW, Doppler), is applied and finally the eigenmodes of the Laplacian of the
space. The E-modes are generated by scalar, vector and tensor perturbations whereas B-
modes are generated by vector and tensor perturbations. In Planck results XXII (2013),
the limit of the tensor-to-scalar ration r evaluated with the Planck temperature data is
found to be r < 0.11 with a 95% C.L. More recently, the first detection of B-modes in the
CMB by the BICEP2 collaboration set r = 0.20+0.07

−0.05 (BICEP2 2014). As a consequence,
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even if B-modes are supposed to take part in the CMB fluctuations, their contribution
is sub-dominant compared to E-modes. That is why in the remaining part of the study,
we will only consider E-modes as in Riazuelo et al. (2006). Then, we use the covariance
matrix (C�m,�′m ′) divided in 4 blocks CX Y

�m,�′m ′ =< X�m Y ∗
�′m ′ >, with X,Y ∈ {T,E}. For

an isotropic space, each covariance matrix reduces to a pure diagonal matrix, CX Y
�m,�′m ′ =

δ��′δmm ′CX Y
� , where CX Y

� is the power spectrum.
Topology. The topology is the global shape of the universe and it is not constrained by

General Relativity, which is a set of differential equations that describes space locally, via
the metric, but not the boundary conditions. That is why for the same metric, different
topologies are possible. The standard model of cosmology assumes an isotropic infinite
universe, but some anomalies, hints of the violation of the global isotropy, have been
discovered in the WMAP data (Bielewicz et al. 2004). That is why multi-connected flat
spaces have been considered (Riazuelo et al. 2004a, Riazuelo et al. 2004b) because they
are anisotropic models of flat universes. A complete review of their characteristics can
be found in Lachieze-Rey & Luminet (1995), Levin (2002).

Multi-connected spaces are anisotropic and the covariance matrix of an isotropic space
is purely block-diagonal. That is why it is very important to take into account the full
covariance for any topological study. The restriction to the power spectrum is not enough
because topological information will consequently be lost. As the CMB is emitted from
the last scattering surface, one could imagine that any search of topology would not be
able to detect a topology bigger than the observable universe. However the correlations
between the modes inside the observable universe and outside should help us extracting
information above the last scattering surface limit. That is why we looked how far we
can see a topology beyond the observable universe, and we illustrate here this analysis
with the example of the cubic 3-torus (see Fabre et al. 2013).

2. The Kullback-Leibler divergence DKL

Kullback-Leibler divergence. We would like to compare two theories that predict that
the coefficients of the expansion of the temperature anisotropies in spherical harmonics,
a�m , are Gaussian and satisfy 〈a�m a∗

�′m ′〉1 = C
(1)
��′mm ′ = C

(1)
� δ��′δmm ′ for the isotropic

model and 〈a�m a∗
�′m ′〉2 = C

(2)
��′mm ′ for the non-trivial topology, where the ensemble aver-

age are taken for each theory respectively. Such a comparison can be performed in terms
of the Kullback-Leibler divergence (Kullback) for two probability distribution functions
p1 and p2 defined by

DKL(p1 ||p2) =
∫

p1(x) ln
[
p1(x)
p2(x)

]
dx. (2.1)

This divergence is the expectation value of ln(p1/p2) with the ensemble average related
to p1 . Due to the Gibbs inequality, DKL is always positive and equal to zero if and only if
p1 = p2 . In terms of information theory, DKL(p1 ||p2) quantifies the amount of information
lost when the data (p1) is represented by the model (p2). Comparing any multi-connected
space (2) with the Euclidean trivial space (1) is interesting because the latter has a
rotationally invariant covariance matrix. Consequently the Kullback-Leibler divergence
does not depend on the relative orientation of the two spaces and thus quantifies how
much information “separates” model 2 from model 1. Furthermore the flat Euclidean
space is the most probable topology given previous studies. It is important to see if a
deviation from it easily can be detected. When working with a 3-torus whose edge bigger
than DLSS , DKL(1||2) is obviously close to zero. The main interest of this approach is
that, unlike the circles-in-the-sky method (see Cornish et al. 1998), one can measure a
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Figure 1. Kullback-Leibler divergence of a trivial infinite isotropic Euclidean space compared to
a cubic 3-torus in function of the size L of the edge of the torus in units of DLS S . The black line
is the threshold of detection above which the divergence should be in order to detect a 3-torus
from a Euclidean space. The green dotted line is the contribution of the temperature fluctuations
only, the blue dotted line is the contribution of the E-modes polarization fluctuations only and
the black line is taken into account both temperature and polarization fluctuations.

distance even for spaces with a size larger than DLSS . Furthermore, the Kullback-Leibler
divergence is not affected by instrumental noise or galactic masking and the small scales
only improve the detection of universes smaller than the observable universe, which is
very interesting computationally speaking (see Fabre et al. 2013 for more details).

Detection threshold. Let us introduce the Bayes factor B12 = P1 (d|M 1 )
P2 (d|M 2 ) . If B12 > 1

(resp. B12 < 1) it represents the increase (resp. decrease) of the credence in favour of
model 1 (M1) versus model 2 (M2) given the observed data (see Trotta 2008). It gives the
factor by which the relatives odds between the two models have changed after taking into
account the data. The data are the a�m in this experiment. If we take into account formula
(2.1), we have DKL(1||2) = 〈ln(B12)〉1 . There is thus a direct link between the Kullback
divergence and the Bayes factor. The Jeffrey scale, usually used to interpret the Bayes
factor, is not modified if we consider 〈ln(B12)〉1 instead of ln(B12). As a consequence we
obtain the same levels of significance, with a threshold of detectability (represented in
black dotted line in Fig.1) for DKL = 1. This threshold of detectability quantifies the level
at which we can distinguish a torus topology from the isotropic model. If DKL < 1, the
result is inconclusive and the torus topology cannot be distinguished from a Euclidean
space.

3. Results and discussion
Results. The three DK L curves decrease as the size of the 3-torus increase which is

logical since we are getting close to an infinite isotropic universe. There is also a change
of slope at L = DLSS (red vertical line in Fig. 1), especially for the temperature curve.
It is because we are crossing the last scattering surface, i.e. the limit of the observable
universe, and losing an important amount of information. It appears that the biggest
distinguishable 3-torus has an edge of size 1.15 DLSS given by the temperature fluctu-
ations contribution only. Similar results can be found in Ben-David et al. (2012) with
other topologies. With the E-modes polarization contribution only, the biggest distin-
guishable torus is only of size 1.04 DLSS . The CMB temperature fluctuations are the
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best to constrain big universes and CMB E-modes polarization fluctuations are very ef-
ficient to constrain universes smaller than the last scattering surface. There are similar
results in Riazuelo et al. (2006), Bielewicz et al. (2011) where it was noticed that the
circle-in-the-sky method (only adapted to universes smaller than DLSS ) is more efficient
with polarization data. Nonetheless, it was only about the efficiency of the circle-in-the-
sky method itself and not about the influence of the size of the space. Using of both
temperature and polarization data will improve the detectability around 0.9 DLSS .

Discussion. One could object that the B-modes were not taken into account in our
study but in addition to our explanation in Section 1, we can cite Kunz et al. 2008:
gravitational waves only add a noise-like like contribution and lower the detectability of
topologies. Multi-connected topologies have not been detected yet in CMB data. On the
one side, in the Planck paper on cosmology (Planck results XXVI 2013), with CMB tem-
perature data only, no back-to-back pairs of circles of correlation was found. Nevertheless
it was possible to constrain the lower spatial dimension to Lmin = 0.94 DLSS at the 99%
C.L. On the other side, the likelihood maximization analysis performed was unable to
make any decisive detection: there is only a faint hint of a 3-torus universe bigger than
the observable universe, but without any statistical significance. That is why we can
consider that the Planck E-modes data will only improve constraints on small universes,
pushing the actual Planck constraint on the lower boundary of the size of the universe
Lmin =0.94 DLSS closer to DLSS . Furthermore, although the isotropy anomalies arising
from the WMAP data are also found in the Planck data, they seem to be fainter.

4. Conclusion
We present a test of cosmology beyond the standard model, with an exploration of a

possible violation of the isotropy of the CMB with the help of a multi-connected topology,
the cubic 3-torus. The size L∗ of the edge of the biggest distinguishable 3-torus was found
to be equal to 1.15 DLSS . The CMB temperature fluctuations are the best tool to study
topologies bigger that the observable universe whereas E-modes are more efficient to
study smaller universes. As a consequence the joined contribution of temperature and E-
modes fluctuations will not be helpful to detect a multi-connected universe of size bigger
than DLSS , but only to better constrain small universes.
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