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Abstract. In this paper we study – for a semistable scheme – a comparison map between its
log-syntomic cohomology and thep-adic étale cohomology of its generic fiber. The image can be
described in terms of what Bloch and Kato call the local points of the underlying motive. The results
extend a proven conjecture of Schneider which treats the good reduction case. The proof uses the
theory of logarithmic schemes, some crystalline cohomology theories defined on them and various
techniques inp-adic Hodge theory, in particular the Fontaine–Jannsen conjecture proven by Kato
and Tsuji as well as Fontaine’s rings ofp-adic periods and their properties. The comparison result
may become useful with respect to cycle class maps.
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0. Introduction

For a primep let K be a finite extension ofQp and letX be a smooth projective
variety overK. LetX := X×K K, whereK is an algebraic closure ofK. Consider
the motiveHi(X)(r), wherei andr are integers and(r) denotes ther-fold Tate-
twist. We defineV to be thep-adic étale cohomologyHi(X,Qp(r)) together with
its Gal(K/K) =: GK -action. Whenp > 3 andX has good reduction, i.e., if there
exists a smooth proper modelX of X over the ring of integersOK , then Fontaine
and Messing and Kato were able to construct a canonical mapHi+1

syn (X, sQp (r))→
Hi+1

et (X,Qp(r)) from the syntomic cohomology top-adic étale cohomology.
Assuming thatX is smooth and projective we have, fori 6= 2r − 1, the iso-

morphism g: Hi+1
et (X,Qp(r))

∼=→H 1(G, V ) by a weight argument and the
Hochschild–Serre spectral sequence.

LetH 1
f (GK, V ) := ker(H 1(GK, V )→ H 1(GK,Bcrys⊗ V )). HereBcrys is the

ring of p-adic periods constructed by Fontaine. Ifi 6= 2r − 1,2r, Schneider’sp-
adic points conjecture predicts the following commutative diagram with vertical
isomorphisms.
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190 ANDREAS LANGER

Hi+1
syn (X, sQp(r))

⊂ - Hi+1
et (X,Qp(r))

H 1
f (GK, V )

∼=
?

⊂ - H 1(GK, V )

g
?
∼=

This provides a very nice alternative description of the groupH 1
f which can be

interpreted as the group ofp-adic points of the motiveHi(X)(r) (compare [BK]
and [S], Sect. 1).

The conjecture has been proven in the following cases:

– K/Qp unramified andi 6 r < p − 1 (joint work by S. Saito and the author
[L-S], Sect. 6),

– more generally forp > 2, and no restriction on the ramification by Jan Nekovář
[Ne].

The purpose of this paper is to study a semistable analogue of this conjecture. This
was suggested to me by K. Kato and S. Saito. Now letX have semistable reduction,
i.e., there exists a regular proper modelX ofX such that the closed fiberY of X is a
reduced divisor with normal crossings inX. Equivalently,X is étale locally given
by SpecOK[T1, . . . , Td ]/(T1 . . . Tr − π), whereπ is a uniformizing element of
OK . Let s log′

n (r) be the log-syntomic complex on(X)et as defined by Kato ([Ka4],
Sect. 5) and Tsuji ([Tsu], Sect. 2.1), using the construction ‘1− p−rϕ’ for r < p,
whereϕ is the Frobenius and extended by Tsuji to allr. Tsuji defines a second

log-syntomic complex̃s log
n (r) via the mappr − ϕ ([Tsu], Sect. 2.1). The definition

of the complexes will be given in Section 1. Kato and Tsuji define canonical maps

s̃
log
n (r)

ε1- s log′
n (r)

ε2- i∗i∗Rj∗Z/pn(r),

wherei: Y ↪→ X, j : X ↪→ X are the canonical inclusions. By ([Tsu] (2.1.2)), the
kernel and cokernel ofε1 is killed bypr , thusε1 induces a canonical isomorphism

H
j

naive(X, s̃
log
Qp (r))

∼=- H
j

naive(X, s
log′
Qp (r)),

where the naive cohomology is obtained by taking inverse limits and tensoring
withQp. Due to an exactness problem that occurs when passing toQp-coefficients
in various long exact cohomology sequences, we have to consider continuous log-
syntomic cohomology

H
j
cont(X, s̃

log
Qp (r)) := Hj

cont(X, s̃
log
Zp (r))⊗Zp Qp,

wheres̃ log
Zp (r) is considered – via the projective system(s̃ log

n (r))n – as a complex of
Zp-sheaves that live in a suitable derived category ofZp-sheaves. For details, we
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LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 191

refer the reader to ([E]). Important for us is the fact that the continuous cohomology
sits in a short exact sequence

0 → lim1
←−
n

H j−1(X, s̃
log
n (r))⊗Zp Qp → H

j
cont(X, s̃

log
Qp (r))

→ H
j

naive(X, s̃
log
Qp(r))→ 0.

Of course, the same construction works fors log′
n (r) andε1 induces an isomorph-

ism H
j
cont(X, s̃

log
Qp (r))

∼= H
j
cont(X, s

log′
Qp (r)). In the following, we will just write

Hj(X, s
log
Qp (r)) := H

j
cont(X, s

log
Qp (r)) to denote one of the twoQp-vector spaces.

Lemma 1.5 and the proof of the Theorems will show that both cohomology groups
will work. ε2 induces a canonical map

Hi+1(X, s
log
Qp(r))→ Hi+1

naive(X, s
log
Qp (r))

ε2- Hi+1
et (X,Qp(r)).

Assuming thatHi+1(X,Qp(r))GK = 0, the Hochschild–Serre spectral sequence
provides a mapα: Hi+1(X, s

log
Qp(r)) → H 1(GK, V ) and one may ask what is the

image of this map. Kato and Saito suggested that a good candidate for Imα is
H 1
g (K, V ) in the sense of Bloch–Kato [B-K], i.e.,

H 1
g (K, V ) = ker(H 1(K, V )→ H 1(K,BdR ⊗ V ).

After an analysis of the semistable situation it turns out that a good formulation of
a semistable analogue of thep-adic points conjecture is given as follows

CONJECTURE.LetX andα be as above and assume thatHi+1(X,Q`(r))GK =
0= Hi(X,Q`(r))GK for all primes`. ThenIm α = H 1

g (K, V ).

LetDi = Hi
log crys((Y,M)/(W(k),W(L)),O

crys)⊗W K0 be theith log-crystalline
cohomology (⊗K0) of the closed fiberY , equipped with an action of the
monodromy operatorN and the Frobeniusϕ. (K0 is the quotient field of the Witt
ring W .) We will also consider the log-crystalline cohomologyHj((Y,M)/Spec
Wn〈t〉, L),O

crys
n ) which is a module overWn〈t〉, the DP-envelope of the closed

immersion SpecWn ↪→ SpecWn[t]. We will give the precise definition in Sec-
tion 2 and only note here that it is important in the construction of the monodromy
operator and in the context of semistable Fontaine–Laffaille theory that was studied
by C. Breuil ([Br]). Throughout the paper we will deal with the following technical
assumption(∗) that is crucial for the existence of a certain exact cohomology
sequence (2.5) and Lemma (2.6).

The projective system(H j((Y,M)/SpecWn〈t〉,L),Ocrys
n ))n

satisfies the Mittag− Leffler condition.
(∗)
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192 ANDREAS LANGER

For j 6 p − 2 andK/Qp unramified this follows from the works of C. Breuil.
More precisely, he showed that the cohomology groups

Hj((Y,M)/SpecWn〈t〉,L),Ocrys
n )

areWn〈t〉-modules of finite length forj 6 p−2, hence(∗) holds (compare ([Br]),
Corollary (2.2.3.3) and Theorem (2.3.2.1)). Once the restrictive assumptions in
Fontaine–Laffaille theory can be removed one can expect(∗) to hold in general.
As the main result of this paper, we will prove the following theorem:

THEOREM 0.1. Let p be a prime andK a finite unramified extension ofQp.
Assume thati 6 p−3 or that the condition(∗) holds forj = i, i+1. If (Di)

N=0
ϕ=pr =

0= (Di+1)
N=0
ϕ=pr , thenHi+1(X,Qp(r))GK = 0 and Im(α) = H 1

g (K, V ).

Here(Di)
N=0
ϕ=pr means the eigenspace where the Frobenius acts as multiplication by

pr in the kernel of the monodromy operator.

Remarks.(1) TheBst -comparison isomorphism between the log-crystalline co-
homology andp-adic étale cohomology (proven by Kato [Ka4], Sect. 6 and Tsuji
([Tsu], Theorem 4.4) implies thatHi+1(X,Qp(r))GK is contained in(Di+1)

N=0
ϕ=pr .

ThereforeHi+1(X,Qp(r))GK = 0 is zero by our assumption and the mapα is
well-defined.

(2) Thep-adic and̀ -adic monodromy conjecture imply that the vanishing as-
sumptions in the above conjecture are satisfied whenr < 0 or r > (i/2) + 1.
A nontrivial example where these assumptions also hold is the motiveH 2(X)(2)
whereX is the self-product of a Tate-elliptic curve (soi = r = 2). Further-
more Mokrane’s Conjecture about the coincidence of the weight and monodromy
filtrations on log-crystalline cohomology ([Mo], Conj. 3.27, proven for curves
and surfaces [Mo], Sect. 5 and 6) that I consider as part of thep-adic mono-
dromy conjecture imply that the Hasse–Weil zeta function can be computed using
log-crystalline cohomology, compare ([Mo], Thm. 6.3.3). This implies that the
conditions

(i) (Di)
N=0
ϕ=pr = 0;

(ii) Hi(X,Q`(r))GK = 0 for all primes`;

are equivalent (compare the discussion in [J1], p. 348).

So we obtain

COROLLARY 0.1.1. Thep-adic and`-adic monodromy conjecture imply the
semistablep-adic points conjecture, ifK is unramified overQp andi 6 p − 3.

COROLLARY 0.1.2. The conjecture holds ifdimX 6 2, p > 5 andK/Qp is
unramified.
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LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 193

Using methods that are similar to those developed by Perrin-Riou ([PR], Sect. 2.2)
in her study of the Iwasawa-theory of local Galois representations we will also
compute the kernel ofα.

THEOREM 0.2. Let the assumptions be as in Theorem(0.1). Then kerα is
canonically isomorphic to the cokernel of the mappr−1 − ϕ, acting on
coker(N : Di−1→ Di−1). Furthermore there is a canonical surjectionη: kerα �
H 2(GK,H

i−1(X,Qp(r))). If the reduction ofX is ordinary in the sense of([H1],
1.9) thenη is an isomorphism.

The paper is organized as follows:
After a review of some notations and definitions of logarithmic algebraic geo-

metry introduced by Kato, Fontaine and Illusie we will prove Theorem (0.1) in
the second paragraph. An important step in the proof is a relation between the
crystalline cohomologyHi((X,M)/W,O

crys
Qp ) that appears in the definition of the

log-syntomic cohomology (hereW is endowed with the trivial log-structure) and
the log-crystalline cohomologyDi (more preciselyDi ⊗ K̂0〈t〉, whereK̂0〈t〉 =
K0 ⊗W Ŵ 〈t〉 and Ŵ 〈t〉 is thep-adic completion of the DP-envelope ofW [t]).
Even though this crystalline cohomology is ‘big’ compared toDi, its eigenspaces
under the Frobenius are ‘small’, i.e., finite-dimensionalK0-vector spaces. Another
tool is some Galois descent arguments applied to certain exact sequences in terms
of the rings ofp-adic periods constructed by Fontaine and theBst -comparison
isomorphism between log-crystalline cohomology andp-adic étale cohomology
(proven by Kato and Tsuji). The assumption onDi is needed to assure that the
exponential map of Bloch–Kato maps ontoH 1

f . This will imply thatH 1
f is actually

contained in the image ofα. The assumption onDi+1 is used to show that the
image ofα is contained inH 1

g . To prove the surjectivity ontoH 1
g we combine Bloch

and Kato’s local Tate duality with Poincaré duality on log-crystalline cohomology
(proven by Hyodo). Then Theorem (0.2) will be proven in the third paragraph.
Finally in the last paragraph we will consider the special casei + 1 = 2r, which
we had to exclude in Theorem (0.1) and (0.2) for weight arguments. Of course, it
is of special interest when we want to look at cycle class maps.

1. In this section we recall some basic definitions of logarithmic algebraic geometry
that can be found in the papers of Kato [Ka3], [Ka4] and Hyodo and Kato [H-K]
and will be needed later.

Let Z be a scheme. All subsequent sheaves are taken with respect to the étale
topology. A pre-logarithmic structure onZ is a sheaf of monoidsM onZ together
with a multiplicative morphisma: M → OX, sending 1 to 1(M, a) is a logarithmic
structure whena induces an isomorphisma−1(O∗X) ∼= O∗X. Then(Z,M) is called a
logarithmic scheme. There are natural notions of morphisms between logarithmic
schemes, log-structures associated to pre-logarithmic structures, direct and inverse
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194 ANDREAS LANGER

images of log-structures with respect to a morphismf : Z1 → Z2. The following
examples are very important.

(1.1a) MZ = O∗Z with the canonical inclusionO∗Z ⊂ OZ. This is called the
trivial log-structure onZ.

(1.1b) LetX be a semistable scheme overOK as defined in the introduction.
LetM = MX = OX∩j∗O∗X ↪→ OX, wherej : X ↪→ X is the inclusion
of the generic fiber. This is called the canonical log-structure onX. This
notion generalizes to reduced normal crossing divisors on Noetherian
regular schemes. We can apply this definition to SpecOK itself and get
the canonical log-structureN on SpecOK .

(1.1c) LetP be a monoid together with a homomorphismn: P → 0(Z,OZ).
Then we can consider the log-structure, associated to the pre-log-
structurePZ → OZ, induced byn (wherePZ is the constant sheaf with
values inP onZ). Example (1.1b) is locally of this type: If́etale locally
X = SpecOK [T1, . . . , Td ]/ (T1, . . . , Tr − π), then consider the pre-
log-structure defined byNr → 0(X, OX), (ni)→ ∏

i T
ni
i , M = MX,

defined in (1.1b) is the associated log-structure onX. The log-structure
N on SpecOK is induced byN→ OK , 1 7→ π .

A log-structureM onZ is called fine, if étale locally there is a finitely generated
monoidP and a homomorphismh: PZ → OZ, such thatM is isomorphic to the
log-structure associated to the pre-log-structure(PZ, h). Of course Example (1.1b)
is of this type.

In the following all morphismsf : (Z1,M1) → (Z2,M2) will be morphisms
between schemes with fine log-structures. There are notions off to be

– a closed immersion ([H-K], (2.8));
– an exact closed immersion ([H-K], (2.8));
– a (log-)étale morphism ([H-K], (2.9));
– a (log-)smooth morphism ([H-K], (2.9));
– an integral morphism ([H-K], (2.10));
– a (log-)syntomic morphism ([Ka4], (2.5)).

We can provide examples for these morphisms by using Example (1.1b): The
morphism(X,M)→ (SpecOK,N) is log-smooth and integral ([H-K], 2.13.2). It
induces a log-smooth morphism in the closed fibers(Y,M1)→ (Speck,N1)where
M1, N1 are the inverse images with respect to the closed immersionY ↪→ X, Spec
k ↪→ SpecOK . If SpecOK is equipped with the trivial log-structure, then the
semistable schemeX induces a log-syntomic morphism(X,M) → SpecOK . In
particular(X,M) is (log-)syntomic overW = W(k), the Wittring of the residue
field ofOK .

Let (T , L) be a scheme with a fine log-structure such thatOT is killed by some
positive integer and assume thatT is endowed with aPD (= divided power) ideal.
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LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 195

For a scheme with an integral log-structure(X,M) over(T , L), we have the crys-
talline site((X,M)/(T ,L))crys ([H-K], 2.15) and can consider its cohomology with
respect to the structure sheafOX/T . LetWn be the ring of Witt vectors of length
n and denote byWn(L) the log-structure associated to 17→ 0 as a morphism
of monoidsN → Wn on Wn. We have closed immersions Speck → SpecWn

and (Speck,N1) 7→ (SpecWn,Wn(L)), where in the first immersion we con-
sider trivial log-structures. LetX be a semistable scheme with closed fiberY

as in Example (1.1b) and letXn = X ⊗ Z/pn. Then we have crystalline sites
((Xn,Mn)/SpecWn)crys, ((Y,M1)/SpecWn)crys, ((Y,M1)/(SpecWn,Wn(L)))crys,
whereMn is the inverse image ofM and in the first two sites, SpecWn is en-
dowed with the trivial log-structure. In particular we recover the log-crystalline
cohomology

Di := lim←−
n

H i((Y,M1)/(SpecWn,Wn(L)),O
crys)⊗W K0

in the introduction, whereK0 is the quotient field ofW(k). Let U be the open
subscheme ofY which is smooth overk, u: U ↪→ Y . We recall the notion of a de
Rham–Witt complexWnω

·
Y on (Y )et which is a certain subcomplex of the graded

differential algebrau∗Wn�
·
U whereWn�

·
U is the usual de Rham–Witt complex,

compare ([H-K], 1.1). By Proposition (1.5) in [H-K] we have an exact sequence of
complexes

0 - Wnω
·
Y [−1] - Wnω̃

·
Y
- Wnω

·
Y
- 0

a 7−→ aθ, θ 7−→ 0, (1.2)

whereWnω̃
·
Y is a modified de Rham–Witt complex, defined as a certainWn(OY )-

subalgebra of the graded diff. algebrau∗(Wn�
·
U)[θ]/θ2, whereθ is an indetermin-

ate in degree one satisfyingθa = (−1)aθ for a ∈ u∗Wn�
a
U and dθ = 0.

The connecting homomorphism of (1.2) defines the monodromy operatorN in
the log-crystalline cohomology, using Theorem 4.19 in [H-K]. In the proof of the
Theorem we will also use an alternative description of the exact sequence (1.2) via
crystalline complexes.

For a logarithmic scheme(Z,M) that is syntomic overW , letZn = Z ⊗ Z/pn
andMn the log-structure onZn induced byM. In [Ka4] Kato defines a complex
s

log′
n,z (r) in Det(Zn) via embedding systems into schemes(Zi,Mi) that are log-

smooth overW and have an action of the Frobenius. We do not give this definition
here but refer to an alternative description ofs

log′
n,z (r) that Kato uses in his paper

([Ka4], p. 286) and that is based on Theorem 1.7 in [Ka2]:

DEFINITION 1.3. Letr < p. Thens log′
n,z (r) is defined to be the mapping fiber of

Ru(Zn,Mn)/Wn∗(J
[r]
Zn/Wn

)
1−p−rϕ- Ru(Zn,Mn)/Wn∗(OZn/Wn),
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196 ANDREAS LANGER

whereu: ((Zn,Mn)/Wn)
∼
crys → (Zn)

∼
et is the canonical morphism of topoi and

J
[r]
Zn/Wn

is therth divided power ideal sheaf ofJZn/Wn = ker(OZn/Wn → OZn).

Tsuji generalizes this definition to the caser > p. It is more complicated and
we refer the reader to [Tsu], Section 2.1.

DEFINITION 1.4 [Tsu]. Forr > 0 s log∼
n,z (r) is the mapping fiber of

Ru(Zn,Mn)/Wn∗(J
[r]
Zn/Wn

)
ϕ−pr- Ru(Zn,Mn)/Wn∗(OZn/Wn).

Remark.Definition (1.3) is the natural log-syntomic analogue of the syntomic
complexesRv∗S[r]n , that were studied in [Ka1]. HereS[r]n is the syntomic sheaf of
Fontaine and Messing [F-M] andv: (Z)∼syn → (Z)∼et. According to Kato ([Ka4],

p. 286), ‘adding log poles’ defines a canonical morphismRv∗S[r]n → s
log′
n,z (r).

Let now

Hj((Z,M/W,O
crys
Qp ) := Hj

cont((Z,M)/W,O
crys
Zp )⊗Zp Qp,

where,Hj
cont ((Z,M)/W , Ocrys

Zp ) is the continuous cohomology of the projective

system(Ocrys
n )n which is defined similarly as continuous étale cohomology in

([J3]). It sits in an exact sequence

0 → lim1
←−
n

H j−1((Z,M)/W,Ocrys
n )⊗Zp Qp → Hj((Z,M)/W,O

crys
Qp )

→ lim←−
n

H j((Z,M)/W,Ocrys
n )⊗Zp Qp → 0.

Similarly one defines continuous cohomology

Hj((Z,M)/W, J
[r]
Qp ),H

j((Z,M)/W,O
crys
Qp /J

[r]
Qp) and Hj((Z,M)/W, s

log
Qp (r))

(compare the Introduction). In the following cohomology withQp-coefficients will
consistently mean continuous cohomology, if not stated otherwise. The naive co-
homology lim←−n H j( )⊗ZpQp will be denoted byHj

naive( ). The following Lemma
is now clear.

LEMMA 1.5. There is a canonical isomorphism

ε1: Hj((Z,M)/W, s
log∼
Qp (r))

∼=- Hj((Z,M)/W, s
log′
Qp (r))

that fits into a commutative diagram of exact sequences of continuous cohomology

→ Hj−1((Z,M)/W,O
crys
Qp )→Hj ((Z,M)/W, s

log∼
Qp (r))→Hj ((Z,M)/W, J

[r]
Qp )

ϕ−pr-

→ Hj−1((Z,M)/W,O
crys
Qp )

=
?

→ Hj ((Z,M)/W, s
log′
Qp (r))

ε1?
∼=

→Hj ((Z,M)/W, J
[r]
Qp )

∼=
?
·pr

1−p−r ·ϕ-
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LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 197

Indeed, the exactness of the horizontal sequences is clear because we work with
continuous cohomology, the commutativity follows from the explicit construction
of the mapε1 in ([Tsu] (2.1.2)).

Remark1.6. We recall that for the closed fiberY/k of a log-smooth morphism
(X,M)→ (SpecOK,N) the ‘naive’ Hyodo–Kato cohomology

Di = lim←−
n

H i((Y,M1)/(SpecWn(k),Wn(L)),O
crys
n )⊗W K0

coincides with continuous cohomology because

Hi((Y,M1)/(SpecWn(k),Wn(L)),O
crys
n )

is of finite length overWn(k) (compare ([H-K]), (3.2))). In the next paragraph
we will see that in two other important cases continuous cohomology coincides
with naive cohomology. This will enable us to relate log-syntomic cohomology to
Hyodo–Kato cohomology and to exploit the well-known properties of the latter
one.

2. In this section we will prove Theorem (0.1). Recall that we assume thatK/Qp
is unramified.

LEMMA 2.1. There is a canonical isomorphism

Hi((Y,M1)/Wn)),O
crys
n ) ∼=

- Hi(((Xn,Mn)/Wn),O
crys
n ) for all i and alln.

Here we takeM to be the canonical log-structure onX andM1 the inverse image
ofM on the closed fiberY . SpecWn is endowed with the trivial log-structure.

Proof.The classical rigidity property of crystalline cohomology says that given
a PD-schemeS = (S, I, γ ) and a closed subschemeS0 ↪→ S defined by a sub-PD-
ideal ofI and aS-schemeX with X0 = X ×S S0 we have

Hi((X/S)crys,O
crys
X/S)
∼= Hi((X0/S)crys,O

crys
X0/S

)

(compare [B-O], Theorem (5.17)). Now it is easy to see that the proof of this
rigidity theorem also works ifX is equipped with a log-structureM andMX0 is
the induced log-structure onX0. Apply this to (X,M) = (Xn,Mn) over S =
(SpecWn, (p)) andS0 = Speck. SinceK/Qp is unramified we haveX0 = Y and
Lemma (2.1) follows.

Recall the exact sequence of the de Rham–Witt complexes (1.2)

0 - Wnω
·
Y [−1] - Wnω̃

·
Y
- Wnω

·
Y
- 0

a 7−→ aθ

θ - 0
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In the following we will also work with an alternative construction of the mono-
dromy-operator via crystalline complexes, given in ([H-K], 3.6).

Consider the exact closed immersion(Wn,Wn(L)) → (SpecWn[t],L), where
L is the log-structure associated toN → Wn[t], 1 7→ t and the morphism is
defined byWn[t] → Wn, t → 0, L → Wn(L), 1 ∈ N → 1 ∈ N. Take an em-
bedding system(Y ·,M ·) → (Z·, N ·) of (Y,M1) → (SpecWn[t],L) in the sense
of ([H-K], 2.18). Note that(Zi,Ni) is also log-smooth over SpecWn endowed
with the trivial log-structure. This uses the fact that(SpecWn[t],L) is log-smooth
over SpecWn(0(SpecWn[t], ω1

(SpecWn[t ],L)/Wn) is a freeWn[t]-module of rank one
with based log (t)), compare ([Ka4] (3.2)). LetCY/Wn be the crystalline complex
associated to the embedding system(Y ·,M ·) → (Z·, N ·) (over SpecWn, triv.)
andCY/SpecWn〈t〉 (Wn〈t〉 is the PD-polynomial ring overWn in one variablet and
SpecWn〈t〉 is endowed with the inverse image ofL) be the crystalline complex
associated to the embedding system(Y ·,M ·)→ (Z·×SpecWn[t ] SpecWn〈t〉, (N ·)′),
where(N ·)′ s the inverse image ofN ·. For the notion of crystalline complexes
we refer to ([H-K], Definition 2.19). According to ([H-K], 3.6) we have an exact
sequence of complexes

0 - CY/SpecWn〈t〉[−1] - CY/Wn
- CY/SpecWn〈t〉 - 0

a 7−→ a ∧ d log t. (2.2)

Let θ : (Y ·)∼et→ (Y )∼et be the obvious morphism of topoi. ApplyingRθ∗ to the exact
sequence (2.2) and using ([H-K], Prop. 2.20), we get the following exact sequence
in D(Y )et

0 → Ru(Y,M1)/(SpecWn〈t〉,L)(O
crys))[−1] → Ru(Y,M1)/Wn(O

crys)

→ Ru(Y,M1)/(SpecWn〈t〉,L)(O
crys)→, (2.3)

whereOcrys denotes here the structure sheaf on((Y,M1)/SpecWn〈t〉,L) resp.
((Y,M1)/Wn).

On the other hand, if one tensors (2.2) withWn (with respect toWn〈t〉 → Wn,
t [i] → 0, i > 1) one gets the exact sequence

0 - CY/(Wn,Wn(L))[−1] - Wn ⊗Wn〈t〉 CY/Wn
- CY/(Wn,Wn(L))

- 0 (2.4)

whereCY/(Wn,Wn(L)) is the crystalline complex with respect to the embedding-system
(Y ·,M ·) → (Z· ×SpecWn[t ] Wn, (N

·)′′), where(N ·)′′ is the inverse image ofN ′.
Applying Rθ∗ to (2.4) we get an exact sequence of complexes onD(Y )et that is
quasiisomorphic to (1.2) (this is shown in [H-K] (4.20)).

By our assumption(∗) the projective system

(H j((Y,M1)/(SpecWn〈t〉,L),Ocrys
n ))n
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satisfies the Mittag–Leffler condition and we have an isomorphism

H
j
cont((Y,M1)/(SpecW 〈t〉,L),Ocrys

Qp )
∼= Hj

naive((Y,M1)/(SpecW 〈t〉,L),Ocrys
Qp ).

Applying the crucial base change argument ([H-K], Prop. (4.13)) to

H
j

naive((Y,M1)/(SpecW 〈t〉,L),Ocrys
Qp )

and taking continuous cohomology of (2.3) we get a long exact sequence

- Hi−1((Y,M1)/(SpecW,W(L)),Ocrys
Qp )⊗K K̂〈t〉

∧d log t
- Hi((Y,M1)/W,O

crys
Qp ), (2.5)

- Hi((Y,M1)/(SpecW,W(L)),Ocrys
Qp )⊗K K̂〈t〉

NK̂〈t〉
- Hi((Y,M1)/(SpecW,W(L)),Ocrys

Qp )⊗K K̂〈t〉 -

whereK̂〈t〉 = K ⊗W Ŵ 〈t〉, Ŵ 〈t〉 is thep-adic completion of theDP -envelope
of W [t] andNK̂〈t〉 is induced by the connecting homomorphism of (2.2), such that
NK̂〈t〉 ⊗ K is the usual monodromy operatorN that is defined via the connecting
homomorphism of (2.4).

(2.5) and (2.4) induce a commutative diagram

Hi−1((Y,M1)/(SpecW,W(L)),Ocrys
Qp )⊗K K̂〈t〉 t→0

- Hi−1((Y,M1)/(SpecW,W(L)),Ocrys
Qp )

H i((Y,M1)/W,O
crys
Qp )

?

∧d log t

t→0
- Hiet(Y,Wω̃Y )Qp

?

Hi((Y,M1)/(SpecW,W(L)),Ocrys
Qp )⊗K K̂〈t〉

?

t→0
- Hi((Y,M1)/(SpecW,W(L)),Ocrys

Qp )
?

? ?

where the vertical exact sequence on the right is the long exact cohomology se-
quence associated to (1.2) and using ([H-K], Theorem 4.19). LetDj :=Hj((Y,M1)/

(SpecW,W(L)),Ocrys
Qp ) denote the log-crystalline cohomology as in the Introduc-

tion. Since the Frobeniusϕ acts ont via ϕ(t) = tp, any eigenspace ofϕ acting on
Dj ⊗K K̂〈t〉 is already contained inDj . The monodromy operatorNK̂〈t〉 is equal
toN ⊗ 1+ 1⊗N whereN(t [n]) = nt [n] on K̂〈t〉. Now we show

LEMMA 2.6. (i) coker(NK̂〈t〉)ϕ=pr−1 = coker(N)ϕ=pr−1.
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(ii) ker NK̂〈t〉 = kerN (N considered onDi).
(iii) There is an exact sequence

0 - coker(N : Di → Di)ϕ=pr−1 - Hi+1((Y,M1)/W,O
crys
Qp )ϕ=pr

- (Di+1)
N=0
ϕ=pr .

Proof.(ii) is clear from the formulaNK̂〈t〉 = N⊗1+1⊗N , (iii) follows from (i)
and (ii), so it remains to show (i). The canonical mapDi ⊗K K̂〈t〉 → Di(t

[n] → 0,
for n > 1) induces a surjection

coker(NK̂〈t〉)ϕ=pr−1 � coker(N)ϕ=pr−1.

Let x ∈ ker(Di ⊗K K̂〈t〉 → Di) such that(1− p1−rϕ)x = NK̂〈t〉(y) for some
y ∈ ker(Di ⊗K K̂〈t〉 → Di). Then

x = (1− p1−rϕ)−1NK̂〈t〉(y) =
∑
n>0

(p1−rϕ)nNK̂〈t〉(y)

= NK̂〈t〉

∑
n>0

(p−rϕ)ny

 = NK̂〈t〉(1− p−rϕ)−1(y)

lies in the image ofNK̂〈t〉, as required (we have used the formulaNK̂〈t〉ϕ = pϕNK̂〈t〉;
that

∑
n>0(p

−sϕ)n(y) converges – fors > 0 andy = t [k] ⊗m,m ∈ Di – uniformly
in k, will be shown in the proof of Proposition 3.1).

Lemma 2.6 will play a crucial role in the proof of Theorem 0.1 as well as the
following

LEMMA 2.7. There is a canonical isomorphism

ψ : Hi
naive((X,M)/W,O

crys
Qp /J

[r]
Qp)

∼=- Hi
DR(X)/Filr .

Here

Hi
naive((X,M)/W,O

crys
Qp /J

[r]
Qp) := lim←−

n

H i((Xn,Mn)/Wn,O
crys
n /J [r]n )⊗Qp

and Filr is therth step in the Hodge filtration onHi
DR(X). MoreoverHi

naive((X,
M)/W , Ocrys

Qp / J
[r]
Qp) is isomorphic to the continuous cohomologyHi((X,M)/W ,

O
crys
Qp / J

[r]
Qp).

Proof. We closely follow the proof of ([K-M], Lemma (4.5)). Take an exact
closed immersion(Xn,Mn) → (Zn,Nn) such that the idealI of Xn in Zn is
generated at each point ofXn by a regular sequence and such that(Zn,Nn) is log-
smooth overWn. LetDn be the PD-envelope of(Xn,Mn) in (Zn,Nn) andI [r]n the
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rth divided power of ker(ODn → OXn
). Note thatDn coincides as a scheme with

the classical PD-envelope of the closed immersionXn → Zn ([Ka 3], (5.5.1)).
ThenRulog

(Xn,Mn)/W∗n (J
[r]
n /J

[r+1]
n ) is represented by the complex

I [r]n /I
[r+1]
n

d- I [r−1]
n /I [r]n ⊗ ω1

(Zn,Nn)/Wn
- · · ·

- I [0]n /I
[1]
n ⊗ ωr(Zn,Nn)/Wn - (2.7.1)

SinceXn is syntomic overWn the direct sum⊕r∈ZI [r]n /I [r+1]
n is isomorphic to

the divides power-polynomial ring on the locally free sheafI/I 2. In particular
I [r]n /I [r+1]

n is isomorphic to the degreer part(I/I 2)[r] which is again locally free by
([B-O], Prop. A2). Now all entries of the complex (2.7.1) are locally free sheaves
of finite rank on(Xn)et. SinceXn is proper the cohomology of these sheaves is
a finiteWn-module. Now the hypercohomology spectral sequence associated to
(2.7.1) shows thatHi((Xn/Mn)/Wn, J

[r]
n /J

[r+1]
n ) is a finiteWn-module. An easy

induction argument shows that the same property holds forHi((Xn/Mn)/Wn,

O
crys
n /J [r]n ). In particular we get the isomorphism between continuous and naive co-

homology forOcrys/J [r]. The canonical mapI [0]n /I [1]n ⊗ωr(Zn,Nn)/Wn → ωr(Xn,Mn)/Wn

defines a map

Ru
log
(Xn,Mn)/W∗n (J

[r]
n /J

[r+1]
n ) - ωr(Xn,Mn)/Wn

[−r].
Since the generic fiberX of X is smooth, this map induces an isomorphism

Ru
log
X/K∗J

[r]
X/K/J

[r+1]
X/K ∼=

- ωrX/K[−r] in Q⊗ lim←−
n

D(Xn,OXn
)

(for the notation compare [K-M]). To finish the proof of Lemma (2.7) one just
follows the argument in ([K-M, Lemma 4.5).

Remark2.8. This Lemma is implicitly used by Kato in his proof of theBst-
comparison isomorphism ([Ka 4], (6.4)). It actually holds more generally for
schemes that are log-syntomic overW and such that the generic fiber is smooth
and it provides a log-syntomic analogue for Lemma (4.5) in [K-M].

We are now ready to prove the following proposition:

PROPOSITION 2.9.The following diagram is commutative:

Hi((X,M)/W,O
crys
Qp )

- Hi+1(X, s
log
Qp(r)) � Hi+1((X,M)/W, J [r]Qp )ϕ=pr

H i
DR(X)/Filr

?
λ

exp
- H 1(K, V )

?
α

- H 1(K,Bcrys⊗Qp V )
?
α

comp4061.tex; 12/03/1999; 15:19; p.13

https://doi.org/10.1023/A:1000829923416 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000829923416


202 ANDREAS LANGER

HereHi+1((X,M)/W, J [r]Qp )ϕ=pr is a shorthand for

ker(H i+1((X,M)/W, J [r]Qp )
ϕ−pr- Hi+1((X,M)/W,O

crys
Qp ))

andλ is equal to the composition

Hi((X,M)/W,O
crys
Qp )→ ker(NK̂〈t〉)

= DN=0
i

(p−rϕ−1)−1

∼=
- DN=0

i ↪→ Di → Di/Filr .

The assumption(Di)
N=0
ϕ=pr = 0 implies thatp−rϕ − 1 is invertible onDN=0

i . The
upper horizontal exact sequence is obtained from the diagram in Lemma (1.5). The
lower horizontal sequence is exact, because Im(exp) = H 1

f (K, V ), where as in the

introductionV = Hi(X,Qp(r)). (Note that by using our assumption(Di)
N=0
ϕ=pr = 0

and theBst-comparison-isomorphism we haveH 1
f (K, V )/H

1
e (K, V ) = 0, com-

pare ([B-K], Sect. 3.8))α is defined via a composite map

Hi+1((X,M)/W, J [r]Qp )ϕ=pr

→ Hi+1((X,M)/W,O
crys
Qp )ϕ=pr

α̃- H 1(K,Bcrys⊗ V )
whereα̃ is given as follows:

There is a canonical map

Hi+1((X,M)/W,O
crys
Qp )→ Hi+1

naive((X,M)/W,O
crys
Qp )

∼=- (B+st ⊗K Di+1)
N=0

by ([Ka4], Theorem 4.1) which maps theϕ = pr-eigenspace into

((B+st ⊗K Di+1)
N=0)

GK
ϕ=pr = (Di+1)

N=0
ϕ=pr and (Di+1)

N=0
ϕ=pr = 0

by our assumption. So the Hochschild–Serre spectral sequence associated to
R0(GK; ) ◦ RH ◦((X,M)/W , Ocrys

Qp ) definesα̃ as a boundary map, where we use
the Fontaine–Jannsen Conjecture (proven by Kato and Tsuji) that provides us with
a map

Hi
naive((X,M)/W,O

crys
Qp )

∼=- (B+st ⊗K Di)
N=0

↪→ (Bst⊗K Di)
N=0

∼= (Bst⊗Qp V )N=0 ∼= Bcrys⊗Qp V .
Proof of Proposition2.9. We first show the commutativity of the right-hand

side. Tsuji has proven that there is a canonical isomorphism between the cohomo-
logy H r (i∗s log

n (r)) and the sheafMr
n = i∗Rrj∗Z/n(r) of p-adic vanishing cycles
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([Tsu], Thm. 3.2). His proof relies on a filtration Fil· onMr
n that was defined by

Hyodo ([H1], (1.4)) and is induced by a symbol map on MilnorK-theory. Hyodo
has shown ([H1], Thm. 1.6) that the highest graded quotient gr0Mr

n sits in an
extension

0 - Wnω
r−1
Y,log

- gr0Mr
n
- Wnω

r
Y,log

- 0,

whereWnω
i
Y,log are the modified logarithmic Hodge–Witt sheaves ([H1] (1.5)). On

the other hand Hyodo and Kato ([H-K], Prop. 1.5) constructed an exact sequence of
Hodge–Witt sheaves 0 - Wnω

r−1
Y

- Wnω̃
r
Y
- Wnω

r
Y
- 0 and used the

connecting homomorphism on the level of cohomology to define the monodromy
operator on log-crystalline cohomology. It follows from the work of Tsuji ([Tsu],
Sect. 2.4) that there is a commutative diagram

0 - Wnω
r−1
Y,log

- gr0Mr
n
- Wnω

r
Y,log

- 0

0 - Wnω
r−1
Y

?
- Wnω̃

r
Y

?
- Wnω

r
Y

?
- 0

such that the upper exact sequence is obtained by taking the kernel of 1−F acting
on the lower exact sequence, whereF is the Frobenius. The canonical map of com-
plexesWnω̃

r
Y [−r] - Wnω̃

·
Y yields a canonical map on the eigenspaces of the

FrobeniusHi+1−r(Y,Wnω̃
r
Y )
F=1 - Hi+1(Y,Wnω̃

·
Y )ϕ=pr . From (2.6) we get the

canonical isomorphismHi+1(X,M)/W,O
crys
Qp )ϕ=pr

∼= (H i+1(Y,Wω̃·Y )Qp)ϕ=pr
and therefore a commutative diagram

Hi+1
et (X, s

log
Qp (r))

- Hi+1(X,M)/W, J [r]Qp )ϕ=pr

H i+1
et (X, τ6rRj∗Qp(r))

?
- Hi+1−r (Y,gr0Mr

Qp)
- Hi+1(X,M)/W,O

crys
Qp )ϕ=pr

?

In order to see that the mapHi+1
et (X, s

log
Qp (r))→ Hi+1

et (X,Qp(r)) actually factors

throughHi+1
et (X, τ6rRj∗Qp(r)) we need an additional argument. In ([Ka1], The-

orem (3.6)) Kato shows that for a syntomic schemeZ/W andr < p his complexes
s

log
n (r) that are defined in the same way as Tsuji’s complexess

log′
n (r) but without

log-structures satisfy the vanishing propertyHq(s
log
n (r)) = 0 for q > r. Now the

proof is the same when we consider a log-scheme(Z,M) that is syntomic overW
and work with the complexess log′

n (r) for r < p. By using Tsuji’s extended defin-
ition of s log

n (r) ([Tsu], Sect. 2.1) forr > p it is then easy to seeHq(s
log′
n (r)) = 0

for q > r and no restriction onr by the same arguments as in Kato’s proof.
Therefore the left vertical map in the above diagram is well-defined. Finally, it
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follows from the construction of theBst-comparison isomorphism ([Ka4], Sect. 6)
and the functoriality of the Hochschild–Serre spectral sequence that the diagram

Hi+1
et (X, τ6rRj∗Qp(r)) - Hi+1((X,M)/W,O

crys
Qp )ϕ=pr

H 1(K, V )

?
- H 1(K,Bcrys⊗ V )

?
α̃

commutes. From the above explanations the commutativity on the right-hand side
of the diagram in (2.9) is clear. Furthermore, ([Ka4] 6.4) implies thatα factors
through

Hi+1((X,M)/W, J [r]Qp )ϕ=pr
α̂- H 1(K,Filr (Bcrys⊗Hi(X,Qp)))

- H 1(K,Bcrys⊗ V ).
Now consider the following commutative diagram

Hi((X,M)/W, J [r]Qp )
1−p−rϕ - Hi((X,M)/W,O

crys
Qp )

0→ V → Filr (Bst⊗K Di)
N=0

?
1−p−rϕ - (Bst⊗K Di)

N=0→ 0.
?

Here the lower exact sequence is derived from tensoring the exact sequence

0→ Qp(r)→ Filr (Bcrys)
1−p−rϕ- Bcrys→ 0 ([Fo1], 5.3.7)

withHi(X,Qp) and then applying theBst-comparison-isomorphism. Taking Galois-
invariants yields a commutative diagram

Hi((X,M)/W,O
crys
Qp )

- Hi+1
et (X, s

log
Qp(r))

H i
DR(X)

N=0/(1− p−rϕ)(Filr )N=0
?

⊂ - H 1(K, V )

?
α

using Lemma 9.5 in [J2] and the isomorphismDi
∼= Hi

DR(X) ([H-K], Thm. 5.1).
By our assumption(Filr)N=0

ϕ=pr = 0, so the inverse of(1− p−rϕ): DN=0
i → DN=0

i

induces an isomorphism

Hi
DR(X)

N=0/(1− p−rϕ)(Filr )N=0 ∼=- Hi
DR(X)

N=0/(Filr)N=0

and we get by composition a commutative diagram

Hi((X,M)/W,O
crys
Qp )

- Hi+1
et (X, s

log
Qp (r))

H i
DR(X)

N=0/(Filr )N=0
?

⊂ exp - H 1(K, V )

?
α
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It remains to show that the lower horizontal map is the restriction of the exponential
map in the sense of Bloch–Kato. (Note that the mapλ that appears in the diagram
(2.9) coincides with the left vertical arrow in the above diagram composed with the
canonical mapDN=0

i /(Filr )N=0 ↪→ Di/Filr .) Consider the following commutative
diagram

0 - Qp - t−rFilrB+crys
1−ϕ- t−rB+crys

- 0

0 - Qp

=
?

- B+crys⊕ B+dR
?
θ1

- Bcrys⊕ BdR
?
θ2

- 0.

In this diagram (and only here, so there is no confusion with the elementt

defined earlier)t denotes the element defined via the inclusionQp(1) ↪→ B+crys
in the sense of Fontaine. The upper exact sequence is a version of ([Fo1], 5.3.7),
the lower exct sequence is the one derived by Bloch and Kato ([B-K], Sect. 1),
θ1 and θ2 are given as follows:θ1(x) = (x, ϕ(x)), θ2(x) = (x, x). (Note that
t−r FilrB+crys is contained inB+dR, so the definition makes sense.) After tensoring

the above diagram withV = Hi(X,Qp(r)), using the formulaBN=0
st = Bcrys

and applying theBst-, resp.BdR-comparison isomorphism it is easy to see that

Hi
DR(X)

N=0/(Filr )N=0 ⊂ exp- H 1(K, V ) is the restriction of the exponential map

DR(V )/DR0(V )
exp- H 1(K, V ). Another proof for the commutativity of the

first square in Proposition 2.9 has been pointed out to me by the referee and is
given as follows:

– The mapHi((X,M)/W,O
crys
Qp )→ Hi+1

et (X, s
log
Qp (r)

α- H 1(K, V ) is equal
to

Hi((X,M)/W,O
crys
Qp )

ker- (NK̂〈t〉)

= DN=0
i

γ- Coker(δ) = H 1
f (K, V ) ⊂ H 1(K, V ),

whereδ: DN=0
i → DN=0

i ⊕ Di/Filr is given byδ(y) = ((1− p−rϕ)(y), y)
andγ (x) = the class of(x,0).

– The exponential map of [B-K] exp: Di/Filr → Coker(δ) = H 1
f (K, V ) is

given by exp(x) = the class of(0, x).
– The following commutative diagram is commutative:

Hi((X,M)/W,O
crys
Qp )

- Hi((X,M)/W,O
crys
Qp /J

[r]
Qp)

DN=0
i

?
- Di/Filr

?
ψ
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Consequently, ifx ∈ DN=0
i andx = (p−rϕ − 1)(y) with y ∈ DN=0

i , then the
class of(x,0) in Coker(δ) is equal to the class of(x,0) + δ(y) = (0, y), i.e.,
exp(y), as claimed.

This finishes the proof of the Proposition.

We study the right-hand side of the diagram in Proposition 2.9 in more detail. Using
(2.6), Lemmas 2.1 and 2.7 and our assumption(Di+1)

N=0
ϕ=pr = 0 we can draw the

following conclusions:

(i) The mapHi+1((X,M)/W, J [r]Qp )ϕ=pr � Hi+1((X,M)/W,O
crys
Qp )ϕ=pr is sur-

jective.
(ii) Hi+1((X,M)/W,O

crys
Qp )ϕ=pr is contained in

6 := image

(
Di ↪→ Di ⊗

K
K̂〈t〉 ∧d log t

- Hi+1((Y,M1)/W,O
crys
Qp

)
.

Now using Fontaine’s exact sequence ([Fo] 3.2.3)

0 - Bcrys
- Bst

N- Bst
- 0,

tensoring it withV , applying theBst-comparison-isomorphism and takingGK -
invariants we get a commutative diagram

coker(H i
DR(X)

N- Hi
DR(X))

∼= - 6
HHHHHH↪→ j

H 1(K,Bcrys⊗ V ).
?
α̃ (2.10)

Here the commutativity follows again from ([J2], Lemma 9.5). As a result we
obtain

LEMMA 2.11. α̃ is injective and

kerα = ker(H i+1((X,M)/W, J [r]Qp )
- Hi+1((X,M)/W,O

crys
Qp ).

The above diagram (2.10) also shows that the composite map

6
α̃
- H 1(K,Bcrys⊗ V ) - H 1(K,Bst⊗ V )

is zero.
Let H 1

st (K, V ) := ker(H 1(K, V ) → H 1(K,Bst ⊗ V ). Then we have
H 1

st(K, V ) = H 1
g (K, V ). This is an unpublished result due to Hyodo that is quoted

in ([Fo2], 6.2.2) and has also been proven by Nekovář ([Ne], 1.2.4).
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We immediately get by combining this result with Propositions 2.9 and 2.10.

LEMMA 2.12. Imα ⊂ H 1
g (K, V ).

PROPOSITION 2.13.The composite map

Hi+1
et (X, s

log
Qp(r))

α- H 1
g (K, V )

- H 1
g (K, V )/H

1
f (K, V )

is surjective.
Proof. It remains to show that

coker(H i
DR(X)

N- Hi
DR(X))ϕ=pr−1 ∼= Hi+1((X,M)/W,O

crys
Qp )ϕ=pr (2.6)

is isomorphic toH 1
g (K, V )/H

1
f (K, V ) =: H 1

g /H
1
f .

NowH 1
g /H

1
f is, by local Tate-Duality, dual to

H 1
f (K,H

2d−i(X,Qp(d + 1− r)))/H 1
e (K, . . .)

and this vector space is, by theBst-comparison-isomorphism isomorphic to
H 2d−i
DR (X)N=0/1− f . Hered is the dimension ofX andf acts asp−(d+1−r) · ϕp,

whereϕp is the Frobenius on log-crystalline cohomology. Using Poincaré duality
for log-crystalline cohomology ([H2], (3.7)) we obtain an isomorphism

H 1
g /H

1
f
∼= coker(N : Hi

DR(X)
- Hi

DR(X))f=1

wheref acts asp−(r−1)ϕp. This finishes the proof of Proposition 2.13.

LEMMA 2.14. In the commutative diagram in Proposition2.9 the canonical map
kerα→ kerα, which is induced by the snake lemma, is the zero map.

Before proving Lemma 2.14 we finish the proof of the main theorem.

COROLLARY 2.15. The canonical mapkerα - coker(λ), that is induced by
the snake lemma, is an isomorphism.

Proof. The short exact sequence 0→ J [r]n → O
crys
n → O[r]n /J [r]n → 0 in

(Xn,Mn/Wn))
∼
crys implies – in the associated long exact continuous cohomology

sequence withQp-coefficients – an isomorphism of finite-dimensionalQp-vector
spaces (use Lemma 2.7 and 2.11)

ker(α) ∼= coker(H i((X,M)/W,O
crys
Qp )→ Hi((X,M)/W,O

crys
Qp /J

[r]
Qp)

∼= coker(DN=0
i → Di/Filr ) ∼= coker(λ).

On the other hand, the canonical map under consideration is injective by Lemma
2.14 and therefore has to be an isomorphism.
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COROLLARY 2.16. H 1
f (K, V ) ⊂ Imα.

Proposition 2.9, Proposition 2.13 and Corollary 2.16 yield Theorem 0.1.

It remains to give a proof of Lemma 2.14. For this it suffices to show that the
map

kerα - H 1(K,Filr (Bst⊗K Di)
N=0)

H 1(K,Filr (Bcrys⊗Qp H i(X,Qp)), induced bŷα,
?
∼=

is injective.
We consider the following commutative diagram

Hi ((X,M)/W,J
[r]
Qp )

- Hi ((X,M)/W,O
crys
Qp ) - Hi((X,M)/W,O

crys
Qp /J

[r]
Qp )

0 - Filr (B+st ⊗K Di)
N=0

?
- Hinaive((X,M)/W,O

crys
Qp )

?
- Hinaive((X,M/W,O

crys
Qp /J

[r]
Qp )

?

(B+st ⊗K Di )
N=0

?
∼=

- (B+
DR
⊗K Hi

DR
(X))/Filr

?
∼=

0 - Filr (Bst⊗K Di)
N=0

?
- (Bst⊗K Di)

N=0
?

- (BdR ⊗K Di )/Filr
?

- 0

Here we have used ([Ka4], (6.4)) for the isomorphism in the right sequence of
vertical maps and the fact thatBcrys/Filr ∼= BdR/Filr ([P-R] (1.4)) in order to
obtain the lower horizontal exact sequence.

TakingGK -invariants of the lower exact sequence and using Lemma 2.7 to-
gether with ([J2] Lemma 9.5) we get the commutative diagram

Hi
DR(X)/Filr -- kerα

�
�
�
�
�

∼=
�

Hi
DR(X)/〈Hi

DR(X)
N=0,Filr〉

??
⊂ - H 1(K,Filr (Bst⊗K Di)

N=0)

?

α̂

Here the diagonal map exists and is an isomorphism because the composite map of
the middle vertical arrows mapsHi((X,M)/W,O

crys
Qp ) onto(Di)

N=0. For this one
uses the diagram constructed after (2.5). Thereforeα̂ is injective and Lemma 2.14
follows.

3. In this section we compute the kernel ofα, i.e., we prove Theorem 0.2. Let
H̃ i((X,M)/W, J [r]Qp ) be the kernel of the composite map (compare Lemma 2.6)

Hi(X,M)/W,O
crys
Qp )→ kerNK̂〈t〉 = DN=0

i → DN=0
i /(pr − ϕ)(Filr )N=0.
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Then we have a commutative diagram

0 0

Hi((X,M)/W, J [r]Qp )
?

pr−ϕ- H̃ i((X,M)/W, J [r]Qp )
?

Hi((X,M)/W, J [r]Qp )
?
=

pr−ϕ- Hi((X,M)/W,O
crys
Qp )

?

0
?

- DN=0
i /(pr − ϕ)(Filr )N=0

?

with vertical exact sequences. Taking cokernels of the above horizontal maps yields
an exact sequence

0 - K1
- K2

- DN=0
i /(pr − ϕ)(Filr )N=0.

Proposition 2.9 and Lemma 2.14 imply that there is a canonical isomorphism
K1

∼=- kerα. Now look at the following commutative diagram

0

Hi((X,M)/W, J [r]Qp )
pr−ϕ - H̃ i((X,M)/W, J [r]Qp )

?

Hi((X,M)/W,O
crys
Qp )

?
pr−ϕ - Hi((X,M)/W,O

crys
Qp )

?

HiDR(X)
N=0/(Filr )N=0
?

pr−ϕ- HiDR(X)
N=0/(pr − ϕ)(Filr )N=0

?

0
?

0
?

By our assumption the lower horizontal map is an isomorphism and we get

K1
∼= kerα ∼= coker(H i((X,M)/W,O

crys
Qp )

pr−ϕ- Hi((X,M)/W,O
crys
Qp ).
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To compute this cokernel we use again the exact sequence (2.5) and get a commut-
ative diagram (note thatϕ(d log t) = pd log t)

Hi−1
DR

(X)⊗K K̂〈t〉 pr−ϕ- Hi−1
DR

(X)⊗K K̂〈t〉

Hi−1
DR

(X)⊗ K̂〈t〉
?
NK̂〈t〉

pr−1−ϕ- Hi−1
DR

(X)⊗ K̂〈t〉
?
NK̂〈t〉

Hi((X,M)/W,O
crys
Qp )

?
∧d log t

pr−ϕ- Hi((X,M)/W,O
crys
Qp )

?
∧d log t

H iDR(X)
N=0
?

pr−ϕ - HiDR(X)
N=0
?

0
?

0
?

Now we compute the cokernel of the upper (and lower) horizontal map by adapting
certain methods developed by Perrin-Riou [PR].

PROPOSITION 3.1.The cokernel of the map

H
j

DR(X)⊗ K̂〈t〉 p
r−ϕ- H

j

DR(X)⊗ K̂〈t〉

is isomorphic toHj

DR(X)/(p
r − ϕ).

Proof. We closely follow ([PR], Sect. 2.2). Perrin-Riou deals, instead of̂K〈t〉
with the subring ofK[[T ]] of all power series that are convergent on the open unit
disc. Another important difference is the action of the Frobenius: in our situation
we haveϕ(t) = tp, Perrin-Riou defines the action ofϕ asϕ(T ) = (1+ T )p − 1.

It suffices to show that any element in(K̂〈t〉 ∩ t · K[[t]]) ⊗ Hj

DR(X) is in the
image of the map 1− p−rϕ. LetM be aW -lattice inDj = Hj

DR(X), that is stable
underϕ. We consider elements of the formt [k] ⊗m, k > 1,m ∈ M.

Claim. z = ∑
n>0(p

−rϕ)n(t [k] ⊗ m) ∈ K̂〈t〉 ⊗W M and the infinite series
definingz converges uniformly ink.

Indeed, we have the equality

(p−rϕ)n(t [k] ⊗m) = (kpn)!
k!prn t

[kpn] ⊗m′, m′ ∈ M

and ordp((kpn)!/k!) > rn wheneverpn > prn (for all k > 1). This shows that the
coefficients(kpn)!/k!prn convergep-adically to zero. Now(1−p−rϕ)z = t [k]⊗m
and therefore the claim and Proposition 3.1 follow.

Sincepr − ϕ is an isomorphism onHi
DR(X)

N=0 we get
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COROLLARY 3.2. kerα is isomorphic to the cokernel of the mappr−1 − ϕ,
acting oncoker(N : Hi−1

DR (X)→ Hi−1
DR (X)).By Poincaré duality for log-crystalline

cohomology we see that kerα is Qp-dual toH 2d−(i−1)
DR (X)N=0

ϕ=pd−(r−1) and theBst-
comparison isomorphism implies a canonical injection

ην : H 2d−(i−1)(X,Qp(d − r + 1))GK ↪→ H
2d−(i−1)
DR (X)N=0

ϕ=pd−(r−1) .

Local Tate-Duality therefore yields the desired surjection

η: kerα � H 2(GK,H
i−1(X,Qp(r))).

If the reduction ofX is ordinary we know from ([Il], 2.6) that theϕ = pj -
eigenspace inHs

DR(X) is contained in FiljH s
DR(X) and in this case the above maps

ην andη are isomorphisms. This finishes the proof of Theorem 0.2.

By the construction of the mapη and by using again ([J2], Lemma 9.5) we get the
following commutative diagram

0 0

kerα
?

η -- H2(GK,H
i−1(X,Qp(r)))
?

Hi+1
et (X, s

log
Qp (r))

?
ε2 - Hi+1(X,Qp(r))

?

H1
g (GK,H

i(X,Qp(r)))
?
α

⊂ - H1(GK,H
i(X,Qp(r))
?

0
?

0
?

The diagram yields a nice picture on the comparison of the log-syntomic cohomo-
logy of the semistable schemeX and thep-adic étale cohomology of its generic
fiberX.

4. In this section we examine the special casei + 1 = 2r which is of particular
interest when we want to study cycle class maps. We will finish the paper with
some speculations on them. The notations are as before. IfX = X ×OK OK we
will consider the following subvectorspace of our log-syntomic cohomology

H̃ 2r(X, s
log
Qp(r)) := ker(H 2r(X, s

log
Qp (r))

- H 2r(X, s
log
Qp (r))).

We have the canonical map constructed by Kato and Tsuji

H̃ 2r(X, s
log
Qp(r))

- ker(H 2r(X,Qp(r)) - H 2r(X,Qp(r)))
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which together with the Hochschild–Serre spectral sequence yields a canonical
mapα: H̃ 2r(X, s

log
Qp(r))

- H 1(Gal(K/K), V ), whereV := H 2r−1(X,Qp(r)).
Under certain conditions related to thep-adic and`-adic monodromy conjec-

ture we will describe the image and the kernel ofα. The results are in analogy to
Theorems 0.1 and 0.2.

Let as before for an integerj (Dj)
N=0
ϕ=pk be the eigenspace where the Frobeniusϕ

acts as multiplication bypk in the kernel of the monodromy operatorN . Through-
out the paragraph we will consider the following hypothesis

(D2r−1)
N=0
ϕ=pr = 0. (H)

From the works of Mokrane [Mo] and Jannsen [J1] and thep-adic and`-adic
monodromy conjecture we conclude that the condition (H) is equivalent to the
following

CONJECTURE.H 2r−1(X,Q`(r))GK = 0 for all primes`.

Even though this conjecture is not stated explicitly in [J1] evidence for it is given
in ([J1] p. 349). Now we reformulate the main results in the casei + 1= 2r.

THEOREM 4.1. Under the assumptions of Theorem0.1 and the condition(H) we
haveImα = H 1

f (GK, V ) = H 1
g (GK, V ).

THEOREM 4.2. Under the assumptions of Theorem4.1 we have a canonical
surjectionη: kerα � H 2(GK,H

2r−2(X,Qp(r))). If X has ordinary semistable
reduction, thenη is an isomorphism.

Theorem 4.2 will be an easy consequence of the analogous Theorem 0.2 proven
in Section 3 whereas the proof of Theorem 4.1 requires a bit more work. But the
methods are very similar to those developed in Section 2.

We start to prove Theorem 4.1. From the definition ofs
log
n (r), we obtain a

commutative diagram of exact sequences

- H2r−1((X,M)/W,O
crys
Qp )

- H2r (X, s
log
Qp (r))

- H2r ((X,M)/W, J [r]Qp )
-

0
?

- H2r
naive(X, s

log
Qp (r))

?
- H2r

naive((X,M)/W, J
[r]
Qp )

? (4.3)

-

It follows from ([Ka4], Section 6) that the map

H 2r(X, s
log
Qp(r))

- H 2r((X,M)/W, J [r]Qp )

is injective and therefore the diagram is commutative.
Let as in Section 2H 2r((X,M)/W, J [r]Qp )ϕ=pr be the kernel of the map

H 2r((X,M)/W, J [r]Qp ) pr−φ
- H 2r((X,M)/W,O

crys
Qp ).
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H 2r((X,M)/W, J [r]Qp )ϕ=pr is defined similarly. From (4.3) we get an exact se-
quence

H 2r−1((X,M)/W,O
crys
Qp )

- H̃ 2r(X, s
log
Qp(r))

- B - 0, (4.4)

where

B := ker(H 2r((X,M)/W, J [r]Qp )ϕ=pr
- H 2r((X,M)/W, J [r]Qp )ϕ=pr .

PROPOSITION 4.5.There is a commutative diagram of exact sequences

H2r−1((X,M)/W,O
crys
Qp )

- H̃2r (X, s
log
Qp (r))

- B −→ 0

D2r−1/Filr
?

λ

⊂
exp
- H1(GK, V )

?

α

- H1(GK,Bcrys⊗ V ).
?

α

Hereλ is the map given in Proposition 2.9.
The mapα is defined in the same way as in Proposition 2.9. Note that our

vanishing assumption on(D2r−1)
N=0
ϕ=pr implies that ‘exp’ maps ontoH 1

f (GK, V )

and so the lower horizontal sequence is exact.
Proof.The Proposition is shown in the same way as Proposition 2.9.

Note thatα factors through

B - ker(H 2r((X,M)/W,O
crys
Qp )ϕ=pr

- H 2r
naive((X,M)/W,O

crys
Qp )ϕ=pr

- H 1(GK,Bcrys⊗ V ).
By using ([Ka4], Thm. 4.1) we have an isomorphism

H 2r
naive((X,M)/W,O

crys
Qp )

∼=- (B+st ⊗D2r)
N=0

that fits into a commutative diagram

H 2r((X,M)/W,O
crys
Qp )

-- DN=0
2r = [D2r ⊗K K̂〈t〉]N=0

H 2r
naive((X,M)/W,O

crys
Qp )

?

∼=
- (B+st ⊗D2r)

N=0
?

v 7→ 1⊗ v (4.6)

where the upper surjective morphism is obtained from the exact sequence (2.5)
and Lemma 2.6(ii). The commutativity follows from the explicit construction of
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the lower horizontal isomorphism in the proof of ([Ka4] Thm. 4.1) which is also
based on the exact sequence of crystalline complexes (2.2) ([Ka4], Lemma 4.2).
By Lemma 2.6, (iii) we have an exact sequence

0 - coker(N : D2r−1→ D2r−1)ϕ=pr−1 - H 2r((X,M)/W,O
crys
Qp )ϕ=pr

- (D2r)
N=0
ϕ=pr - . (4.7)

LEMMA 4.8. Under the condition(H) we havecoker(N : D2r−1→ D2r−1)ϕ=pr−1

= 0.
Proof. It follows from Proposition 2.13 that this vectorspace is canonically iso-

morphic toH 1
g (GK, V )/H

1
f (GK, V ). By applying the functorDst = (Bst⊗ ·)GK

to the Hard Lefschetz theorem for étale cohomology, we get an isomorphism
D∗2r−1

∼=- D2r−1(2r − 1), where∗ denotes the Poincaré-dual of Hyodo–Kato

cohomology. After (Tate-) twisting we have an isomorphism(D2r−1(r−1))∗
∼=-

D2r−1(r). Under this isomorphism the vanishing statement of the Lemma is equiva-
lent toDN=0

2r−1/(1−ϕp−r ) = 0 which is equivalent to the condition (H). The Lemma
follows.

LEMMA 4.9. Under the condition(H) we have the inclusionImα ⊂ H 1
g (GK, V )

= H 1
f (GK, V ) = H 1

e (GK, V ).

Proof.This is shown in the same way as Lemma 2.12.

COROLLARY 4.10. The mapα is the zero map.
Proof.Combine the remark onα after Proposition 4.5 with 4.6, 4.7 and Lemma

4.8.

LEMMA 4.11. B coincides withker(H 2r((X,M)/W, J [r]Qp )
- H 2r((X,M)/W,

O
crys
Qp )).

Proof.Combine the two facts that the canonical maps

H 2r
naive((X,M)/W, J

[r]
Qp )

- H 2r
naive((X,M)/W,O

crys
Qp )

and

H 2r((X,M)/W,O
crys
Qp )ϕ=pr

- H 2r
naive((X,M)/W,O

crys
Qp )ϕ=pr

are both injective. To see this one uses ([Ka4], Sect. 6) and the commutative dia-
gram in the proof of Lemma 2.14 for the first map and (4.6), (4.7) and Lemma 4.8
for the second one.

LEMMA 4.12. The canonical map kerα → B, that is induced from the diagram
in Proposition 4.5 is the zero map.

Proof.By using Lemma 4.11 this is shown in the same way as Lemma 2.14.

comp4061.tex; 12/03/1999; 15:19; p.26

https://doi.org/10.1023/A:1000829923416 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000829923416


LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 215

By Lemma 4.12, Proposition 4.5, the snake lemma and the dimension argument
used in the proof of Corollary 2.15 we see that Im(exp) = H 1

f (GK, V ) is contained
in the image ofα. This finishes the proof of Theorem 4.1.

Finally Lemma 4.12 and the same methods as developed in Section 3 immediately
imply Theorem 4.2.

4.13. Let CHr(X), resp. CHr(X) be the Chow group of cycles of codimensionr
on X, resp. onX modulo rational equivalence. SinceX as a semistable scheme
is syntomic over OK we have well-defined syntomic cycle class maps
clsyn: CHr(X) → H 2r

syn(X, S
[r]
n ), whereS[r]n is the sheaf of Fontaine–Messing.

They are induced from Chern class mapscr,syn on K0 via Grothendieck’s com-
parison isomorphism between higher Chow groups andK-groups and the formula
clsyn= ((−1)r−1/(r−1)!)cr,syn. If π : (X)∼syn→ (X)∼et denotes the evident morph-

ism of topoi, one has a canonical map of complexes inDet(X) Rπ∗S[r]n → s
log
n (r)

by adding log poles ([Ka4], p. 286).
By composing this map with clsyn and passing toQp-coefficients we get a log-

syntomic cycle class cllog
syn: CHr (X) → H 2r(X, s

log
Qp(r)). We also have the étale

cycle class map clet: CHr (X)→ H 2r
et (X,Qp(r)).

Now let

CHr (X)0 := ker(CHr (X)→ H 2r
et (X,Qp(r))

and

CHr (X)0 := ker(CHr (X)→ CHr (X)→ H 2r(X,Qp(r)).

The map is obtained by composing clet with the canonical mapH 2r
et (X,

Qp(r)) → H 2r(X,Qp(r)). From the Hochschild–Serre spectral sequence we get
a map also denoted by clet: CHr (X)0 → H 1(GK, V ). If the reduction ofX is
ordinary in the sense of ([H1] (1.9)) we know that the spectral sequence ofp-adic
vanishing cycles degenerates atE2 up to bounded torsion by ([H1] Thm. 1.10).
This implies that the canonical map(X = X×OK OK),H

2r(X, τ6rRj∗Qp(r))→
H 2r(X,Qp(r)) is injective. By ([Tsu] Thm. 3.3.4) we have an isomorphism
H 2r(X, s

log
Qp (r))

∼= H 2r(X, τ6rRj∗Qp(r)). Assuming the compatibility of the log-

syntomic cycle class (onX) with the étale cycle class map (onX) under Kato’s
and Tsuji’s comparison map we see that the above map cllog

syn is – at least
in the ordinary case – expected to induce by restriction a map cllog

sn : Chr (X)0 →
H̃ 2r(X, s

log
Qp (r)). Then the desired compatibility of the log-syntomic cycle class

with the étale cycle class map can be formulated in the following
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CONJECTURE.The following diagram commutes

CHr (X)0
can-- CHr (X)0

H̃ 2r(X, s
log
Qp(r))

cl
log
syn

?
α- H 1(GK, V )

?
clet

If X is smooth and projective overOK , i.e., in the good reduction case, a similar
compatibility has been recently shown by Niziol [Ni]. Perhaps her methods do ap-
ply here to prove this Conjecture, which holds in fact forr = 1 by [Ka4], (5.6.4.)).
Therefore, Theorem 4.1 gives – under the assumption (H) – a modest evidence
that the image of the étale cycle class mapcet is contained inH 1

f (GK, V ) =
H 1
g (GK, V ). This expected relation would give some local support to a ‘global’

Conjecture of Bloch–Kato ([B-K], Sect. 5) on the motivic cohomology of a smooth
projective variety over an algebraic number field. Of course the above Conjecture
can also be formulated for the higher algebraicK-Theory ofX, resp.X and the
more general results on log-syntomic cohomology proven in Section 2 may become
useful after proving the compatibility Conjecture in general. All this will be further
discussed elsewhere.
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