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Abstract. In this paper we study — for a semistable scheme — a comparison map between its
log-syntomic cohomology and the-adic étale cohomology of its generic fiber. The image can be
described in terms of what Bloch and Kato call the local points of the underlying motive. The results
extend a proven conjecture of Schneider which treats the good reduction case. The proof uses the
theory of logarithmic schemes, some crystalline cohomology theories defined on them and various
techniques inp-adic Hodge theory, in particular the Fontaine—Jannsen conjecture proven by Kato
and Tsuji as well as Fontaine’s rings pfadic periods and their properties. The comparison result
may become useful with respect to cycle class maps.
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0. Introduction

For a primep let K be a finite extension o, and letX be a smooth projective
variety overK . Let X := X xx K, wherek is an algebraic closure & . Consider
the motive H' (X)(r), wherei andr are integers and-) denotes the-fold Tate-
twist. We defineV to be thep-adic étale conomology‘ (X, Q,(r)) together with
its GalK /K) =: G-action. Wherp > 3 andX has good reduction, i.e., if there
exists a smooth proper mod#l of X over the ring of integer®y, then Fontaine
and Messing and Kato were able to construct a canonicallﬂ@ﬁhx ,5Q, (1)) —

Hi (X, Q,(r)) from the syntomic cohomology tp-adic étale cohomology.
Assuming that)X¢ is smooth and projective we have, for= 2r — 1, the iso-
morphism g: Hi™ (X, Q,(r)) > HXG, V) by a weight argument and the
Hochschild—Serre spectral sequence.
Let H}(Gk, V) := ken(H'(Gk, V) = HXGg, Buys® V). Here Byysis the
ring of p-adic periods constructed by Fontainei £ 2r — 1, 2r, Schneider'sp-
adic points conjecture predicts the following commutative diagram with vertical
isomorphisms.
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HIH(X, sg, (1) — HGHX, Q,(r)

syn

Hi(Gg, V) —— H'(Gg, V)

This provides a very nice alternative description of the grd&iﬁowhich can be

interpreted as the group @f-adic points of the motivé?’ (X)(r) (compare [BK]
and [S], Sect. 1).
The conjecture has been proven in the following cases:

— K/Q, unramified and < r < p — 1 (joint work by S. Saito and the author
[L-S], Sect. 6),

— more generally fop > 2, and no restriction on the ramification by Jan Nekova
[Ne].

The purpose of this paper is to study a semistable analogue of this conjecture. This
was suggested to me by K. Kato and S. Saito. Nowlaave semistable reduction,

i.e., there exists a regular proper modedf X such that the closed fib&rof X is a
reduced divisor with normal crossings . Equivalently,X is étale locally given

by SpecOk[Ty, ..., T;1/(Ty...T, — ), wherer is a uniformizing element of

Ox. Letsi° () be the log-syntomic complex ai)e as defined by Kato ([Ka4],

Sect. 5) and Tsuji ([Tsu], Sect. 2.1), using the construction ‘2 "¢’ for r < p,
whereg is the Frobenius and extended by Tsuiji toallTsuji defines a second

log-syntomic complex.°®(r) via the mapp” — ¢ ([Tsu], Sect. 2.1). The definition

of the complexes will be given in Section 1. Kato and Tsuji define canonical maps

59(r) =2 519 (r) <20 i i*RjZ/ P (),

wherei: Y — X, j: X — X are the canonical inclusions. By ([Tsu] (2.1.2)), the
kernel and cokernel af; is killed by p”, thuse; induces a canonical isomorphism

~

. | ~ . lod/
Hr{aive(xa S(Ss(r)) - Hr{aive(xa S(SS (r))’

where the naive cohomology is obtained by taking inverse limits and tensoring
with Q,. Due to an exactness problem that occurs when passi@g-tmefficients

in various long exact cohomology sequences, we have to consider continuous log-
syntomic cohomology

—_— —_—

Hiond 3, 550 (r)) = Heont( X%, 53,°(r) ®2, Q.

—_— —_—

Wheres'Zo[f’(r) is considered — via the projective syst(a:t?g(r)),, —as a complex of
Z,-sheaves that live in a suitable derived categorf.pisheaves. For details, we
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refer the reader to ([E]). Important for us is the fact that the continuous cohomology
sits in a short exact sequence

—~—

0 — lim* H/7X(X, 5°°(r) ®z, Qp — Hon(X. s"’g(r))

I‘l

/—\_/

— Hn’a,ve(x s (r)) — 0.

Of course, the same construction works fBP/(r) ande; induces an isomorph-

ism H (X, s(gg(r)) ~ HI (X, sgf/(r)). In the following, we will just write
HI(X, s'°g(r)) HL (X, sgf(r)) to denote one of the tw@,-vector spaces.
Lemma 1 5 and the proof of the Theorems will show that both cohomology groups
will work. &, induces a canonical map

HHX, 5580r) = Higad %6, 50°(r)) =2+ HEH (X, Q, ().
Assuming thatH+1(X, Q,(r)¢* = 0, the Hochschild—Serre spectral sequence
provides a mape: Ht1(X, s'°g(r)) — HY(Gg, V) and one may ask what is the

image of this map. Kato and Saito suggested that a good candidate &oisim
Hgl(K, V) in the sense of Bloch—Kato [B-K], i.e.,

H}(K,V)=ker(H'K,V) - H"K,Bs;r ® V).

After an analysis of the semistable situation it turns out that a good formulation of
a semistable analogue of tieadic points conjecture is given as follows

CONJECTURE.Let X anda be as above and assume that™ (X, Q,(r))%% =
0= H'(X, Q(r))°* for all primest. Thenlm o = H;(K, V).

LetD; = ngg orys((Y, M) /(W (k), W(L)), 0% ®yw Ko be theith log-crystalline
cohomology (® Kp) of the closed fiberY, equipped with an action of the
monodromy operatoN and the Frobeniug. (Kg is the quotient field of the Witt
ring W.) We will also consider the log-crystalline cohomolog/ ((Y, M)/Spec

W, (1), L£), 0;,”°) which is a module ove#V, (¢), the DP-envelope of the closed
immersion SpedV, — SpecW,[t]. We will give the precise definition in Sec-
tion 2 and only note here that it is important in the construction of the monodromy
operator and in the context of semistable Fontaine—Laffaille theory that was studied
by C. Breuil ([Br]). Throughout the paper we will deal with the following technical
assumption(x) that is crucial for the existence of a certain exact cohomology
sequence (2.5) and Lemma (2.6).

The projective systertH’ (Y, M)/SpecW, (1), L£), Ox ),
satisfies the Mittag- Leffler condition

(+)
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Forj < p —2 andK/Q, unramified this follows from the works of C. Breuil.
More precisely, he showed that the cohomology groups

HY((Y, M)/ SpecW, (1), £), OF™%)

areW, (t)-modules of finite length foj < p — 2, hencex) holds (compare ([Br]),
Corollary (2.2.3.3) and Theorem (2.3.2.1)). Once the restrictive assumptions in
Fontaine—Laffaille theory can be removed one can expecto hold in general.

As the main result of this paper, we will prove the following theorem:

THEOREM 0.1. Let p be a prime andK a finite unramified extension @,.
Assume that < p—3or that the conditior(x) holds forj = i, i +1. If (D;)=9

_ p=p" =
0= (Diy)N=0, thenH* (X, Q,(r))%* = 0andIim(a) = HX(K, V).

Here(Di)f,ijr means the eigenspace where the Frobenius acts as multiplication by
p" in the kernel of the monodromy operator.

Remarks(1) The B;,-comparison isomorphism between the log-crystalline co-
homology andp-adic étale cohomology (proven by Kato [Ka4], Sect. 6 and Tsuji
([Tsu], Theorem 4.4) implies thal' (X, Q,(r))°* is contained in(D;1))=).
ThereforeH'*1(X, Q,(r))°¢ = 0 is zero by our assumption and the majis
well-defined.

(2) The p-adic and¢-adic monodromy conjecture imply that the vanishing as-
sumptions in the above conjecture are satisfied when 0 or r > (i/2) + 1.

A nontrivial example where these assumptions also hold is the mEt& ) (2)
where X is the self-product of a Tate-elliptic curve ($0= r = 2). Further-
more Mokrane’s Conjecture about the coincidence of the weight and monodromy
filtrations on log-crystalline cohomology ([Mo], Conj. 3.27, proven for curves
and surfaces [Mo], Sect. 5 and 6) that | consider as part ofptlaglic mono-
dromy conjecture imply that the Hasse—Weil zeta function can be computed using
log-crystalline cohomology, compare ([Mo], Thm. 6.3.3). This implies that the
conditions

(i) (D)Y=0 =0;
(i) H (X, Qu(r))%* = 0 for all primes;
are equivalent (compare the discussion in [J1], p. 348).

So we obtain

COROLLARY 0.1.1. The p-adic and ¢-adic monodromy conjecture imply the
semistablep-adic points conjecture, iK is unramified oveQ, andi < p — 3.

COROLLARY 0.1.2. The conjecture holds dimX < 2, p > 5andK/Q, is
unramified.

comp4061.tex; 12/03/1999; 15:19; p.4

https://doi.org/10.1023/A:1000829923416 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000829923416

LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 193

Using methods that are similar to those developed by Perrin-Riou ([PR], Sect. 2.2)
in her study of the lwasawa-theory of local Galois representations we will also
compute the kernel af.

THEOREM 0.2. Let the assumptions be as in Theorétl). Thenkera is
canonically isomorphic to the cokernel of the map~—! — ¢, acting on
coker(N: D;,_; — D,_;). Furthermore there is a canonical surjectign kero —
H?(Gg, H'=Y(X, Q,(r))). If the reduction ofX is ordinary in the sense ¢fH1],
1.9)thenn is an isomorphism.

The paper is organized as follows:

After a review of some notations and definitions of logarithmic algebraic geo-
metry introduced by Kato, Fontaine and lllusie we will prove Theorem (0.1) in
the second paragraph. An important step in the proof is a relation between the
crystalline cohomologyd' (X, M)/ W, O(SZS) that appears in the definition of the
log-syntomic cohomology (her® is endowed with the trivial log-structure) and
the log-crystalline cohomology; (more preciselyD; ® K/o(\t) whereK/o(\t) =
Ko Qw W and W is the p-adic completion of the DP-envelope @f[¢]).

Even though this crystalline cohomology is ‘big’ comparedXg its eigenspaces
under the Frobenius are ‘small’, i.e., finite-dimensiokgvector spaces. Another
tool is some Galois descent arguments applied to certain exact sequences in terms
of the rings of p-adic periods constructed by Fontaine and Byge-comparison
isomorphism between log-crystalline cohomology anddic étale cohomology
(proven by Kato and Tsuji). The assumption Pn is needed to assure that the
exponential map of Bloch—Kato maps on‘ﬁ}. This will imply that H} is actually
contained in the image af. The assumption oM, ; is used to show that the
image ofx is contained irH;. To prove the surjectivity on'ualéiL we combine Bloch

and Kato's local Tate duality with Poincaré duality on log-crystalline cohomology
(proven by Hyodo). Then Theorem (0.2) will be proven in the third paragraph.
Finally in the last paragraph we will consider the special ¢asel = 2r, which

we had to exclude in Theorem (0.1) and (0.2) for weight arguments. Of course, it
is of special interest when we want to look at cycle class maps.

1.In this section we recall some basic definitions of logarithmic algebraic geometry
that can be found in the papers of Kato [Ka3], [Ka4] and Hyodo and Kato [H-K]
and will be needed later.

Let Z be a scheme. All subsequent sheaves are taken with respect to the étale
topology. A pre-logarithmic structure ofis a sheaf of monoida/ on Z together
with a multiplicative morphisna: M — Oy, sending 1to 1M, a) is a logarithmic
structure whem induces an isomorphisatr1(0%) = 0%. Then(Z, M) is called a
logarithmic scheme. There are natural notions of morphisms between logarithmic
schemes, log-structures associated to pre-logarithmic structures, direct and inverse
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images of log-structures with respect to a morphignZ,; — Z,. The following
examples are very important.

(1.1a) Mz = O3 with the canonical inclusior0; C Oy. This is called the
trivial log-structure orz.

(1.1b) LetX be a semistable scheme ok as defined in the introduction.
LetM = Mx = OxNj, Oy — Ox,wherej: X — X is the inclusion
of the generic fiber. This is called the canonical log-structur&oifhis
notion generalizes to reduced normal crossing divisors on Noetherian
regular schemes. We can apply this definition to Spgdtself and get
the canonical log-structur® on SpecOg.

(1.1c) LetP be a monoid together with a homomorphiamP — I'(Z, Oy).
Then we can consider the log-structure, associated to the pre-log-
structureP; — Oy, induced by (where Py is the constant sheaf with
values inP on Z). Example (1.1b) is locally of this type: &tale locally
X = SpecOklTy,...,T;1/ (TI1, ..., T, — ), then consider the pre-
log-structure defined b)" — I'(X, Ox), (n;) — [[; T, M = Mx,
defined in (1.1b) is the associated log-structuréXormhe log-structure
N on SpecOg is induced byN — Ok, 1+ 7.

A log-structureM on Z is called fine, if étale locally there is a finitely generated
monoid P and a homomorphisth: P, — O, such thatM is isomorphic to the
log-structure associated to the pre-log-structurg, #). Of course Example (1.1b)
is of this type.

In the following all morphismsf: (Z,, M1) — (Z,, M) will be morphisms
between schemes with fine log-structures. There are notiofidmbe

a closed immersion ([H-K], (2.8));

an exact closed immersion ([H-K], (2.8));
a (log-)étale morphism ([H-K], (2.9));

a (log-)smooth morphism ([H-K], (2.9));
an integral morphism ([H-K], (2.10));

a (log-)syntomic morphism ([Ka4], (2.5)).

We can provide examples for these morphisms by using Example (1.1b): The
morphism(X, M) — (SpecOg, N) is log-smooth and integral ([H-K], 2.13.2). It
induces alog-smooth morphism in the closed fili&s\/;) — (Specdk, N1) where
M., N, are the inverse images with respect to the closed immelksien X, Spec
k — SpecOg. If Spec Ok is equipped with the trivial log-structure, then the
semistable schem# induces a log-syntomic morphis, M) — SpecOg. In
particular (X, M) is (log-)syntomic oveW = W (k), the Wittring of the residue
field of O.

Let (T, L) be a scheme with a fine log-structure such thatis killed by some
positive integer and assume tifats endowed with & D (= divided power) ideal.
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For a scheme with an integral log-structupé, M) over (T, L), we have the crys-
talline site((X, M) /(T, L))cys ([H-K], 2.15) and can consider its cohomology with
respect to the structure she@f /7. Let W, be the ring of Witt vectors of length
n and denote by, (L) the log-structure associated tor 0 as a morphism
of monoidsN — W, on W,. We have closed immersions Spgec> SpecW,
and (Sped, N;) +— (SpecW,, W, (L)), where in the first immersion we con-
sider trivial log-structures. LeX; be a semistable scheme with closed filver
as in Example (1.1b) and Iét, = X ® Z/p". Then we have crystalline sites
(X, M)/ SpecW,)erys, (Y, M1)/SpecW,)crys, (Y, M1)/(SpecW,,, W, (L)))erys,
where M,, is the inverse image o#/ and in the first two sites, Spe&, is en-
dowed with the trivial log-structure. In particular we recover the log-crystalline
cohomology

D; :=lim H'((Y, M1)/(SpecW,,, W, (L)), 0™ ®w Ko

in the introduction, where, is the quotient field ofW (k). Let U be the open
subscheme of which is smooth ovek, u: U — Y. We recall the notion of a de
Rham-Witt complex¥,»; on (Y ) Which is a certain subcomplex of the graded
differential algebrau,.W,2;, where W, ;, is the usual de Rham-Witt complex,
compare ([H-K], 1.1). By Proposition (1.5) in [H-K] we have an exact sequence of
complexes

0 — W,0y[-1] — W, 0y, — W,0, — 0
ar+—ab, 6r— 0, (1.2)

whereW, ) is a modified de Rham-Witt complex, defined as a cengjnOy)-
subalgebra of the graded diff. algelrg W, Q2;,)[01/62, whered is an indetermin-
ate in degree one satisfyity = (—1)“6 fora € u, W,Q{, and @ = 0.

The connecting homomorphism of (1.2) defines the monodromy opevator
the log-crystalline cohomology, using Theorem 4.19 in [H-K]. In the proof of the
Theorem we will also use an alternative description of the exact sequence (1.2) via
crystalline complexes.

For a logarithmic scheméZ, M) that is syntomic oveW, letZ, = Z ® Z/p"
and M,, the log-structure orx, induced byM. In [Ka4] Kato defines a complex
59 () in De(Z,) via embedding systems into scheme®, M’) that are log-
smooth oveW and have an action of the Frobenius. We do not give this definition
here but refer to an alternative descriptions'ﬁf (r) that Kato uses in his paper
([Ka4], p. 286) and that is based on Theorem 1.7 in [Ka2]:

DEFINITION 1.3. Letr < p. Thens? () is defined to be the mapping fiber of

1-p~"p
Rucz, m wos (T4 w) =% Rucz, mp/wu(0z,/w,),
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whereu: ((Z,, M)/ W)ays = (Zn)at is the canonical morphism of topoi and
I}y, is therth divided power ideal sheaf o, y, = ker(0z,,w, — 0z,).

Tsuji generalizes this definition to the case= p. It is more complicated and
we refer the reader to [Tsu], Section 2.1.

DEFINITION 1.4 [Tsu]. Forr > 052 (r) is the mapping fiber of

p—p"
Ru(Zn,Mn)/V%z*(Jg,,]/W,,) — Ruz, m,)/w,(Oz,/w,)-

Remark. Definition (1.3) is the natural log-syntomic analogue of the syntomic
complexeskv, S, that were studied in [Kal]. Hergl"! is the syntomic sheaf of
Fontaine and Messing [F-M] angt (Z)5, — (Z)¢. According to Kato ([Ka4],

p. 286), ‘adding log poles’ defines a canonical morphmSI! — s,lfg/(r).
Let now

H/((Z, M/ W, 03" := Hyon((Z, M)/ W, 03%) ®2, Q,,

where, H. .. (Z, M)/ W, 02’5) is the continuous cohomology of the projective

system (0%, which is defined similarly as continuous étale cohomology in
([J3]). It sits in an exact sequence

0 — lm*H/=Y(Z, M)/ W, O;™) ®z, Q, — H'(Z, M)/ W, 05 )
n

— lim H/(Z, M)/ W, O™ ®z, Q, — 0.

n

Similarly one defines continuous cohomology
HI((Z, M)/ W. Jg). HI(Z. M)/ W. 05/ I}y and HI((Z, M)/ W. 55 (r))

(compare the Introduction). In the following cohomology wih-coefficients will
consistently mean continuous cohomology, if not stated otherwise. The naive co-

homology lim__,, H/( )®z,Q, will be denoted b)Hr{aive( ). The following Lemma
is now clear.

LEMMA 1.5. There is a canonical isomorphism
s1: HI(Z, M)/ W, 552 (1)) — H'((Z, M)/ W, 55" (1)
that fits into a commutative diagram of exact sequences of continuous cohomology
— HI7Y(Z. M)W, 052 — HI (z. M)/ W, 5T () — B (z. M)/ W, 1)) =
P P r
:l 811% El»pr

— HI7Y(z, M)W, 0SS — Hi(z, M)W, 59 ) — HI((z, myyw, g7y 228
Qp Qp Q!’

comp4061.tex; 12/03/1999; 15:19; p.8

https://doi.org/10.1023/A:1000829923416 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000829923416

LOCAL POINTS OF MOTIVES IN SEMISTABLE REDUCTION 197

Indeed, the exactness of the horizontal sequences is clear because we work with
continuous cohomology, the commutativity follows from the explicit construction
of the mape, in ([Tsu] (2.1.2)).

Remarkl.6. We recall that for the closed fibEy k of a log-smooth morphism
(X, M) — (SpecOg, N) the ‘naive’ Hyodo—Kato cohomology

D; = lim H'((Y, M1)/(SpecW, (k), W, (L)), O;”°) ®w Ko

coincides with continuous cohomology because
H'((Y, M1)/(SpecW, (k), W, (L)), O

is of finite length overw, (k) (compare ([H-K]), (3.2))). In the next paragraph
we will see that in two other important cases continuous cohomology coincides
with naive cohomology. This will enable us to relate log-syntomic cohomology to
Hyodo—Kato cohomology and to exploit the well-known properties of the latter
one.

2. In this section we will prove Theorem (0.1). Recall that we assumeKHat,
is unramified.

LEMMA 2.1. There is a canonical isomorphism
H'((Y, M1)/ W), O™ —= H' (X, M)/ W,), OF¥)  for alliand alln.

Here we takeM to be the canonical log-structure d and M, the inverse image
of M on the closed fibeY. SpecW,, is endowed with the trivial log-structure.

Proof. The classical rigidity property of crystalline cohomology says that given
a PD-schemé& = (S, I, y) and a closed subschemig<— S defined by a sub-PD-
ideal of I and aS-schemeX with Xg = X x5 So we have

H'((X/S)eys 0%)5) = H' (Xo/S)eys: Oxors)

(compare [B-O], Theorem (5.17)). Now it is easy to see that the proof of this
rigidity theorem also works i is equipped with a log-structur® and My, is

the induced log-structure olo. Apply this to (X, M) = (X,, M,) overS =
(SpecW,, (p)) andSy = Speck. SinceK /Q,, is unramified we hav&o = Y and
Lemma (2.1) follows.

Recall the exact sequence of the de Rham—Witt complexes (1.2)

0 — W,0y[-1] — W, 0y — W, 0y — 0
a — ab
6 — O
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In the following we will also work with an alternative construction of the mono-
dromy-operator via crystalline complexes, given in ([H-K], 3.6).

Consider the exact closed immersigm,, W, (L)) — (SpecW, [t], L£), where
L is the log-structure associated ¥ — W,[t], 1 — ¢ and the morphism is
defined byw,[t] — W,,t - 0, L — W,(L),1 € N — 1 € N. Take an em-
bedding systentY', M) — (Z', N°) of (Y, M;) — (SpecW,[t], L£) in the sense
of ([H-K], 2.18). Note that(Z‘, N') is also log-smooth over Spe¥, endowed
with the trivial log-structure. This uses the fact tli&pecw, [¢], L£) is log-smooth
over SpedW, (I (SpecW,,[1], wg-SpecW,,[t],BC)/W,,) is a freeW, [r]-module of rank one
with based log (1)), compare ([Ka4] (3.2)). Le€y,y, be the crystalline complex
associated to the embedding systém, M) — (Z', N') (over SpecW,, triv.)
and Cy speaw, 1) (W, (t) is the PD-polynomial ring oveW, in one variabler and
SpecW, (t) is endowed with the inverse image &) be the crystalline complex
associated to the embedding systeém M) — (Z' X speaw,[1] SPECW,(t), (N')),
where (N')’ s the inverse image aV'. For the notion of crystalline complexes
we refer to ([H-K], Definition 2.19). According to ([H-K], 3.6) we have an exact
sequence of complexes

0 — Cyspeaw,(n[—1] — Cy;w, — Cy/specw, iy —> 0
a+—— aANndlogr. (2.2)

Letd: (Y')g — (Y)g be the obvious morphism of topoi. ApplyirRp. to the exact
sequence (2.2) and using ([H-K], Prop. 2.20), we get the following exact sequence
in D(Y)et

0 — Ruy,my/speaw, 1),.£)(OYN[=1] = Ruy py w, (07

— Ru(y, my)/specy 1), £) (O —, (2.3)

where O°Y* denotes here the structure sheaf (@H, M1)/SpecW, (t), L£) resp.
(Y, M1)/W,).

On the other hand, if one tensors (2.2) wit#f) (with respect tow, (r) — W,,
1 = 0,i > 1) one gets the exact sequence

0 — Cyw,wanl=11 — W, ®w, i) Cy,w,
— Crywawywpy — 0 (2.4)

whereCy ,w, w, () is the crystalline complex with respect to the embedding-system
Y, M) = (Z Xspeaw,ir] Wa, (N')"), where(N")" is the inverse image oV’
Applying R6, to (2.4) we get an exact sequence of complexedDoh); that is
quasiisomorphic to (1.2) (this is shown in [H-K] (4.20)).

By our assumptiorgx) the projective system

(H’((Y, My)/(SpecW, (1), £), O5Y9)),
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satisfies the Mittag—Leffler condition and we have an isomorphism
Hion((Y, M1)/(SPECW (1), £, 05"%) = Hyiyo (Y, M1)/(SpecW (1), £), 0g"°).
Applying the crucial base change argument ([H-K], Prop. (4.13)) to
o (Y, M1)/(SPECW (1), L£), O5*%)
and taking continuous cohomology of (2.3) we get a long exact sequence
— HN(Y, My)/(SpecW, W(L)), 0g*) @k K (1)

~aiegr H'(Y. M)/ W. 0, (2.5)

— H'((Y, M1)/(SpecW, W(L)), 0g"*) ®x K1)

= H'((Y, M1)/(SpecW, W(L)), 05> @k K (1) —

wheref(?) = K Qw W(t), W is the p-adic completion of theD P-envelope
of W[t] and Ng7, is induced by the connecting homomorphism of (2.2), such that
Ngi ® K is the usual monodromy operatdr that is defined via the connecting
homomorphism of (2.4).

(2.5) and (2.4) induce a commutative diagram

H'=Y((y, M1)/(Specw, W(L)), 0°“ys>® K{i) —g H'~H(Y, M1)/(SpecW, W(L)), O”VS)

Ad logt

H' (Y, My)/ W, 0g%) H(Y, Way)g,

H (Y. M1)/(Spec., W(L)), 05*%) ® K(1) ——g= H' (Y. M1)/(SpecW, W(L)), 0”9
where the vertical exact sequence on the right is the long exact cohomology se-
quence associated to (1.2) and using ([H-K], Theorem 4.19)DL.et= H/ ((Y, M1)/
(SpecW, W(L)), Ocrys) denote the log-crystalline cohomology as in the Introduc-

tion. Since the Frobenluﬁ acts orr via ¢(t) = t”, any eigenspace @f acting on
D; ®k K1) is already contained i®;. The monodromy operatav g7, is equal

toN ® 1+ 1® N whereN (t1") = nt[”] on K (). Now we show

LEMMA 2.6. (i) coker (Ngp))g—pr—1 = COKENN),_r-1.
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(ii) ker Ng7;, = ker N (N considered orD;).
(iii) There is an exact sequence
0 — cokerN: D = D)yt — HH(Y, M)/ W, Og)) gy
— (Di+l)$)]::,?r‘

Proof. (ii) is clear from the formulaVgr;, = N ®1+1® N, (iii) follows from (i)
and (i), so it remains to show (i). The canonical nMapR K{t) — D;(t™ — 0,
forn > 1) induces a surjection

cokerNgp r-1 —» COKeNN)y_,r1.

Jo=p

Letx e ker(D; ®x K(r) — D;) such that(l — p*~¢)x = Ngp(y) for some
y € ker(D; ®x K(t) — D;). Then

x = A= po) N () =D (0 0 Ny ()

n=0

= Nepy [ D (r70)"y | = Ny = p79) 7 (y)

n=0

lies in the image ofVg7;,, as required (we have used the formigg, ¢ = pe Ny
that) ", o(p~*¢)"(y) converges —fos > 0 andy = 1"'®@m, m € D; —uniformly
in k, will be shown in the proof of Proposition 3.1).

Lemma 2.6 will play a crucial role in the proof of Theorem 0.1 as well as the
following

LEMMA 2.7. There is a canonical isomorphism
Vi Higd (X, M)/ W, 057/ 51y — Hjpr(X)/Fil".
Here

Hyane (X, M)/ W, 037/ = lim H' (X, M,/ Wa, O/ I © Q,

and Fil" is therth step in the Hodge filtration o}, ,(X). Moreover H; ,; (X,
M)/ W, 05/ J&) is isomorphic to the continuous cohomolag{((X, M)/ W,
05"/ I

Proof. We closely follow the proof of ([K-M], Lemma (4.5)). Take an exact
closed immersionX,, M,) — (Z,, N,) such that the ideal of X, in Z, is
generated at each point &f, by a regular sequence and such #t, N,) is log-
smooth oveW,,. Let D, be the PD-envelope &fX,, M,) in (Z,, N,) andI!" the
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rth divided power of ketO, — Ox,). Note thatD,, coincides as a scheme with
the classical PD-envelope of the closed immersiopn — Z, ([Ka 3], (5.5.1)).
ThenRu'(c;gn’M)1)/W;(J,{”/J,[’*”) is represented by the complex

d

r] ) lr+1] 1070 o 1 ,
L/ L/ LT ® o, nyw,

- DY/ ®@ Wy, Ny w, — (2.7.1)

Since X, is syntomic overW, the direct sum®,z1"!/1'+ is isomorphic to

the divides power-polynomial ring on the locally free shéaf?. In particular
11"1/1I"+1Tis isomorphic to the degreepart (/7% which is again locally free by
([B-0O], Prop. A2). Now all entries of the complex (2.7.1) are locally free sheaves
of finite rank on(X,)et. SinceX,, is proper the cohomology of these sheaves is
a finite W,-module. Now the hypercohomology spectral sequence associated to
(2.7.1) shows thatl’ ((X,/M,)/W,, JI'1/Jl"+1) is a finite W,-module. An easy
induction argument shows that the same property holdstHfai(X,,/M,)/ W,,,
0,7%/JI". In particular we get the isomorphism between continuous and naive co-
homology for0®¥s/J'"1. The canonical mapl®/ 1M @w, v w. = ©(x, u/w,
defines a map

log (r1/ ylr+1]
Rutesg, waywy (a0 —— @,y yw, [7]-

Since the generic fibeX of X is smooth, this map induces an isomorphism

I . .
Ruyte I | TR — 0% x[=r1In Q @ lim D(X,., Ox,)
n

(for the notation compare [K-M]). To finish the proof of Lemma (2.7) one just
follows the argument in ([K-M, Lemma 4.5).

Remark2.8. This Lemma is implicitly used by Kato in his proof of ti#g,-
comparison isomorphism ([Ka 4], (6.4)). It actually holds more generally for
schemes that are log-syntomic oW and such that the generic fiber is smooth
and it provides a log-syntomic analogue for Lemma (4.5) in [K-M].

We are now ready to prove the following proposition:

PROPOSITION 2.9.The following diagram is commutative:

H' (%6, M)/ W, 05" — H™NX, s0%(r) —  HPH((6, M)/ W, JG)) e

i I i

Hpyr (X)/Fil’ HYK,V) HY (K, Berys®q, V)

exp
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Here HIT1((X, M)/ W, J(gp])(p:pr is a shorthand for

ker(H+((%, M)/ W, J&) YO HITL(X, M)/ W, OCWS))

and2 is equal to the composition

H (X, M)/ W, 0°W$) — ker(Ngp))

- -1 - .
= DI‘.N_O w» DiN—O — D,’ —> Dl/F”r

The assumptiori D; )(p » = 0 implies thatp™¢ — 1 is invertible onD¥=0. The
upper horizontal exact sequence is obtained from the diagram in Lemma (1.5). The
lower horizontal sequence is exact, becausekp = H}(K, V), where as in the

introductionV = H' (X, Q,(r)). (Note that by using our assumptioh; )g 19 =0

and theBg-comparison-isomorphism we ha\Hé}(K, V)/HXK,V) = 0, com-
pare ([B-K], Sect. 3.8) is defined via a composite map

HH(6, M)/ W, T Dy

= H™YY((6, M)/ W, 05 e L HY(K, Bays® V)

wherea is given as follows:
There is a canonical map

H (36, M)/ W, OFY) — Higtd (X6, M)/ W, 05" —~ (B ®k Dizn)"=°

naive

by ([Ka4], Theorem 4.1) which maps tlge= p"-eigenspace into

(B, ®k DizD)"=0g%, = (Diyp))=0  and (Diy1))

p=p" = wp’_

by our assumption. So the Hochschild-Serre spectral sequence associated to
RT(Gg;)o RHO((X, M)/ W, Ocrys) definesz as a boundary map, where we use

the Fontaine—Jannsen Conjecture (proven by Kato and Tsuiji) that provides us with
a map

alve((x M)/W OCWS) — (B Rk D)N =0
— (Ba®x D)N°

= (Bst ®Q,, )N 0~ Bcrys ®Q,,

Proof of Proposition2.9. We first show the commutativity of the right-hand
side. Tsuiji has proven that there is a canonical isomorphism between the cohomo-
logy Jfr(z*sn *9(r)) and the sheaM| = i*R" j.Z/"(r) of p-adic vanishing cycles
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([Tsu], Thm. 3.2). His proof relies on a filtration Fidn M), that was defined by
Hyodo ([H1], (1.4)) and is induced by a symbol map on Mildo#theory. Hyodo

has shown ([H1], Thm. 1.6) that the highest graded quotiefw/{rsits in an

extension

-1
0— Vvﬂw;,log - grOM; - Vvﬂw;,log — 0,

whereW, a)Y log are the modified logarithmic Hodge—-Witt sheaves ([H1] (1.5)). On
the other hand Hyodo and Kato ([H-K], Prop. 1.5) constructed an exact sequence of
Hodge-Witt sheaves 8— W, o} * — W, @}, — W, o}, — 0and used the
connecting homomorphism on the level of cohomology to define the monodromy
operator on log-crystalline cohomology. It follows from the work of Tsuiji ([Tsu],
Sect. 2.4) that there is a commutative diagram

r—1 Oagr r
0 — VVﬂwY,Iog — grM, — anmog —0

b

-1 ~
0 — Wyt — W,d) —— W,0, — 0

such that the upper exact sequence is obtained by taking the kernel Bfekcting

on the lower exact sequence, whétés the Frobenius. The canonical map of com-
plexesW,o}[—r] — W, ®; yields a canonical map on the eigenspaces of the
FrobeniusH' ™" (Y, W,a}) =t — H'TL(Y, W, cby)(p:pr. From (2.6) we get the
canonical isomorphisnH (X, M)/ W, Og )=y = (H*HY, Widy)Q,)g=p

and therefore a commutative diagram

. | .
HEF (., s&(r)) HITY o, My w, Jé’i)w:pr

HEH (X, 1<, RjaQp(r) — HT (L gPMgy ) —— HIFHO6 M)/ W, 05 V= pr

In order to see that the ma (X, s'°g(r)) — Hi{N(X, Q,(r)) actually factors
through HiH (X, <, Rj.Q,(r)) we need an additional argument. In ([Kal], The-
orem (3.6)) Kato shows that for a syntomic scheméV andr < P his complexes
5°9(r) that are defined in the same way as Tsu1| s compleX8sr) but without

log-structures satisfy the vanishing propw@ﬁ(s,, X)) = 0forg > r. Now the
proof is the same when we consider a log-schémel) that is syntomic oveW

and work with the complexes®® () for < p. By using Tsuji's extended defin-

ition of 5:°9(r) ([Tsu], Sect. 2.1) for > p it is then easy to se?(s\% (r)) = 0
for ¢ > r and no restriction on by the same arguments as in Kato’'s proof.
Therefore the left vertical map in the above diagram is well-defined. Finally, it
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follows from the construction of thBs-comparison isomorphism ([Ka4], Sect. 6)
and the functoriality of the Hochschild—Serre spectral sequence that the diagram

HH (X, 1<, RjxQp(r) — HH(X, M)/ W, 05 )y

l&

HY(K,V) HY(K, Beys® V)

commutes. From the above explanations the commutativity on the right-hand side
of the diagram in (2.9) is clear. Furthermore, ([Ka4] 6.4) implies thdactors
through

o

H™H(X6, M)/ W I ey ——  HY (K, Fil' (Bays® H' (X, Q))))

—— HYK,Bays® V).

Now consider the following commutative diagram

i r 1-p7 i
H' (%, M)/ W, Jg)) T H'((X, M)/ W, 05

| |

0— V — Fil'(By®x D)V=" ——Y— (By®@x D)V — 0.
Here the lower exact sequence is derived from tensoring the exact sequence

0— Q,(r) = Fil" (Bay) 2% Bgys— 0 ([Fol], 5.3.7)

with H'(X, Q,) and then applying thBs-comparison-isomorphism. Taking Galois-
invariants yields a commutative diagram

H' (%, M)/ W, O HEFH (6, 552(r)

| I

Hh XN/ 1~ p7 o) (FiIlNY¥=0 — HY(K, V)

using Lemma 9.5 in [J2] and the isomorphiddp = H} ,(X) ([H-K], Thm. 5.1).
By our assumptioriFil")}=0. = 0, so the inverse ofl — p~"¢): D¥=° — DN=°
induces an isomorphism

H}y o (X)V2/(A = p~ @) (FINN=0 =+ H, (X)V=0/(Fil)N=°
and we get by composition a commutative diagram

H' (%6, M)/ W, O5¥%) —— HGH (X, s82(r))

| i

Hp (XN (FiIlN=0 — =2 HY (K, V)
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It remains to show that the lower horizontal map is the restriction of the exponential
map in the sense of Bloch—Kato. (Note that the radpat appears in the diagram
(2.9) coincides with the left vertical arrow in the above diagram composed with the
canonical map =2/ (Fil")"=% — D, /Fil".) Consider the following commutative

diagram
—reilr p+ 1—¢ —-r p+
0 Q, t7"Fil" Bys —— 17" Byys 0
_\ 01 02
0 QP B;ysEB B;R — Berys® Bur 0.

In this diagram (and only here, so there is no confusion with the element
defined earliery denotes the element defined via the inclusign(l) — BZ.
in the sense of Fontaine. The upper exact sequence is a version of ([Fol], 5.3.7),
the lower exct sequence is the one derived by Bloch and Kato ([B-K], Sect. 1),
6, and 6, are given as followsf,(x) = (x, ¢(x)), 62(x) = (x,x). (Note that
7" Fil" B¢ is contained inB,, so the definition makes sense.) After tensoring
the above diagram wittv = H'(X,Q,(r)), using the formulaB¥=C = B¢y
and applying theBg-, resp. B,z-comparison isomorphism it is easy to see that
Hi o (X)V=0/(Fil")N=0 <=2, H1(K V) is the restriction of the exponential map
DR(V)/DR(V) -2+ H(K, V). Another proof for the commutativity of the
first square in Proposition 2.9 has been pointed out to me by the referee and is

given as follows:
— The mapH' (X, M)/ W, 05" — HE™H(X, sgf(r) —. HY(K,V)is equal
to
H' (%, M)/ W, 05%%) ==+ (Ng)
= D=0 L+ Cokers) = Hi(K,V) C H'(K, V),

wheres: DV=0 — DN=C g D, /Fil" is given bys(y) = (1 — p~9)(»), )
andy (x) = the class ofx, 0).

— The exponential map of [B-K] expD; /Fil” — Coker$) = H}(K, V) is
given by expx) = the class of0, x).

— The following commutative diagram is commutative:

H'((X, M)/ W, 05"%) — H'((X, M)/ W, 05/ I )

| i

DN=° D, /Fil"
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Consequently, it € DV=%andx = (p~"¢ — 1)(y) with y € DV=0, then the
class of(x, 0) in Cokeré) is equal to the class df, 0) + §(y) = (0, y), i.e.,
exp(y), as claimed.

This finishes the proof of the Proposition.

We study the right-hand side of the diagram in Proposition 2.9 in more detail. Using
(2.6), Lemmas 2.1 and 2.7 and our assump(ml)g’;?, = 0 we can draw the
following conclusions:

() The mapH (X, M)/ W, J(gp])wz,,, — HTL(X6, M)/ W, ogpys)wz,,r is sur-
jective.
(i) HHH((X, M)/ W, 0&{ o=pr IS contained in

—

= ) ) i+1 crys
Y= |mage(D, — D, %K(z‘) I H™((Y,M)/ W, OQp ) .

Now using Fontaine’s exact sequence ([Fo] 3.2.3)

N
0 Bcrys Bst Bst 0,

tensoring it withV, applying the Bs-comparison-isomorphism and takir@y -
invariants we get a commutative diagram

coker Hi o (X) X~ Hi (X)) = b
l& (2.10)
H*(K, Berys® V).

Here the commutativity follows again from ([J2], Lemma 9.5). As a result we
obtain

LEMMA 2.11. « is injective and
kera = ker(H'*1((X, M)/ W, J(gj) —— H™MY(X, M)/ W, 0&{ .
The above diagram (2.10) also shows that the composite map
T —= HYK, Bays® V) —= H' (K, Bx® V)
is zero.
Let HY(K,V) = ker(HY(K,V) — HYK,Bs ® V). Then we have

Hg(K, V) = H;(K, V). This is an unpublished result due to Hyodo that is quoted
in ([Fo2], 6.2.2) and has also been proven by Nekdjide], 1.2.4).
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We immediately get by combining this result with Propositions 2.9 and 2.10.
LEMMA 2.12. Ima C Hy (K, V).
PROPOSITION 2.13.The composite map
HEP(X, S(BS(r)) ——~ H}(K,V) — H}(K.V)/H;(K,V)

is surjective.
Proof. It remains to show that

COKeN Hjy o (X) —o H}) (X)) pr1 = HYL(X, M)/ W, 08{{ o—p (2.6)

is isomorphic toH (K, V)/H}(K, V) =: Hgl/H}.
Now H,/H is, by local Tate-Duality, dual to

Hy(K, H*7(X,Q,(d + 1—r)))/HXK, ..))

and this vector space is, by thBs-comparison-isomorphism isomorphic to
HX1(X)N=0/1 — f. Hered is the dimension ok and f acts app~“**") . ¢,
whereg, is the Frobenius on log-crystalline cohomology. Using Poincaré duality
for log-crystalline cohomology ([H2], (3.7)) we obtain an isomorphism

H;/H; = cokeN: Hpp(X) —> Hpp(X)) -1
where f acts ap~""Pg,. This finishes the proof of Proposition 2.13.

LEMMA 2.14. In the commutative diagram in Propositi@® the canonical map
kera — kera, which is induced by the snake lemma, is the zero map.
Before proving Lemma 2.14 we finish the proof of the main theorem.
COROLLARY 2.15. The canonical magera —— coker(A), that is induced by
the snake lemma, is an isomorphism.

Proof. The short exact sequence-8 JI"' — 0,”° — 0ll/JjI"l — 0in
(Xns Mu/ Wi))grys implies — in the associated long exact continuous cohomology

sequence witl{) ,-coefficients — an isomorphism of finite-dimensior)-vector
spaces (use Lemma 2.7 and 2.11)

ker@) = coker(H' (X, M)/ W, 0g"%) — H'((X, M)/ W, O&{S/Jgj)

= cokerDN=° — D;/Fil") = coker().

On the other hand, the canonical map under consideration is injective by Lemma
2.14 and therefore has to be an isomorphism.
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COROLLARY 2.16. H}(K, V) C lma.
Proposition 2.9, Proposition 2.13 and Corollary 2.16 yield Theorem 0.1.

It remains to give a proof of Lemma 2.14. For this it suffices to show that the
map

kera HY(K, Fil" (B ®x D;)V=0)

~

HY(K, Fil" (Beays ®q, H'(X,Q,)), induced by,
is injective.
We consider the following commutative diagram

H (x5, Myyw, Y] HE (%, My w, 0SS
(« )/ 'Qp)—> (« )/ W, Qp)

| | |

A opt N=0 i X W crys, i ~ 77 crys
0 — Fil"(Bg; ®k D;) — Hp e (X, M)/ W, OQP) — Hpaie X, M/ W, OQP

l; l;

(B ®g DN ———— (B, @k HE L (X)/Fil"

| |

(Bgr ®k D;)/FIll ——— 0

i crys
H ((X,M)/W, OQI’

1r]
J,
195,

[r]
/!@p)

)N=O — > (Bst®k D’_)N=O

0 — Fil"(Bst®g D;

Here we have used ([Ka4], (6.4)) for the isomorphism in the right sequence of
vertical maps and the fact thadl.ys/Fil" = Bug/Fil" ([P-R] (1.4)) in order to
obtain the lower horizontal exact sequence.

Taking G g-invariants of the lower exact sequence and using Lemma 2.7 to-
gether with ([J2] Lemma 9.5) we get the commutative diagram

Hp R (X)/Fil" kera

IR
15

A4

H o (X)/(HL o (X)N=C Fil"y — H(K, Fil"(Bst®x D:)"=0)

Here the diagonal map exists and is an isomorphism because the composite map of
the middle vertical arrows magg' (X, M)/ W, O(‘Sf) onto (D;)N=C. For this one

uses the diagram constructed after (2.5). Therefaeinjective and Lemma 2.14
follows.

3~. In this section we compute the kernel @f i.e., we prove Theorem 0.2. Let
Hi(X, M)W, J&) be the kernel of the composite map (compare Lemma 2.6)

H' (X, M)/ W, 0g)) — kerNgp = D=0 — D'=°/(p" — ) (Fil)¥=°.
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Then we have a commutative diagram

H' (X, M)/ W, Jg)) == H'(X. M)/ W, Jg))

H (X6, M)/ W, J§h) =5 H' (X, M)/ W, O]

DN=C/(p" — @) (Fil")N=0

with vertical exact sequences. Taking cokernels of the above horizontal maps yields
an exact sequence

0 K1 Ko DN=/(p" — @) (Fil")N=C.

Proposition 2.9 and Lemma 2.14 imply that there is a canonical isomorphism
K1 — kera. Now look at the following commutative diagram

0
H (X, M)/ W, J([in) Py AL, M)/ W, J&)
HY(6, M)/ W, ngs) Py HY (6, M) W, 0&{5)

Hp g CON=O/FINN=0 L= ity L )N=0/ " — ) FilryN O

0 0

By our assumption the lower horizontal map is an isomorphism and we get

K1 = kera = cokel(H' (X, M)/ W, 059 =4 H' (%, M)/ W, 0F”).
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To compute this cokernel we use again the exact sequence (2.5) and get a commut-
ative diagram (note that(d logr) = pdlogt)

Hp g (X) @k K(t) ——— H 2 (X) @k K1)
le 1N@>

. o r—1_ . —
HE R (X) ® K1) ———~ Hi7 2 (X) ® Kr)

lAd logt 1/\:1 logt

HY(6, M)/ W, ngs) O mi(x, MY/ W, 08;’5)

! !

0 0

Now we compute the cokernel of the upper (and lower) horizontal map by adapting
certain methods developed by Perrin-Riou [PR].

PROPOSITION 3.1.The cokernel of the map

—

H) (X)) ® K{) 2% H) (X) ® K1)

is isomorphic toH}, . (X)/(p" — ¢).

Proof. We closely follow ([PR], Sect. 2.2). Perrin-Riou deals, instead of)
with the subring ofK[[T']] of all power series that are convergent on the open unit
disc. Another important difference is the action of the Frobenius: in our situation
we haveyp(t) = t7, Perrin-Riou defines the action @fase(7) = (1+ T)” — 1.

It suffices to show that any element (& () N 7 - K[[¢]]) ® H}, »(X) is in the
image of the map & p~"¢. Let M be aW-lattice inD; = H},(X), that is stable
underg. We consider elements of the fomh! @ m, k > 1,m € M.

Claim.z = Y,-o(p~¢)" ("™ @ m) € K(f) ®w M and the infinite series
definingz converges uniformly irk.
Indeed, we have the equality

kp")! |

k!'prmn lem, m'eM

P (M @m) =

and ord,((kp")!/k!) > rn wheneverp”" > prn (for all k > 1). This shows that the
coefficients(kp™)!/ k! p" convergep-adically to zero. Nowl—p~"¢)z = t*l@m
and therefore the claim and Proposition 3.1 follow.

Sincep” — ¢ is an isomorphism o} ,(X)¥= we get
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COROLLARY 3.2. ke is isomorphic to the cokernel of the map— — ¢,
acting oncokerN: Hj H(X) — Hi}(X)). By Poincaré duality for log-crystalline
cohomology we see that keris Q,-dual to Hg”j{(”l)(X)g:l?d_(,_D and theB,,-
comparison isomorphism implies a canonical injection

n': H* VX, Q,d —r + 1) > Hp TN .
Local Tate-Duality therefore yields the desired surjection
n: kera — H3(Gg, HX(X,Q,(r))).

If the reduction ofX is ordinary we know from ([ll], 2.6) that the = p’-
eigenspace i}, (X) is contained in FilH}, . (X) and in this case the above maps
n” andn are isomorphisms. This finishes the proof of Theorem 0.2.

By the construction of the mapand by using again ([J2], Lemma 9.5) we get the
following commutative diagram

0 0
kera 1 H?Gg, H 7YX, Qpr))
HiL (X, sgf(r)) £ HHL(X, Qp(r)

I |

Hg(Gg, H' (X, Qp(r)) ————— HY (G, H'(X, Qp(r)

| l

0 0

The diagram yields a nice picture on the comparison of the log-syntomic cohomo-
logy of the semistable schen® and thep-adic étale cohomology of its generic
fiber X.
4. In this section we examine the special case 1 = 2r which is of particular
interest when we want to study cycle class maps. We will finish the paper with
some speculations on them. The notations are as befade.# X x,, Ox we
will consider the following subvectorspace of our log-syntomic cohomology

7 2r I r | ~ |

H? (X, 500(r) = ker(H? (X, 55 (r)) — H (X, 55.())).
We have the canonical map constructed by Kato and Tsuji

H? (X, s5°(r)) — ker(H” (X, Q,(r) — H” (X, Q,(r)))
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which together with the Hochschild—Serre spectral sequence yields a canonical
mapa: H% (X, s(gg(r)) — HYGalK/K), V), whereV := H¥ XX, Q,(r)).

Under certain conditions related to tlpeadic and¢-adic monodromy conjec-
ture we will describe the image and the kernekofThe results are in analogy to
Theorems 0.1 and 0.2.

Let as before for an integg’r(D.,)(’;’:l?k be the eigenspace where the Frobegius
acts as multiplication by* in the kernel of the monodromy operatdt Through-
out the paragraph we will consider the following hypothesis

(Dar—1)) =y =0. (H)

From the works of Mokrane [Mo] and Jannsen [J1] and thadic and¢-adic
monodromy conjecture we conclude that the condition (H) is equivalent to the
following

CONJECTURE.HZ (X, Q,(r))°« = Ofor all primes¢.

Even though this conjecture is not stated explicitly in [J1] evidence for it is given
in ([J1] p. 349). Now we reformulate the main results in the dasel = 2r.

THEOREM 4.1. Under the assumptions of Theor® and the conditior(H) we
havelma = H{(Gg, V) = H} (G, V).

THEOREM 4.2. Under the assumptions of Theorehl we have a canonical
surjectionn: kera — H2(Gg, H¥~2(X, Q,(r))). If X has ordinary semistable
reduction, themn is an isomorphism.

Theorem 4.2 will be an easy consequence of the analogous Theorem 0.2 proven
in Section 3 whereas the proof of Theorem 4.1 requires a bit more work. But the
methods are very similar to those developed in Section 2.

We start to prove Theorem 4.1. From the definitions,'B?(r), we obtain a
commutative diagram of exact sequences

— - HZY(x, M)W, 0SS —— HZ (X, 5%9(r)) —— HZ (X, M)W, Iy —»
Qp Qp Qp

1 | | 4.3)

— | JR—
0 HEd X sQ () —— HEG (X M)/ W, J5]) —

It follows from ([Ka4], Section 6) that the map
H? (X, 5g2r)) — H” (¢, M)/ W, J§))

is injective and therefore the diagram is commutative.
Let as in Section HZ (X, M)/ W, J(gj)wzpr be the kernel of the map

HZ (X, M)/ W. JG)) ——= HZ (X, M)/ W, 05
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HZ (X, M)/ W, J(gp])(p:pr is defined similarly. From (4.3) we get an exact se-
guence

HZ (%6, M)/ W, 05 — H? (X, s5°(r)) — B — 0, (4.4)
where
B := ker(H? (%, M)/ W, Jgp])(p:p, —— HZ((X, M)W, Jgp])wzpr.

PROPOSITION 4.5.There is a commutative diagram of exact sequences

HZ Y6, My w, 08{{5) —_ ﬁ2’(x,s5§(r)) B—0

s o \E

Doy 1 Film o HY(Gg., V) HY Gk, Berys® V).

Here is the map given in Proposition 2.9.
The mapw is defined in the same way as in Proposition 2.9. Note that our

vanishing assumption o(D,,_1 f/‘f 19, implies that ‘exp’ maps ont(H}(GK, V)

and so the lower horizontal sequence is exact.
Proof. The Proposition is shown in the same way as Proposition 2.9.

Note that factors through
B — ker(H? (X, M)/ W, 03 =y — Hue (X, M)/ W, 05y

— HYGk, Beys® V).

By using ([Ka4], Thm. 4.1) we have an isomorphism
Hize (X, M)/ W, 05" — (B, @ Dz)"=°

that fits into a commutative diagram
H (6, M)/ W, 05"%) ——> D=0 = [Dy, ®@x K(1)1"=°

v—>1®v (46)

HZ (56, M) W, 0°ry (B} ® D)V =0

where the upper surjective morphism is obtained from the exact sequence (2.5)
and Lemma 2.6(ii). The commutativity follows from the explicit construction of
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the lower horizontal isomorphism in the proof of ([Ka4] Thm. 4.1) which is also
based on the exact sequence of crystalline complexes (2.2) ([Ka4], Lemma 4.2).
By Lemma 2.6, (iii) we have an exact sequence

0 —— COKeN(N: Dy 1 — Dp_1)yepr1 — HZ (X, M)/ W, og[{ o—p"

— (D))= — . (4.7)

LEMMA 4.8. Under the conditior(H) we havecokel(N: Dz, 1 — Day 1), 1
=0.

Proof. It follows from Proposition 2.13 that this vectorspace is canonically iso-
morphic toH} (G, V)/H}(GK, V). By applying the functoDg; = (Bg ® )¢«
to the Hard Lefschetz theorem for étale cohomology, we get an isomorphism
D} | —— D,._1(2r — 1), wherex denotes the Poincaré-dual of Hyodo—Kato

cohomology. After (Tate-) twisting we have an isomorphi@s, _1(r —1))* —

Dy, _1(r). Under this isomorphism the vanishing statement of the Lemma is equiva-
lentto DY=9/(1—¢pp~") = 0 which is equivalent to the condition (H). The Lemma
follows.

LEMMA 4.9. Under the conditior(H) we have the inclusiofma C H} (G, V)
= H}(GK’ V) = Hgl(GKa V)
Proof. This is shown in the same way as Lemma 2.12.

COROLLARY 4.10. The magx is the zero map.
Proof. Combine the remark om after Proposition 4.5 with 4.6, 4.7 and Lemma
4.8.

LEMMA4.11. B coincides wittker(H (%, M)/ W, J§1) — HZ (%, M)/ W,
Ocrys)) r
Q, 7" . .
Proof. Combine the two facts that the canonical maps

Hie (X, M)/ W, J§1Y — HZ (X, M)/ W, OF)
and
Hzr((x’ M)/Wa OSZ p=p" an;ive((y’ M)/W, O(S’ZS)(p:pr

are both injective. To see this one uses ([Ka4], Sect. 6) and the commutative dia-
gram in the proof of Lemma 2.14 for the first map and (4.6), (4.7) and Lemma 4.8
for the second one.

LEMMA 4.12. The canonical map ker — B, that is induced from the diagram
in Proposition 4.5 is the zero map.
Proof. By using Lemma 4.11 this is shown in the same way as Lemma 2.14.
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By Lemma 4.12, Proposition 4.5, the snake lemma and the dimension argument
used in the proof of Corollary 2.15 we see thatéxp = H}(GK, V) is contained
in the image ofx. This finishes the proof of Theorem 4.1.

Finally Lemma 4.12 and the same methods as developed in Section 3 immediately
imply Theorem 4.2.

4.13. Let CH(X), resp. CH(X) be the Chow group of cycles of codimension
on X, resp. onX modulo rational equivalence. Sin®é as a semistable scheme
is syntomic over Ox we have well-defined syntomic cycle class maps
Clsyn: CH (X)) — Hsz;n(x, Sihy, where SI'! is the sheaf of Fontaine—-Messing.
They are induced from Chern class maps,, on Kg via Grothendieck's com-
parison isomorphism between higher Chow groups Ergroups and the formula
Clsyn= ((=1)"7Y/(r — D), syn If 7: (X)gyn = (X)g denotes the evident morph-
ism of topoi, one has a canonical map of complexeBdfX) RS — 5997

by adding log poles ([Ka4], p. 286).

By composing this map with gJ, and passing t@,-coefficients we get a log-
syntomic cycle class 'an: CH(X) - HZ(X, sgf(r)). We also have the étale
cycle class map gt CH (X) — HZ (X, Q,(r)).

Now let

CH (X)o := ker(CH (X) — HZ (X, Q,(r))
and
CH (X))o := ker(CH (X) — CH (X) — H¥ (X, Q,(r)).

The map is obtained by composingecivith the canonical mapHZ (X,
Q,(r) — H% (X, Q,(r)). From the Hochschild—Serre spectral sequence we get
a map also denoted byeelCH (X)g — H(Gg, V). If the reduction ofX is
ordinary in the sense of ([H1] (1.9)) we know that the spectral sequengeadfc
vanishing cycles degenerates /&t up to bounded torsion by ([H1] Thm. 1.10).
This implies that the canonical ma = X x o, Og), H¥ (X, 1<, Rj.Q,(r)) —
H%(X,Q,(r)) is injective. By ([Tsu] Thm. 3.3.4) we have an isomorphism
H% (X, sgf(r)) = H% (X, 1<, Rj.Q,(r)). Assuming the compatibility of the log-
syntomic cycle class (06%) with the étale cycle class map (0f) under Kato'’s
and Tsuji's comparison map we see that the above mgp id — at least
in the ordinary case — expected to induce by restriction a n% Ch (X)) —

HZ (X, sgf(r)). Then the desired compatibility of the log-syntomic cycle class
with the étale cycle class map can be formulated in the following
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CONJECTURE.The following diagram commutes

CH (X)o —2%» CH (X)o

lo
(:Isygn Clet

H? (X, s5°(r)) = HY G, V)

If X is smooth and projective ovéby, i.e., in the good reduction case, a similar
compatibility has been recently shown by Niziol [Ni]. Perhaps her methods do ap-
ply here to prove this Conjecture, which holds in factfor 1 by [Ka4], (5.6.4.)).
Therefore, Theorem 4.1 gives — under the assumption (H) — a modest evidence
that the image of the étale cycle class mapis contained inH}(GK, V) =
Hgl(GK, V). This expected relation would give some local support to a ‘global’
Conjecture of Bloch—Kato ([B-K], Sect. 5) on the motivic cohomology of a smooth
projective variety over an algebraic number field. Of course the above Conjecture
can also be formulated for the higher algebr&i€Theory of X, resp.X and the

more general results on log-syntomic cohomology proven in Section 2 may become
useful after proving the compatibility Conjecture in general. All this will be further
discussed elsewhere.
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