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GLOBAL DIMENSION OF FACTOR RINGS

YASUYUKI HIRANO, J A E KEOL PARK AND KLAUS W. ROGGENKAMP

Let R be a right Noetherian ring with right global dimension bounded by 2, which
is integral over its centre, and let a be a regular non-unit element in R. Then
R/a • R is right hereditary if and only if a is not in the square of any maximal
ideal of R. More generally, we compare for a right Noetherian ring it which is
integral over its center, the global dimension of R with the global dimension of
R/{a\R + atR+ 1- OrR) for a regular .R-sequence {oi}, which will allow us to
give a considerable extension of a result of Hillman.

1. INTRODUCTION

In this note we shall compare for a right Noetherian ring R which is integral
over its center, the global dimension of R with the global dimension of
R/(aiR + O2.R+ • • • + arR) (see Theorem 1) for a regular .R-sequence {a*}, which
will allow us to give a unified treatment of the results of Hillman in [7] and those in
[12, 13], see Theorem 2.

Moreover, the result also has consequences for Artinian algebras and for algebraic
geometry:

PROPOSITION 1.

1. Let K be an algebraically closed Held and A a Unite dimensional K-
algebra. If A has finite global dimension, then every maximal ideal in A
is idempotent.

2. Let K be an algebraically closed Geld and let P be the prime ideal of
R := K[xi,X2, •••, xn] generated by a regular R-sequence fi,fa, ..., fr

in R. Then the affine variety V(fi,f2, • •., fr) j ' s non-singuiar if and only
if

fi $V2 + f1

for i = 1,2, . . . , r for any maximal ideal V of R containing P (that is,
P is a regular point).
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More precisely, for a ring R, we recall that an ordered sequence of normalising
elements Oi, a2, ..., ar in R (that is a,- is normal in R/(aiR + • • • + at-iR)) is called
an i?-sequence of R provided aj is neither a unit nor a zero-divisor in the ring R,
the image of 02 is neither a unit nor a zero-divisor in the ring R/aiR, the image of
03 is neither a unit nor a zero-divisor in the ring R/(a\R + a2R), and so on. (For
iZ-sequences in the case of commutative rings, see [9, Chapter 3] for details, for the case
of non-commutative rings, see [4].) The main result is then the following.

THEOREM 1. Assume that R is a right Noetherian ring with Unite global dimen-
sion, which is integral over its center.

1. Let ai,ci2, • • •, ar be an R-sequence of normalising elements in J(R) such that

at <£ V2 + diR + a2R+ • •• + Oi-iR, i = 1,2, . . . , r

for any maximal ideal V of R containing 01,02, . . . , and aj_j. Tien

r.gl.dim. R/i^R + a2R H h arR) = r.gl.dim. R-r .

(Note that in the commutative situation this is a. regular R-sequence.)

2. Let ai,<Z2, . . . , ar be an R-sequence of centralising elements such that

at $ V2 +a1R + a2R+-+ai_1R, i = 1,2, ...,r

for any maximal ideal V of R containing 01,02, • • •; and a,_i. Then we have that

r.gl.dim. R/^R + a2R-i \- arR) ^ r.gl.dim. R-r .

REMARK 1.

1. As an application, we can extend Hillman's result [7] to the case of com-
mutative Noetherian rings of finite global dimension; thereby we can ob-
serve explicitly the relationship between the global dimension of the factor
ring of a commutative Noetherian ring by an ideal generated by a certain
.R-sequence and the non-sigularity of affine varieties.

2. Examples 2 show that the conditions are not sufncent.
(1) In the commutative situation though, we prove a converse.

PROPOSITION 2 . Let R be a commutative Noetherian ring with Unite global
dimension and let a\,a2, • • •, o.T in R be an R-sequence. Then

gl.dim. R/(aiR + <L2R -\ + arR) ^ gl.dim.R— r

if and only if
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for any maximal ideal "P of R containing al5 02, . . . , and ar.

There is also one instance in the non commutative situation, where we get a nec-
essary and sufficient condition, in case R has global dimension bounded by 2, which
gives a unified treatment of the results in [7, 12 and 13].

THEOREM 2 . Assume that R is a right Noetherian ring with r.gl.dim.R ^ 2,
which is integral over its center. Let a be a central regular non-unit element in R.

Then the ring R/aR is right hereditary if and only if a is not in the square of any

maximal ideal of R.

From this we derive with the help of Corollary 4 in Section 2:

COROLLARY 1 . Assume that R is a right Noetherian right hereditary PI ring

which is integral over its center. Let f(x) be a central regular non-unit polynomial

in S :- R[x] (and T := R[[x\] respectively). Then the ring S/f(x)S (and T/f(x)T

respectively) is right hereditary if and only if f(x) is not in the square of any maximal

ideal of S (and T respectively).

If R is a prime PI right hereditary ring, then by [16] the center of R is a Dedekind
domain and R is finitely generated as a module over its center. Therefore R is right
Noetherian which satisfies the hypotheses of Theorem 2 and Corollary 1. This easily
leads to:

COROLLARY 2 . ([7, Theorem 2], [12, Theorem] and [13, Proposition 1]) Assume

that R is a prime PI right hereditary ring and f(x) in S (and T respectively) (the

same notation as above) is a non-zero central non-unit polynomial. Then S/ f(x)S (and

T/f(x)T respectively) is right hereditary if and only if f(x) ^ V2 for any maximal

ideal V of S (and T respectively).

One should compare Corollaries 1, 2 with [7, Theorem 2], [12, Theorem] and [13,
Proposition 1] in which f(x) is assumed to be a non-zero central polynomial with
"f{x)S a p r i m e ideal of 5 " .

2. P R O O F S AND FURTHER COMMMENTS

Recall that a ring R is called semi-local if R/J(R) is a semi-simple Artinian ring,
where J(R) denotes the Jacobson radical of R. In particular, if R/J(R) is a simple
Artinian ring, R is called a local ring. A semi-local ring R is called semi-perfect if
every idempotent of R/J(R) can be lifted to an idempotent of R.

The idea for the proof of the following lemma is essentially taken from [12,
Lemma 3].

LEMMA 1. Let R be a right Noetherian semi-local ring with Jacobson radical J
and J = V\ D • • • PI Vn, where Vi are the maximal ideals of R, 1 ^ i ^ n. Let a be
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a normal element in J, with a £ Vf for any i, then J/aR is isomorphic to a direct
sumznand of J/aJ and moreover aJ — Ja.

PROOF: Let a* = a + J2 in J/J2. Then since R/J is a semi-simple Artinian ring,
J/J2 = a*R © N* for some .R-submodule N of J. Hence J = aR + N + J2 and so
J = aR-\-N by Nakayama's Lemma. Let us set T = aJ+N. Then we have J = T-\-aR.

To prove T n aR = aJ, let < bean element in T (~l aR. Write t = ar = aj< + n, where
r 6 R,j G J and n G N. Then t* = (ar)* = n* £ a*RDN* = 0. Thus ar G J2 and so
ar G V2. Let Ai = {b G R \ ab G V2}. Then since a is normal, Ai is a two-sided ideal
of R. If A is not contained in Vi, then Ai + Vi = R and so a G aR = a(^i + Vi) C P?,
which is a contradiction. Hence .4.̂  C Vi. In particular, r G Vi for all i. Therefore
r £ J and hence f — ar G a J . By this fact T PI aJ? = aJ and it follows that
J/aJ = (T/aJ) © (aR/aJ). By the way,

J/aR = (T + a.R)/afl S T/(T n ail) = T /aJ .

Hence J/aR is isomorphic to a direct summand of J/aJ.

Similarly, we can prove that aJ — aR fl J2 = Ra fl J2 = Ja. U

A ring R is said to be integral over a subring 5 if every element of R satisfies
a monic polynomial with coefficients in S. A two-sided ideal A of R is said to have
the right Artin-Rees property if for every right ideal / of R, there exists a positive
integer n such that An D I C. IA.

The next lemma is quoted from [5, Lemma 2.1].

LEMMA 2 . Assume that R is a right Noetherian ring which is integral over its

center C.

1. If R is semi-local, then J(R) has the right Artin-Rees property.
2. R is semi-local if and only if C is semi-local.

For a ring R, we write r.gl.dim. R to denote the right global dimension of R.

Also for a right iZ-module M we write pr.dim. MR to denote the projective dimension
of M.

Assume that C is a commutative local domain with finite global dimension and
R is a local C-algebra, which is finitely generated as a C-module. Let p (respectively
V) be the unique maximal ideal of C (respectively R) and assume that a G p\P2. In
[14, Theorem 6.4] Ramras showed that

r.gl.dim. R/aR — n — Hi r.gl.dim. R = n < oo .

This result can be extended to:
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LEMMA 3 . Let R be a right Noetherian ring, which is integral over its center C,

and let a be a regular normal non-unit element of J(R) satisfying a (£ V2 for any

maximal ideal "P of R. If

r.gl.dim. R — n < oo, then r.gl.dim. R/aR = n — 1.

PROOF: I fn = 0, then R is a semi-simple Artinian ring and so J(R) = 0. Thus
we may assume that n > 0. Let p be a maximal ideal of C. Then the localisation Rp

of R at p is also integral over Cp and so Rp is semi-local by Lemma 2. Clearly, a/1
is a regular normal non-unit element of J(RP) • Now for our convenience let 5 = Rp

and J = J(S). By [10, Proposition 7.3.6(b)] we have

•pr.dim.J/{JaS)s,aS — pr.dim.Js ^ n .

By Lemma 1, J/aS is isomorphic to a direct summand of J/Ja and hence
pr.dim.(J/aS)s/aS < n .

On the other hand, since S/aS is semi-local and S/aS is integral over its center,
the Jacobson radical J/aS of S/aS has the right Artin-Rees property by Lemma 2.
Hence

r.gl.dim. S/aS = pr.dim.((S/aS)/(J/aS))s/aS < oo

by [3, Corollary]. Therefore we have

r.gl.dim. S — (r.gl.dim. S/aS) + 1

by [10, Theorem 7.3.7].
Finally, let S = R/aR and C - {c £ R~ \ c £ C}. Then we have

r.gl.dim. R = swp{r.gl.dim. Rp \ p a maximal ideal of C}

by [11, Theorem 9.22]. Obviously, a maximal ideal p of C is the homomorphic image
of a maximal ideal p of C in R. Then R^ = Rp/aRp and hence we conclude that
r.gl.dim. R/aR = n - 1. D

Recall that a ring R is called right hereditary if every right ideal of R is pro-
jective as a right .R-module. R is right hereditary if and only if r.gl.dim. R ^ 1, since
submodules of free modules are projective and conversely.

As we shall see later, the converse of Lemma 3 does not hold in general, not even
in the case of local rings. However, we still have:

COROLLARY 3 . Assume that R is a right Noetherian local ring, which is integral
over its center with r.gl.dim. R ^ 2. Let a be a regular normal non-unit element, then
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the ring R/aR is right hereditary if and only if a £ V2, where V is the maximal ideal
of R.

PROOF: The sufficiency follows from Lemma 3. As for the necessity, assume that
R/aR is right hereditary. Then the exact sequence

0 —> Ra/Va —> V/Va —> V/Ra —> 0

of right iZ/ai?-modules splits. So it splits also as a sequence of ii-modules. Therefore
V/Va = (T/Va) © (Ra/Va) for some ii-submodule T of V. Thus

V = T + Ra and Va = T n Ra.

Now if a£V2, then Ra C V2 and so

V = V2 + T = J(R)V + T.

By Nakayama's Lemma, V = T. Hence Ra = Va and therefore R = V, which is a
contradiction. D

We next give a criterion of when (in Lemma 3) there is an element a £ J(R) with
a <£ Vf, 1 s j i s$n.

If R is a semi-perfect ring, we may assume that R is basic, and we denote by
Si, 1 < i < n, the simple .R-modules, and by Vi, 1 ^ i < n the corresponding
maximal ideals, that is, R/Vi = 5 ; . Moreover Pi denotes the projective cover of Si
and ei is a primitive idempotent in R with Pi = .Re,-.

Then we have the following

PROPOSITION 3 . For a ring R the following conditions are equivalent for

1. There is an element a&Vi\ Vf for every 1 ^ i ^ r.

2. Vi ^ V2 for every 1 ^ i < r.

3. Ext^Si, Si) ^ 0 for 1 ^ i ^ r.

PROOF: Obviously (1) implies (2), and (2) is equivalent to (3).

In order to show that (2) implies (1) we shall use induction. We first observe that
without loss of generality we may assume that J2 = 0. For r = 1 there is nothing to
prove. For the inductive step we note:

CLAIM 1. For i ^ j we have eiRei C V].
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PROOF: By using Peirce decomposition, we have

/ J(eiRei) eiR(l - e.) \
1 \(l-ei)Rei (1 - ei)R{l - e{) J

0 eiR{l - eO \

- a) J

and

V 2 = (

^ {(l-e^Ra (l - ei)R(l
Therefore

JidRei) = Vt/Pf = S<-ni),

where rii is the multiplicity of Si in rad(P,), the radical of P,-. But from this the
statement of the claim follows. U

By induction we have found an element

beVi\ V\ for every 2 ^ i ^ r .

If b 6 V\ \ T>\ then we are done. Otherwise we choose - according to Claim 1 - an
element 0 ̂  bo 6 J(eiRe\). The element a = 6Q + b will do. D

As an application we can now prove Proposition 1 (1) from the introduction:
Assume that R is a finite dimensional algebra over an algebraically closed field. If

a € J{R) with a (fc V?, 1 ̂  i ^ n, then R can not have finite global dimension. In
fact it follows from Proposition 2, that Ext]j(5, S) ^ 0 for every simple R-module 5.
But it was shown by Igusa [8, Theorem 4.5] that if R has finite global dimension, then
there are no loops in the quiver of R, equivalently ExtJj(S,5) = 0 for every simple
fl-module S. Therefore R can not have finite global dimension. A diffrerent way of
phrasing this is to say that for R of finite global dimension, all maximal ideals must be
idempotent. D

From Lemma 3, we derive the following fact about the global dimension of certain
factor rings of a Noetherian ring.

LEMMA 4 . Let R be a right Noetherian ring, which is integral over its center C,
and let a be a central regular non-unit element in R. Suppose a £ V2 for any maximal
idea] V of R. If

r.gl.dim. R — n< oo, then r.gl.dim. R/aR ^ n — 1.

PROOF: We may assume that n > 0. Let p be a maxima! ideal of C containing
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a. Then a 6 J(Rp), and so by Lemma 3 we have that

r.gl.dim. R^/aRp — (r.gl.dim. Rp) — 1.

By [11, Theorem 9.2.2],

r.gl.dim. R = sup{r.gl.dim. Rp \ p a maximal ideal of C}

and

r.gl.dim. R/aR — sup{r.gl.dim. Rp/aRp \ a 6 p a maximal ideal of C}.

Hence we conclude r.gl.dim. R/aR ^ (r.gl.dim. R) — 1. U

For the sequel we define S to be either the polynomial ring R[x] or the ring of

formal power series -R[[:c]].

COROLLARY 4 . Assume that R is a right Noetherian PI ring which is integral

over its center C. Let f(x) be a central regular non-unit polynomial of S satis-

fying f(x) $ V2 for any maximal ideal V of S. If r.gl.dim. R = n < oo, then
r.gl.dim. S/f(x)S ^ n .

PROOF: By [10, Theorem 13.8.12], 5 is integral over its center, and by [10, The-
orem 7.5.3(iii)] r.gl.dim. S = n + 1. Now the assertion follows from Lemma 4. D

We now come to the proof of Theorem 1. The proof is in a similar spirit to that

of [1, Proposition 1.5].

(1) By Lemma 3, r.gl.dim. R/a\R — (r.gl.dim. R) — 1. We have

r.gl.dim. R/^R = r.gl.dim. (R/(aiR + a-iR)),

where R = R/aiR and S2 = a.2 + aiR £ R. Note that 02 is a regular normal non-unit

element of R and S2 G J(~R) • For a maximal ideal V of R containing aiR + <J2JR we

have a.2 $ V , since a2 £ (V2 + aiR.) . So again by Lemma 3,

r.gl.dim.Hfali = (r.gl.dim.S) - 1 = (r.gl.dim.R) — 2 .

By continuing this process, finally we have

r.gl.dim. R/(axR +a2R + h arR) = (r.gl.dim. R) - r .

(2) This can be proved in a similar way as in (1) by using Lemma 4 iteratively. D

REMARK 2.

1. Theorem 1 is a kind of non-commutative analogue of one direction of a
result in commutative algebra (see also [17, Chapter VIII, Section 11,
Corollary 2]).

2. A commutative Noetherian local ring is regular (that is, it has a regular
i?-sequence) if and only if it has finite global dimension (see [2, Theorem
1.10]). In this case we now establish the converse of Theorem 1.
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We are now in the situation to prove P ropos i t i on 2:

Assume that

gl.dim. R/(aiR + a2R-\ + arR) ^ (gl.dim. R)-r

and let V be a maximal ideal of R containing a\, a2, • • •, and ar. Then we see that
gl.dim. R-p/(a,iRj> + a2R-p + • • • + aTR-p) is finite and moreover, 01/1,02/1, . . . , o r / l
is an i2-sequence in R-p. So without loss of generality, we may assume that R is a
local ring with the unique maximal ideal V. Let T = R/(a\R + a2R + • • • + aT-\R)
and put t = aT + (aiR + a2R H h ar_ii?) S T. Then T is a local ring,

t eP =:V/{a1R + a2R+ • • • + or_i-R)

and it is a regular non-unit element in T. Since T/tT = R/(aiR + a2R + • • • + aTR)

has finite global dimension, T has also finite global dimension by [9, Theorem 10,

p.180].

We now claim that t £ V . Assume the contrary. Since T is local with finite global
dimension, it is a regular local domain. Let n = gl.dim. T. Then the Krull dimension

2
of T, dim. T, is also n, and equals the vector space dimension of V/V over the field

2
T/V. Since s is regular, dim. T/tT ^ n — 1. But t € V , and so the dimension of the
vector space (P/iT)/(V/tT)2 over the field (T/tT)/(V/tT) ^ T/V is n. This implies

2
that T/tT is not a regular local domain, a contradiction. Therefore t ^ V and hence

aT i V2 + aiR + a2R-\ hOr-i-R- In a similar way, o* £ V2 + aiR+a2R-\
for i = 1,2, . . . , r. This proves one direction.

Conversely assume that V is a maximal ideal of R containing 01,02, . . . , ar. Then
by assumption,

a,- $ V2 +aiR+a2R+ l-Oi-iflfor i = 1,2, . . . , r .

In the localisation R-p of R at maximal ideal V, we have

O.-/1 <£ V? + aiR-p + a2Rv + • • • + a^R-p, i = 1 , 2 , . . . , r .

In fact, if
a t / 1 6 Vlp + cuR-p + a 2 R v + ••• + a ^

then there is

c 6 R\V such that ac € V2 + c^R + a2R +••• + a^

Let

Ai = {b e R I aib e V2 + oiiE + o2.R + •• • + o i - i i l }
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Then Ai is an ideal of R. Since c £ R\V, we have Ai % V and so Ai + V = R.
Therefore

ot- G a,i(Ai + V) C V2 + aifl + a2fl + • • • + a ^ j i ? ,

which is a contradiction. So by Theorem 1

gl.dim. R-p/'(aiR-p + a2R-p + • • • + o,TRv) ^ {gl.dim. R-p) — r .

Hence we have the desired result. D

Observe that the necessary condition of Proposition 2 is more refined than the
assumption in Theorem 1. On the other hand, one may suspect that the nec-
essary condition in Proposition 2 can be replaced by somewhat more simple form
"a-i ^ "P2, i — 1,2, . . . , r for any maximal ideal V of R containing ai,ffl2, • • •, aT"•

But this is not possible as the following example shows.

EXAMPLE 1. Let R = C[[x,y]}, the formal power series ring over the complex number
field C. Then gl.dim. R — 2 and V — xC[[x,y}] + yC[[x,y}] is the unique maximal
ideal of R. In this case the elements ai — x, a-i — x + y2 form an iZ-sequence.
Moreover x $ V2 and x + y2 £ V2. However, the ring R/(aiR+ a2R) can not have
finite global dimension. Indeed, gl.dim.R/a^R = 1. So if R/(aiR + a2R) has finite
global dimension, then its global dimension is 0, a contradiction.

REMARK 3. 1. If in Proposition 2 the elements a i ,a 2 , . . . , a r lie in J(R), then the

global dimension of R/(aiR + a2R + • • • + arR) is {gl.dim. R) — r.

2. UK is an algebraically closed field and P is the prime ideal generated by an

ii-sequence fi,f2, ••-, fr in K\x\,x2, ..., xn], then an application of Proposition 2

and [6, Theorem 5.1., p-32] yields the statement of Proposition 1 (2).

From Proposition 2 we immediately get the following corollary, generalising [7,

Theorem 2].

COROLLARY 5 . Assume that R is a commutative Noetherian ring with Unite

global dimension and f(x) is a regular non-unit polynomial in S. Then we have the

inequality gl.dim. S/f(x)S ^ gl.dim. R it and only if f(x) ^ V2 for any maximal ideal

V of S.

To elaboreate on the assumption of Theorem 1 we next consider some examples of
Noetherian rings, in which there is a central regular non-unit element not in the square
of any maximal ideal. Two typical examples - up to Morita equivalence - are:

1. f2 an order in a division ring.
2. The polynomial ring R[x] or the formal power series ring i2[[x]] over a

ring R with finite global dimension.
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EXAMPLE 2.

1. The ring C[[x,y,z]][l,a,l3,a0] with a2 = x + z2 , /32 = y , a/3 = -/3a is a local
ring with global dimension 3, where C[[a;,j/, z]} is the formal power series ring over the
complex number field C. In this case the maximal ideal J is generated by {a , /3 , z).

Note that z is a central regular non-unit element which is not in J2 (see [15, Example
(b), p.351]).

2. The ring R = C((x,y))[[z]][l,a,P,a0] is the localisation of the ring in (I) with
respect to the ideal (x,y). In R the element z is a central regular element and the ring
R/zR is simple Artinian. So the global dimension of R is 1 by [14, Proposition 5.6].
Moreover R is a local prime PI hereditary ring with center C((s:,2/))[[z]]. In R[t] the
polynomial f(t) = t3 — x 6 R[t] is a central regular non-unit, which generates is a prime
ideal of R[t], and it is easily checked that the factor ring R[t]/f(t)R[t] is hereditary.
Therefore f[t) is not in the square of any maximal ideal of R[t] (see [12, 13]).

3. In [4, Example 7.1] a local ring T is constructed with is a central regular
non-unit element u, which is not in the square of the maximal ideal.

4. In [15] M. Ramras constructs for every positive integer n ^ 3 a ring R satisfying
the following conditions:

(a) R is a prime right Noetherian ring which is finitely generated as a module
over its center.

(b) T.gl.dim. R = n.

(c) There is a central regular non-unit element a such that aR is a prime
ideal of R.

(d) T.gl.dim. R/aR = n — 1, but a £ V2 for some maximal ideal V of R.

5. Let A = C[[s,y,z}][l,a,/3,a/?] with a2 = x,/32 =y and /3a = - a /3 + z, where
C[[x,y, z]] is the formal power series ring over the complex number field C. Then A is
a prime local Noetherian ring, which is finitely generated as a module over its center.
In this case the ideal J generated by a and /3 is the maximal ideal of A, and z is a
central regular non-unit element of A, and zA is a prime ideal. By [15, Example 2,
p.351], r.gl.dim. A — 3 and r.gl.dim. A/zA = 2. However z 6 J2 . (This is an example
from [15].)

Let k = n — 3 and let R = A\xi, xz, . . . , Xk] be the polynomial ring over A. Then
R is a prime Noetherian ring with global dimension n, which is finitely generated over
its center and r.gl.dim. R/zR = n — 1. The element z is a central regular non-unit
such that zR is a prime ideal of R. However z is in the square of the maximal ideal

V = J[xux2, ...,xk] + x 1 R + x 2 R + - - + x k R .

If we take R to be the formal power series ring .A[[xi,a;2, • • • ,Xk]], then R is a
local ring satisfying the above conditions (a), (b), (c), and (d).
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The converse of Theorem 1 holds however, if r.gl.dim.R $J 2, as stated in the
introduction as Theorem 2, which we shall now prove.

By Lemma 4 and Theorem 1 we only need to prove the necessary condition.

Assume that R/aR is right hereditary and let V be a maximal ideal of R. If

a (f: V, then a £ V2 and so we are done.

Suppose a £ V Then V/aR is projective as a right R/ail-module, since R/aR is
right hereditary. Thus the exact sequence

0 —> R/V —> aR/aV C V/aV —> V/aR —> 0

splits. Therefore it also splits as a sequence of iZ-modules. Hence there is an R-
submodule T of V such that

V = aR + T, aV = aR n T and V/aV S (aR/aV) ® (T/aV).

So we have aR/aV = V/T as .R-modules because of the relations V = aR + T and
aV = aRHT. Since R/V S aR/aV, we have an isomorphism R/V = V/T. Because
{R/)V • V = 0 we also have {V/T) -V = 0; that is, V2 C T.
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