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On the linear stability of the Lamb–Chaplygin
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The Lamb–Chaplygin dipole (Lamb, Hydrodynamics, 2nd edn, 1895, Cambridge
University Press; Lamb, Hydrodynamics, 3rd edn, 1906, Cambridge University Press;
Chaplygin, Trudy Otd. Fiz. Nauk Imper. Mosk. Obshch. Lyub. Estest., vol. 11, 1903, pp.
11–14) is one of the few closed-form relative equilibrium solutions of the two-dimensional
(2-D) Euler equation characterized by a continuous vorticity distribution. We consider the
problem of its linear stability with respect to 2-D circulation-preserving perturbations. It
is demonstrated that this flow is linearly unstable, although the nature of this instability is
subtle and cannot be fully understood without accounting for infinite-dimensional aspects
of the problem. To elucidate this, we first derive a convenient form of the linearized
Euler equation defined within the vortex core which accounts for the potential flow
outside the core while making it possible to track deformations of the vortical region.
The linear stability of the flow is then determined by the spectrum of the corresponding
operator. Asymptotic analysis of the associated eigenvalue problem shows the existence
of approximate eigenfunctions in the form of short-wavelength oscillations localized near
the boundary of the vortex and these findings are confirmed by the numerical solution of
the eigenvalue problem. However, the time integration of the 2-D Euler system reveals the
existence of only one linearly unstable eigenmode and since the corresponding eigenvalue
is embedded in the essential spectrum of the operator, this unstable eigenmode is also
shown to be a distribution characterized by short-wavelength oscillations rather than a
smooth function. These findings are consistent with the general results known about
the stability of equilibria in 2-D Euler flows and have been verified by performing
computations with different numerical resolutions and arithmetic precisions.
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B. Protas

1. Introduction

The Lamb–Chaplygin dipole is a relative equilibrium solution of the two-dimensional
(2-D) Euler equations in an unbounded domain R2 that was independently obtained by
Lamb (1895, 1906) and Chaplygin (1903); the history of this problem was surveyed by
Meleshko & van Heijst (1994). The importance of the Lamb–Chaplygin dipole stems
from the fact that this is a simple exact solution with a continuous vorticity distribution
which represents a steadily translating vortex pair (Leweke, Le Dizès & Williamson 2016).
Such objects are commonly used as models in geophysical fluid dynamics where they are
referred to as ‘modons’ (Flierl 1987). Interestingly, despite the popularity of this model,
the stability properties of the Lamb–Chaplygin dipole are still not well understood and the
goal of the present investigation is to shed some new light on this question.

We consider an unbounded flow domainΩ := R2 (‘:=’ means ‘equal to by definition’).
Flows of incompressible inviscid fluids are described by the 2-D Euler equation which can
be written in the vorticity form as

∂ω

∂t
+ (u · ∇)ω = 0 in Ω, (1.1)

where t ∈ (0, T] is the time with T > 0 denoting the length of the interval considered,
ω : (0, T] ×Ω → R is the vorticity component perpendicular to the plane of motion and
u = [u1, u2]T : (0, T] ×Ω → R2 is a divergence-free velocity field (i.e. ∇ · u = 0). The
space coordinate is denoted x = [x1, x2]T. Introducing the streamfunction ψ : (0, T] ×
Ω → R, the relation between the velocity and vorticity can be expressed as

u = ∇⊥ψ, where ∇⊥ :=
[
∂

∂x2
,− ∂

∂x1

]T

and �ψ = −ω. (1.2)

System (1.1)–(1.2) needs to be complemented with suitable initial and boundary
conditions, and they are specified below.

In the frame of reference translating with the velocity −Ue1, where U > 0 and ei, i =
1, 2, is the unit vector associated with the ith axis of the Cartesian coordinate system,
equilibrium solutions of system (1.1)–(1.2) satisfy the boundary-value problem (Wu, Ma
& Zhou 2006)

�ψ = F(ψ), in Ω, (1.3a)

ψ → ψ∞ := Ux2, for |x| → ∞, (1.3b)

where the ‘vorticity function’ F : R → R need not be continuous. Clearly, the form of
the equilibrium solution is determined by the properties of the function F(ψ). Assuming
without loss of generality that it has unit radius (a = 1), the Lamb–Chaplygin dipole is
obtained by taking

F(ψ) =
{

−b2(ψ − η), ψ > η

0, otherwise,
(1.4)

where b ≈ 3.8317059702075123156 is the first root of the Bessel function of the first kind
of order one, J1(b) = 0, and η ∈ (−∞,∞) is a parameter characterizing the asymmetry
of the dipole (in the symmetric case η = 0). The solution of (1.3)–(1.4) then has the form
of a circular vortex core of unit radius embedded in a potential flow. The vorticity and
streamfunction are given by the following expressions stated in the cylindrical coordinate
system (r, θ) (hereafter we adopt the convention that the subscript ‘0’ refers to an
equilibrium solution).
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Figure 1. Streamline pattern inside the vortex core A0 of (a) a symmetric (η = 0) and (b) an asymmetric
(η = 1/4) Lamb–Chaplygin dipole. Outside the vortex core the flow is potential. The thick blue line represents
the vortex boundary ∂A0 whereas the red symbols mark the hyperbolic stagnation points xa and xb.

• Inside the vortex core (0 < r ≤ 1, 0 < θ ≤ 2π):

ω0(r, θ) = 2Ub
J0(b)

[
J1(br) sin θ − ηb

2U
J0(br)

]
, (1.5a)

ψ0(r, θ) = 2U
bJ0(b)

J1(br) sin θ + η

[
1 − J0(br)

J0(b)

]
. (1.5b)

• Outside the vortex core (r > 1, 0 < θ ≤ 2π):

ω0(r, θ) = 0, (1.6a)

ψ0(r, θ) = U
(

1 − 1
r

)
sin θ. (1.6b)

The vortical core region is denoted A0 := {x ∈ R2 : ‖x‖ ≤ 1} and ∂A0 denotes its
boundary. The streamline patterns inside A0 in the symmetric (η = 0) and asymmetric
(η > 0) cases are shown in figures 1(a) and 1(b), respectively. Various properties of the
Lamb–Chaplygin dipole are discussed by Meleshko & van Heijst (1994). In particular, it
is shown that regardless of the value of η the total circulation of the dipole vanishes, i.e.
Γ0 := ∫

A0
ω0 dA = 0. We note that in the limit η → ±∞ the dipole approaches a state

consisting of a monopolar vortex with a vortex sheet of opposite sign coinciding with the
part of the boundary ∂A0 above or below the flow centreline, respectively, for positive and
negative η. Generalizations of the Lamb–Chaplygin dipole corresponding to differentiable
vorticity functions F(ψ) were obtained numerically by Albrecht, Elcrat & Miller (2011),
whereas multipolar generalizations were considered by Viúdez (2019a,b).

Most investigations of the stability of the Lamb–Chaplygin dipole were carried out
in the context of viscous flows governed by the Navier–Stokes system, beginning with
the computations of dipole evolution performed by Nielsen & Rasmussen (1997) and
van Geffen & van Heijst (1998). While relations (1.5)–(1.6) do not represent an exact
steady-state solution of the Navier–Stokes system, this approximate approach was justified
by the assumption that viscous effects occur on time scales much longer than the time
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scales characterizing the growth of perturbations. A first such study of the stability
of the dipole was conducted by Billant, Brancher & Chomaz (1999) who considered
perturbations with dependence on the axial wavenumber and found several unstable
eigenmodes together with their growth rates by directly integrating the three-dimensional
linearized Navier–Stokes equations in time. Additional unstable eigenmodes were found in
the 2-D limit corresponding to small axial wavenumbers by Brion, Sipp & Jacquin (2014).
The transient growth due to the non-normality of the linearized Navier–Stokes operator
was investigated in the related case of a vortex pair consisting of two Lamb–Oseen vortices
by Donnadieu et al. (2009) and Jugier et al. (2020), whereas Sipp & Jacquin (2003) studied
Widnall-type instabilities of such vortex pairs. The effect of stratification on the evolution
of a perturbed Lamb–Chaplygin dipole in three dimensions was considered by Waite &
Smolarkiewicz (2008) and Bovard & Waite (2016). The history of the studies concerning
the stability of vortices in ideal fluids was recently surveyed by Gallay (2019).

The only stability analysis of the Lamb–Chaplygin dipole in the inviscid setting we
are aware of is due to Luzzatto-Fegiz & Williamson (2012) and Luzzatto-Fegiz (2014)
who employed methods based on imperfect velocity-impulse diagrams applied to an
approximation of the dipole in terms of a piecewise-constant vorticity distribution and
concluded that this configuration is stable. Finally, there is a recent mathematically
rigorous result by Abe & Choi (2022) who established orbital stability of the
Lamb–Chaplygin dipole (orbital stability implies that flows corresponding to ‘small’
perturbations of the dipole remain ‘close’ in a certain norm to the translating dipole; hence,
this is a rather weak notion of stability).

As noted by several authors (Meleshko & van Heijst 1994; Waite & Smolarkiewicz
2008; Luzzatto-Fegiz & Williamson 2012; Abe & Choi 2022), the stability properties of
the Lamb–Chaplygin dipole are still to be fully understood despite the fact that it was
introduced more than a century ago. To the best of our knowledge, the present study is the
first comprehensive investigation of the linear stability of the Lamb–Chaplygin dipole in
the inviscid case, which is the only setting where it represents a true equilibrium solution
of the governing equations. As a result, we find behaviour that was not observed in any
of the earlier studies. It is demonstrated that the Lamb–Chaplygin dipole is in fact linearly
unstable, but the nature of this instability is quite subtle and cannot be understood without
referring to the infinite-dimensional nature of the linearized governing equations. More
specifically, both the asymptotic and numerical solution of an eigenvalue problem for
the 2-D linearized Euler operator suitably localized to the vortex core A0 confirm the
existence of an essential spectrum with the corresponding approximate eigenfunctions
in the form of short-wavelength oscillations localized near the vortex boundary ∂A0.
However, the time integration of the 2-D Euler system reveals the presence of a single
exponentially growing eigenmode and since the corresponding eigenvalue is embedded in
the essential spectrum of the operator, this unstable eigenmode is also found not to be a
smooth function and exhibits short-wavelength oscillations. These findings are consistent
with the general mathematical results known about the stability of equilibria in 2-D Euler
flows (Shvydkoy & Latushkin 2003; Shvydkoy & Friedlander 2005) and have been verified
by performing computations with different numerical resolutions and, in the case of the
eigenvalue problem, with different arithmetic precisions.

The structure of the paper is as follows. In the next section we review some basic
facts about the spectra of the 2-D linearized Euler equation and transform this system
to a form in which its spectrum can be conveniently studied with an asymptotic method
and numerically. A number of interesting properties of the resulting eigenvalue problem
are also discussed, an approximate asymptotic solution of this eigenvalue problem is
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On the linear stability of the Lamb–Chaplygin dipole

constructed in § 3, the numerical approaches used to solve the eigenvalue problem and the
initial-value problem (1.1)–(1.2) are introduced in § 4, whereas the obtained computational
results are presented in §§ 5 and 6. Discussion and final conclusions are deferred to § 7.
Some more technical material is collected in three appendices.

2. Two-dimensional linearized Euler equations

The Euler system (1.1)–(1.2) formulated in the moving frame of reference and linearized
around an equilibrium solution {ψ0, ω0} has the following form, where ψ ′, ω′ : (0, T] ×
Ω → R are the perturbation variables (also defined in the moving frame of reference):

∂ω′

∂t
= −(∇⊥ψ0 − Ue1) · ∇ω′ − ∇⊥ψ ′ · ∇ω0

= −(∇⊥ψ0 − Ue1) · ∇ω′ + ∇ω0 · (∇⊥Δ−1)ω′

=: Lω′, in Ω, (2.1a)

�ψ ′ = −ω′, in Ω, (2.1b)

ψ ′ → 0, for |x| → ∞, (2.1c)

ω′(0) = w′, in Ω, (2.1d)

in which Δ−1 is the inverse Laplacian corresponding to the far-field boundary condition
(2.1c) and w′ is an appropriate initial condition assumed to have zero circulation,
i.e.

∫
Ω

w′ dA = 0. Unlike for problems in finite dimensions where, by virtue of the
Hartman–Grobman theorem, instability of the linearized system implies the instability of
the original nonlinear system, for infinite-dimensional problems this need not, in general,
be the case. However, for 2-D Euler flows it was proved by Vishik & Friedlander (2003)
and Lin (2004) that the presence of an unstable eigenvalue in the spectrum of the linearized
operator does indeed imply the instability of the original nonlinear problem.

Arnold’s theory (Wu et al. 2006) predicts that equilibria satisfying system (1.3) are
nonlinearly stable if F′(ψ) ≥ 0, which, however, is not the case for the Lamb–Chaplygin
dipole, since using (1.4) we have F′(ψ0) = −b2 < 0 for ψ0 ≥ η. Thus, Arnold’s criterion
is inapplicable in this case.

2.1. Spectra of linear operators
When studying spectra of linear operators, there is fundamental difference between the
finite- and infinite-dimensional cases. To elucidate this difference and its consequences,
we briefly consider an abstract evolution problem du/dt = Au on a Banach space X (in
general, infinite-dimensional) with the state u(t) ∈ X and a linear operator A : X→ X.
Solution of this problem can be formally written as u(t) = eAtu0, where u0 ∈ X is the
initial condition and eAt the semigroup generated byA (Curtain & Zwart 2013). While in
finite dimensions linear operators can be represented as matrices which can only have point
spectrum Π0(A), in infinite dimensions the situation is more nuanced since the spectrum
Λ(A) of the linear operatorAmay in general consist of two parts, namely the approximate
point spectrum Π(A) (which is a set of numbers λ ∈ C such that (A− λ) is not bounded
from below) and the compression spectrum Ξ(A) (which is a set of numbers λ ∈ C such
that the closure of the range of (A− λ) does not coincide with X). We thus haveΛ(A) =
Π(A) ∪Ξ(A) and the two types of spectra may overlap, i.e.Π(A) ∩Ξ(A) /=∅ (Halmos
1982). A number λ ∈ C belongs to the approximate point spectrum Π(A) if and only if
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there exists a sequence of unit vectors { fn}, referred to as approximate eigenvectors, such
that ‖(A− λ)fn‖X → 0 as n → ∞. If for some λ ∈ Π(A) there exists a unit element f
such that Af = λf , then λ and f are an eigenvalue and an eigenvector of A. The set of
all eigenvalues λ forms the point spectrum Π0(A) which is contained in the approximate
point spectrum, Π0(A) ⊂ Π(A). If λ ∈ Π(A) does not belong to the point spectrum,
then the sequence { fn} is weakly null convergent and consists of functions characterized
by increasingly rapid oscillations as n becomes large. The set of such numbers λ ∈ C is
referred to as the essential spectrum Πess(A) := Π(A)\Π0(A), a term reflecting the fact
that this part of the spectrum is normally independent of boundary conditions in eigenvalue
problems involving differential equations. It is, however, possible for ‘true’ eigenvalues to
be embedded in the essential spectrum.

When studying the semigroup eAt one is usually interested in understanding the relation
between its growth abscissa γ (A) := limt→∞ t−1 ln ‖eAt‖X and the spectrumΛ(A) ofA.
While in finite dimensions γ (A) is determined by the eigenvalues of A with the largest
real part, in infinite dimensions the situation is more nuanced since there are examples in
which supz∈Λ(A) Re(z) < γ (A), e.g. Zabczyk’s problem (Zabczyk 1975) also discussed
by Trefethen (1997); some problems in hydrodynamic stability where such behaviour was
identified are analysed by Renardy (1994).

In regard to the 2-D linearized Euler operator L, cf. (2.1a), it was shown by
Shvydkoy & Latushkin (2003) that its essential spectrum is a vertical band in the
complex plane symmetric with respect to the imaginary axis. Its width is proportional
to the largest Lyapunov exponent λmax in the flow field and to the index m ∈ Z

of the Sobolev space Hm(Ω) in which the evolution problem is formulated (i.e.
X = Hm(Ω) above). The norm in the Sobolev space Hm(Ω) is defined as ‖u‖Hm :=
[
∫
Ω

∑
|α|≤m(∂

|α|u/∂α1x1∂
α2x2)

2 dA]1/2, where α1, α2 ∈ Z with |α| := α1 + α2 (Adams &
Fournier 2005). More specifically, we have (Shvydkoy & Friedlander 2005)

Πess(L) = {z ∈ C, −|m|λmax ≤ Re(z) ≤ |m|λmax}. (2.2)

In 2-D flows Lyapunov exponents are determined by the properties of the velocity
gradient ∇u(x) at hyperbolic stagnation points x0. More precisely, λmax is given by
the largest eigenvalue of ∇u(x) computed over all stagnation points. As regards the
Lamb–Chaplygin dipole, it is evident from figure 1(a,b) that in both the symmetric and
asymmetric cases it has two stagnation points xa and xb located at the fore and aft
extremities of the vortex core. Inspection of the velocity field ∇⊥ψ0 defined in (1.5a)
shows that the largest eigenvalues of ∇u(x) evaluated at these stagnation points, and hence
the Lyapunov exponents, are λmax = 2 regardless of the value of η.

While characterization of the essential spectrum of the 2-D linearized Euler operator L
is rather complete, the existence of a point spectrum remains in general an open problem.
Results concerning the point spectrum are available in a few cases only, usually for shear
flows where the problem can be reduced to one dimension (Chandrasekhar 1961; Drazin
& Reid 1981) or the cellular cat’s eyes flows (Friedlander, Vishik & Yudovich 2000). In
these examples unstable eigenvalues are outside the essential spectrum (if one exists) and
the corresponding eigenfunctions are well behaved. On the other hand, it was shown by
Lin (2004) that when an unstable eigenvalue is embedded in the essential spectrum, then
the corresponding eigenfunctions need not be smooth. One of the goals of the present
study is to consider this issue for the Lamb–Chaplygin dipole.
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On the linear stability of the Lamb–Chaplygin dipole

2.2. Linearization around the Lamb–Chaplygin dipole
The linear system (2.1) is defined on the entire plane R2; however, in the Lamb–Chaplygin
dipole the vorticity ω0 is supported within the vortex core A0 only, cf. (1.6b). This will
allow us to simplify system (2.1) so that it will involve relations defined only within
A0, which will facilitate both the asymptotic analysis and numerical solution of the
corresponding eigenvalue problem, cf. §§ 3 and 5. If the initial data w′ in (2.1d) are also
supported in A0, then the initial-value problem (2.1) can be regarded as a free-boundary
problem describing the evolution of the boundary ∂A(t) of the vortex core (we have
A(0) = A0 and ∂A(t) = ∂A0). However, as explained below, the evolution of this boundary
can be deduced from the evolution of the perturbation streamfunction ψ ′(t, x), hence need
not be tracked independently. Thus, the present problem is different from, for example,
the vortex-patch problem where the vorticity distribution is fixed (piecewise constant in
space) and in the stability analysis the boundary is explicitly perturbed (Elcrat & Protas
2013).

Denoting ψ ′
1 : (0, T] × A0 → R and ψ ′

2 : (0, T] × R2\Ā0 → R the perturbation
streamfunction in the vortex core and in its complement, system (2.1) can be recast as

∂ω′

∂t
= −(∇⊥ψ0 − Ue1) · ∇ω′ − ∇⊥ψ ′

1 · ∇ω0, in A0, (2.3a)

�ψ ′
1 = −ω′, in A0, (2.3b)

�ψ ′
2 = 0, in R

2\Ā0, (2.3c)

ψ ′
1 = ψ ′

2 = f ′, on ∂A0, (2.3d)

∂ψ ′
1

∂n
= ∂ψ ′

2
∂n

, on ∂A0, (2.3e)

ψ ′
2 → 0, for |x| → ∞, (2.3f )

ω′(0) = w′, in A0, (2.3g)

where n is the unit vector normal to the boundary ∂A0 pointing outside and conditions
(2.3d)–(2.3e) represent the continuity of the normal and tangential perturbation velocity
components across the boundary ∂A0 with f ′ : ∂A0 → R denoting the unknown value of
the perturbation streamfunction at that boundary.

The velocity normal to the vortex boundary ∂A(t) is un := u · n = ∂ψ1/∂s = ∂ψ2/∂s,
where s is the arc-length coordinate along ∂A(t), cf. (2.3d). While this quantity identically
vanishes in the equilibrium state (1.5)–(1.6), cf. (2.11), in general it will be non-zero
resulting in a deformation of the boundary ∂A(t). This deformation can be deduced from
the solution of system (2.3) as follows. Given a point z ∈ ∂A(t), the deformation of the
boundary is described by dz/dt = nun|∂A(t). Integrating this expression with respect to
time yields

z(τ ) = z(0)+
∫ τ

0
nun|∂Aτ dτ ′ = z(0)+ τnun|∂A0 + O(τ 2), (2.4)

where z(0) ∈ ∂A0 and 0 < τ � 1 is the time over which the deformation is considered.
Thus, the normal deformation of the boundary can be defined as ρ(τ) := n · [z(τ )−
z(0)] ≈ un|∂A0τ . We also note that at the leading order the area of the vortex core A(t)
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is preserved by the considered perturbations:∮
∂A0

ρ(τ) ds = τ

∮
∂A0

∂ψ

∂s
ds = τ

∮
∂A0

dψ = 0 =⇒ |A(t)| ≈ |A0|. (2.5)

We notice that in the exterior domain R2\Ā0 the problem is governed by Laplace’s
equation (2.3c) subject to boundary conditions (2.3d)–(2.3f ). Therefore, this subproblem
can be eliminated by introducing the corresponding Dirichlet-to-Neumann (D2N) map
M : ψ ′

2|∂A0 → ∂ψ ′
2/∂n|∂A0 which is constructed in an explicit form in Appendix A. Thus,

(2.3c) with boundary conditions (2.3d)–(2.3f ) can be replaced with a single relation
∂ψ ′

1/∂n = Mψ ′
1 holding on ∂A0 such that the resulting system is defined in the vortex

core A0 and on its boundary only. It should be emphasized that this reduction is exact
as the construction of the D2N map does not involve any approximations. We therefore
conclude that while the vortex boundary ∂A(t) may deform in the course of the linear
evolution, this deformation can be described based solely on quantities defined within A0
and on ∂A0 using relation (2.4). In particular, the transport of vorticity out of the vortex
core A0 into the potential flow is described by the last term on the right-hand side in (2.3a)
evaluated on the boundary ∂A0.

Noting that the base state satisfies the equation �ψ0 = −b2(ψ0 − η) in A0, cf.
(1.3)–(1.4), and using the identity (∇⊥ψ ′

1) · ∇ψ0 = −(∇ψ ′
1) · ∇⊥ψ0, the vorticity

equation (2.3a) can be transformed to the following simpler form:

∂�ψ ′
1

∂t
= −(∇⊥ψ0) · ∇(�ψ ′

1 + b2ψ ′
1) in A0, (2.6)

where we also used (2.3b) to eliminate ω′ in favour of ψ ′
1. Supposing the existence of an

eigenvalue λ ∈ C and an eigenfunction ψ̃ : A0 → C, we make the following ansatz for the
perturbation streamfunction ψ ′

1(t, x) = ψ̃(x) eλt which leads to the eigenvalue problem:

λψ̃ = Δ−1
M [(∇⊥ψ0) · ∇(Δψ̃ + b2ψ̃)] in A0, (2.7a)

∂�ψ̃

∂r
= 0, at r = 0, (2.7b)

where Δ−1
M is the inverse Laplacian subject to the boundary condition ∂ψ̃/∂n − Mψ̃ = 0

imposed on ∂A0 and the additional boundary condition (2.7b) ensures the perturbation
vorticity is differentiable at the origin (such condition is necessary since the differential
operator on the right-hand side in (2.7a) is of order three). Depending on whether or not
the different differential operators appearing in it are inverted, eigenvalue problem (2.7)
can be rewritten in a number of different, yet mathematically equivalent, forms. However,
all these alternative formulations have the form of generalized eigenvalue problems and
are therefore more difficult to handle in numerical computations. Thus, formulation (2.7)
is preferred and we focus on it hereafter.

We note that the proposed formulation ensures that the eigenfunctions ψ̃ have zero
circulation, as required:

Γ ′ :=
∫

A0

ω′ dA = −
∫

A0

�ψ ′
1 dA = −

∮
∂A0

∂ψ ′
1

∂n
ds

= −
∮
∂A0

∂ψ ′
2

∂n
ds = −

∫
R2\Ā0

�ψ ′
2 dA = 0, (2.8)
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On the linear stability of the Lamb–Chaplygin dipole

where we used the divergence theorem, (2.3b)–(2.3c) and the boundary conditions
(2.3e)–(2.3f ).

Since it will be needed for the numerical discretization described in § 5, we now rewrite
the eigenvalue problem (2.7) explicitly in the polar coordinate system:

λψ̃ = Δ−1
M

[(
ur

0
∂

∂r
+ uθ0

r
∂

∂θ

)
(Δ+ b2)ψ̃

]
=: Hψ̃ for 0 < r ≤ 1, 0 ≤ θ ≤ 2π,

(2.9a)

∂�ψ̃

∂r
= 0, at r = 0, (2.9b)

where Δ = ∂2/∂r2 + (1/r)(∂/∂r)+ (1/r2)(∂2/∂θ2) and the velocity components
obtained as [ur

0, uθ0] := ∇⊥ψ0 = [(1/r)(∂/∂θ),−∂/∂r]ψ0 are

ur
0 = 2UJ1(br) cos θ

bJ0(b)r
, (2.10a)

uθ0 = −
2U

[
J0(br)− J1(br)

br

]
sin θ + ηbJ1(br)

J0(b)
. (2.10b)

They have the following behaviour on the boundary ∂A0:

ur
0(1, θ) = 0, uθ0(1, θ) = 2U sin θ. (2.11a,b)

Since ‖ψ‖L2 ∼ ‖�ψ‖H−2 = ‖ω‖H−2 , where ‘∼’ means the norms on the left and on the
right are equivalent (in the precise sense of norm equivalence), the essential spectrum (2.2)
of the operator H will have m = −2, so that Πess(H) is a vertical band in the complex
plane with |Re(z)| ≤ 4, z ∈ C (since λmax = 2).

Operator H (cf. (2.9a)) has a non-trivial null space Ker(H). To see this, we consider
the ‘outer’ subproblem

Kφ :=
(

ur
0
∂

∂r
+ uθ0

r
∂

∂θ

)
φ = 0 for 0 < r ≤ 1, 0 ≤ θ ≤ 2π, (2.12a)

∂φ

∂r
= 0, at r = 0, (2.12b)

whose solutions are φ(r, θ) = φC(r, θ) := B[J1(br) sin θ ]C, B ∈ R, C = 2, 3, . . . (see
Appendix B for derivation details). Then, the eigenfunctions ψ̃C spanning the null space
of operatorH are obtained as solutions of the family of ‘inner’ subproblems

(
∂2

∂r2 + 1
r
∂

∂r
+ 1

r2
∂2

∂θ2 + b2
)
ψ̃C = φC for 0 < r ≤ 1, 0 ≤ θ ≤ 2π, (2.13a)

∂ψ̃C

∂r
+ Mψ̃C = 0, at r = 0, (2.13b)
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Figure 2. Eigenfunctions ψ̃C, C = (a) 2, (b) 3, (c) 4, (d) 5, corresponding to the zero eigenvalue of problem
(2.9).

where C = 2, 3, . . .. Some of these eigenfunctions are shown in figure 2(a–d), where
distinct patterns are evident for even and odd values of C.

3. Asymptotic solution of eigenvalue problem (2.9)

A number of interesting insights about certain properties of solutions of eigenvalue
problem (2.9) can be deduced by performing a simple asymptotic analysis of this problem
in the short-wavelength limit. We focus here on the case of the symmetric dipole (η = 0)
and begin by introducing the ansatz

ψ̃(r, θ) =
∞∑

m=0

fm(r) cos(mθ)+ gm(r) sin(mθ), (3.1)

where fm, gm : [0, 1] → C, m = 1, 2, . . ., are functions to be determined. Substituting
this ansatz in (2.9a) with the Laplacian moved back to the left-hand side and applying
well-known trigonometric identities leads after some algebra to the following system of
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On the linear stability of the Lamb–Chaplygin dipole

coupled third-order ordinary differential equations for the functions fm(r), m = 1, 2, . . .:

λBmfm = 1
2

P(r)
d
dr
(Bm−1fm−1 + b2fm−1 + Bm+1fm+1 + b2fm+1)

×1
2

Q(r)
m
r
(Bm−1fm−1 + b2fm−1 − Bm+1fm+1 − b2fm+1), r ∈ (0, 1), (3.2a)

fm bounded at r = 0, (3.2b)

d
dr

fm = −mfm at r = 1, (3.2c)

d
dr
Bmfm = 0 at r = 0, (3.2d)

where the Bessel operator Bm is defined viaBmf := (d2/dr2)f + (1/r)(d/dr)f − (m2/r)f ,
whereas the coefficient functions have the following form, cf. (2.10):

P(r) := 2UJ1(br)
bJ0(b)r

, (3.3a)

Q(r) := −
2U

[
J0(br)− J1(br)

br

]
J0(b)

. (3.3b)

The functions gm(r), m = 1, 2, . . ., satisfy a system identical to (3.2), which shows that the
eigenfunctions ψ̃(r, θ) are either even or odd functions of θ (i.e. they are either symmetric
or antisymmetric with respect to the flow centreline). Moreover, the fact that system (3.2)
couples Fourier components corresponding to different m implies that the eigenvectors
ψ̃(r, θ) are not separable as functions of r and θ .

Motivated by our discussion in § 2.1 about the properties of approximate eigenfunctions
of the 2-D linearized Euler operator, we construct approximate solutions of system (3.2) in
the short-wavelength limit m → ∞. In this analysis we assume that λ ∈ Πess(L) is given
and focus on the asymptotic structure of the corresponding approximate eigenfunctions.
We thus consider the asymptotic expansions

λ = λ0 + 1
m
λ1 + O

(
1

m2

)
, fm(r) = f 0

m(r)+ 1
m

f 1
m(r)+ O

(
1

m2

)
, (3.4a,b)

where λ0, λ1 ∈ C are treated as parameters and f 0
m, f 1

m : [0, 1] → C are unknown
functions. Plugging these expansions into system (3.2) and collecting terms proportional
to the highest powers of m, we obtain

O(m3) : f 0
m−1 − f 0

m+1 = 0, (3.5a)

O(m2) :
1
2

Q(r)
r3 ( f 1

m−1 − f 1
m+1) = 1

2
P(r)

d
dr

[
1
r2 ( f 0

m−1 + f 0
m+1)

]

+ Q(r)
r3 ( f 0

m−1 + f 0
m+1)+ λ

0

r2 f 0
m. (3.5b)

It follows immediately from (3.5a) that f 0
m−1 = f 0

m+1. Since this analysis does not
distinguish between even and odd values of m, we also deduce that f 0

m = f 0
m−1 = f 0

m+1,
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such that relation (3.5b) takes the form

P(r)
d
dr

(
1
r2 f 0

m

)
− 2

Q(r)
r3 f 0

m − λ
0

r2 f 0
m = 1

2
Q(r)

r3 ( f 1
m−1 − f 1

m+1), r ∈ (0, 1), (3.6)

which is an inhomogeneous first-order equation defining the leading-order term f 0
m(r) in

(3.4) in terms of f 1
m(r). Without loss of generality the boundary condition (3.2b) can be

replaced with f 0
m(0) = 1. The solution of (3.6) is then a sum of two parts: the solution of

the homogeneous equation obtained by setting the right-hand side to zero and a particular
integral corresponding to the actual right-hand side. Since at this level the expression
f 1
m−1 − f 1

m+1 is undefined, we cannot find the particular integral. On the other hand, the
solution of the homogeneous equation can be found directly noting that this equation is
separable and integrating which gives

f 0
m(r) = exp

[
i
∫ r

0
Ii(r′) dr′

]
exp

[∫ r

0
Ir(r′) dr′

]
, r ∈ [0, 1], (3.7)

where

Ir(r) := Re(λ0)bJ0(b)r2 − 4UbJ0(br)r + 8UJ1(br)
2UJ1(br)r

, (3.8a)

Ii(r) := Im(λ0)bJ0(b)r
2UJ1(br)

. (3.8b)

The limiting (as r → 1) behaviour of functions (3.8a)–(3.8b) exhibits an interesting
dependence on λ0, namely:

lim
r→1

Ir(r) =

⎧⎪⎨
⎪⎩

+∞, Re(λ0) < 4
0, Re(λ0) = 4

−∞, Re(λ0) > 4,
(3.9a)

lim
r→1

Ii(r) = − sign[Im(λ0)]∞. (3.9b)

In particular, the limiting value of Ir(r) as r → 1 changes when Re(λ0) = 4, which
defines the right boundary of the essential spectrum in the present problem, cf. (2.2).
Both Ir(r) and Ii(r) diverge as O(1/(1 − r)) when r → 1 which means that the integrals
under the exponentials in (3.7), and hence the entire formula, are not defined at r = 1.
While the factor involving Ii(r) is responsible for the oscillation of the function f 0

m(r), the
factor depending on Ir(r) determines its growth as r → 1: we see that |f 0

m(r)| becomes
unbounded in this limit when Re(λ0) < 4 and approaches zero otherwise. The real and
imaginary parts of f 0

m(r) obtained for different eigenvalues λ0 are shown in figure 3, where
it is evident that both the unbounded growth and the oscillations of f 0

m(r) are localized
in the neighbourhood of the endpoint r = 1. Given the singular nature of the solutions
obtained at the leading order, the correction term f 1

m(r) is rather difficult to compute and
we do not attempt this here. If f 1

m−1 /= f 1
m+1, the solution of (3.6) will also include some

extra terms in addition to (3.7)–(3.8) which would correspond to another possible family
of approximate eigenfunctions. However, as is evident from the discussion below, the
solutions given in (3.7)–(3.8) capture the relevant behaviour. Finally, in view of ansatz
(3.1), the leading-order approximations to eigenfunctions are obtained multiplying the
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On the linear stability of the Lamb–Chaplygin dipole
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Figure 3. Radial dependence (a) of the eigenvectors f 0
m(r) associated with real eigenvalues λ0 = 2 (red solid

line) and λ0 = 6 (blue dashed line) and (b) of the real part (red solid line) and the imaginary part (blue
dashed line) of the eigenvector f 0

m(r) associated with complex eigenvalue λ0 = 3 + 10i. Panel (b) shows the
neighbourhood of the endpoint r = 1.

function f 0
m(r) by cos(mθ) or sin(mθ) with m → ∞ which introduces rapid oscillations

in the azimuthal direction.
We thus conclude that when Re(λ0) < 4, the solutions of eigenvalue problem (2.9)

constructed in the form (3.1) include functions dominated by short-wavelength oscillations
whose asymptotic, as m → ∞, structure involves oscillations in both the radial and
azimuthal directions and are localized near the boundary ∂A0. Since as a result their
pointwise values on ∂A0 are not well defined, these solutions should be regarded as
‘distributions’. We remark that the asymptotic solutions constructed above do not satisfy
the boundary conditions (3.2c)–(3.2d), which is consistent with the fact that they represent
approximate eigenfunctions associated with the essential spectrum Πess(H) of the 2-D
linearized Euler operator. In order to find solutions of eigenvalue problem (2.9) which do
satisfy all the boundary conditions, we have to solve this problem numerically which is
done next.

4. Numerical approaches

In this section we first describe the numerical approximation of eigenvalue problem
(2.9)–(2.10) and then the time integration of the 2-D Euler system (1.1)–(1.2) with
the initial condition in the form of the Lamb–Chaplygin dipole perturbed with some
approximate eigenfunctions obtained by solving eigenvalue problem (2.9)–(2.10). These
computations offer insights about the instability of the dipole complementary to the results
of the asymptotic analysis presented in § 3.

4.1. Discretization of eigenvalue problem (2.9)–(2.10)
Eigenvalue problem (2.9)–(2.10) is solved using the spectral collocation method proposed
by Fornberg (1996), see also the discussion in Trefethen (2000), which is based on a
tensor grid in (r, θ). The discretization in θ involves trigonometric (Fourier) interpolation,
whereas that in r is based on Chebyshev interpolation where we take r ∈ [−1, 1] which
allows us to avoid collocating (2.9a) at the origin when the number of grid points is
even. Since then the mapping between (r, θ) and (x1, x2) is 2-to-1, the solution must be
constrained to satisfy the condition

ψ̃(r, θ) = ψ̃(−r, (θ + π)(mod 2π)), r ∈ [−1, 1], θ ∈ [0, 2π], (4.1)
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which is fairly straightforward to implement (Trefethen 2000).
In contrast to (2.9a), the boundary condition (2.9b) does need to be evaluated at the

origin which necessities modification of the differentiation matrix (since our Chebyshev
grid does not include a grid point at the origin). The numbers of grid points discretizing
the coordinates r ∈ [−1, 1] and θ ∈ [0, 2π] are linked and both given by N which is an
even integer. The resulting algebraic eigenvalue problem then has the form

λψ = Hψ, (4.2)

where ψ ∈ CN2
is the vector of approximate nodal values of the eigenfunction and

H ∈ RN2×N2
the matrix discretizing the operator H , cf. (2.9a), obtained as described

above. Problem (4.2) is implemented in MATLAB and solved using the function eig. The
discretization of all operators in H , cf. (2.9), was carefully verified by applying them to
analytic expressions and then comparing the results against exact expressions. Expected
rates of convergence were observed as the resolution N was increased.

Since the operator H and hence also the matrix H are non-normal and singular, the
numerical conditioning of problem (4.2) may be poor, especially when the resolution N
is refined. In an attempt to mitigate this potential difficulty, we eliminated a part of the
null space of H by performing projections on a certain number NC of eigenfunctions
associated with the eigenvalue λ = 0 (they are obtained by solving problem (2.13) with
different source terms φC, C = 2, 3, . . . ,NC + 1; cf. (B4)). However, solutions of problem
(4.2) obtained in this way were essentially unchanged as compared with the original
version. Moreover, in addition to examining the behaviour of the results when the grid
is refined (by increasing the resolution N as discussed in § 5), we have also checked the
effect of arithmetic precision using the toolbox Advanpix (2017). Increasing the arithmetic
precision up to O(102) significant digits was also not found to have a noticeable effect on
the results obtained with small and medium resolutions N ≤ 100 (at higher resolutions the
cost of such computations becomes prohibitive). These observations allow us to conclude
that the results presented in § 5 are not affected by round-off errors.

In the light of the discussion in §§ 2.1 and 2.2, we know that the spectrum of the
operator H includes essential spectrum in the form of a vertical band in the complex
plane |Re(z)| ≤ 4, z ∈ C. Available literature on the topic of numerical approximation
of infinite-dimensional non-self-adjoint eigenvalue problems, especially ones featuring
essential spectrum, is very scarce. However, since the discretized problem (4.2) is
finite-dimensional and therefore can only have a point spectrum, it is expected that at least
some of the eigenvalues of the discrete problem will be approximations of the approximate
eigenvalues in the essential spectrum Πess(H), whereas the corresponding eigenvectors
will approximate the approximate eigenfunctions (we note that the term ‘approximate’
is used here with two distinct meanings: its first appearance refers to the numerical
approximation and the second to the fact that these functions are defined as only ‘close’ to
being true eigenfunctions, cf. § 2.1). As suggested by the asymptotic analysis presented in
§ 3, these approximate eigenfunctions are expected to be dominated by short-wavelength
oscillations which cannot be properly resolved using any finite resolution N. Thus, since
these eigenfunctions are not smooth, we do not expect our numerical approach to yield an
exponential convergence of the approximation error. To better understand the properties of
these eigenfunctions, we also solve a regularized version of problem (2.9) in which ψ̃ is
replaced with ψ̃δ := R−1

δ ψ̃ , where Rδ := (Id −δ2Δ), δ > 0 is a regularization parameter
and the inverse of Rδ is defined with the homogeneous Neumann boundary conditions.
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On the linear stability of the Lamb–Chaplygin dipole

The regularized version of the discrete problem (4.2) then takes the form

λδψ = RδHR−1
δ ψ =: H δψ, (4.3)

where the subscript δ denotes regularized quantities and Rδ is the discretization of the
regularizing operator Rδ . Since the operator R−1

δ can be interpreted as a low-pass filter
with the cut-off length given by δ, the effect of this regularization is to smoothen the
eigenvectors by filtering out components with wavelengths less than δ. Clearly, in the
limit when δ → 0 the original problem (4.2) is recovered. An analogous strategy was
successfully employed by Protas & Elcrat (2016) in their study of the stability of Hill’s
vortex where the eigenfunctions also turned out to be singular distributions.

4.2. Solution of the time-dependent problem (1.1)–(1.2)
The 2-D Euler system (1.1)–(1.2) is transformed to the frame of reference moving with
velocity −Ue1 and rewritten in terms of the ‘perturbation’ vorticity ω̄(t, x) := ω(t, x)−
ω0(x) and the corresponding perturbation streamfunction ψ̄(t, x), such that it takes the
following form, cf. (2.1):

∂ω̄

∂t
+ (∇⊥ψ̄ − Ue1) · ∇ω0 + (∇⊥ψ0 + ∇⊥ψ̄ − Ue1) · ∇ω̄ = 0 in Ω, (4.4a)

−�ψ̄ = ω̄ in Ω, (4.4b)

ψ̄ → 0 for |x| → ∞.

(4.4c)

To facilitate solution of this system with a Fourier pseudospectral method (Canuto et al.
1988), we approximate the unbounded domain with a 2-D periodic box Ω ≈ T2 :=
[−L/2, L/2]2, where L > 1 is its size. While this is an approximation only, it is known
to become more accurate as the size L of the domain increases relative to the radius
of the dipole which remains fixed at one (Boyd 2001). We note that this is a standard
approach and has been successfully used in earlier studies of related problems (Nielsen &
Rasmussen 1997; van Geffen & van Heijst 1998; Billant et al. 1999; Donnadieu et al. 2009;
Brion et al. 2014; Jugier et al. 2020). Since the instability has the form of short-wavelength
oscillations localized on the dipole boundary A0, interaction of the perturbed dipole with
its periodic images does not have a significant effect.

The perturbation vorticity is then approximated in terms of a truncated Fourier series:

ω̄(t, x) ≈
∑

k∈VM

ˆ̄ωk(t) eik · x, (4.5)

in which ˆ̄ωk(t) ∈ C are the Fourier coefficients such that ˆ̄ωk(t) = ˆ̄ω∗
−k(t) and VM := {k =

[k1, k2] ∈ Z2 : −M/2 ≤ k1, k2 ≤ M/2}, where M is the number of grid points in each
direction in T2. Substitution of expansion (4.5) into (4.4a) yields a system of coupled
ordinary differential equations describing the evolution of the expansion coefficients
ˆ̄ωk(t), k ∈ VM , which is integrated in time using the RK4 method. Product terms in the
discretized equations are evaluated in physical space with the exponential filter proposed
by Hou & Li (2007) used in lieu of dealiasing. We use a massively parallel implementation
based on MPI with Fourier transforms computed using the FFTW library (Frigo &
Johnson 2003). Convergence of the results with refinement of the resolution M and of
the time step �t as well as with the increase of the size L of the computational domain
was carefully checked. In the results reported in § 6 we use L = 2π.
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5. Solution of the eigenvalue problem

In this section we describe solutions of the discrete eigenvalue problem (4.2) and
its regularized version (4.3). We mainly focus on the symmetric dipole with η = 0;
cf. figure 1a. In order to study dependence of the solutions on the numerical resolution,
problems (4.2)–(4.3) were solved with N ranging from 20 to 260, where the largest
resolution was limited by the amount of RAM available on a single node of the computer
cluster to which we had access. The discrete spectra of problem (4.2) obtained with
N = 40, 80, 160, 260 are shown in figure 4(a–d). We see that for all resolutions N the
spectrum consists of purely imaginary eigenvalues densely packed on the vertical axis and
a ‘cloud’ of complex eigenvalues clustered around the origin (for each N is there is also
a pair of purely real spurious eigenvalues increasing as |λ| = O(N) when the resolution
is refined; they are not shown in figure 4(a–d). We see that as N increases the cloud
formed by the complex eigenvalues remains restricted to the band −2 � Re(λ) � 2, but
expands in the vertical (imaginary) direction. The spectrum is symmetric with respect to
the imaginary axis as is expected for a Hamiltonian system. The eigenvalues fill the inner
part of the band ever more densely as N increases and in order to quantify this effect, in
figure 5(a–d) we show the eigenvalue density defined as the number of eigenvalues in a
small rectangular region of the complex plane, i.e.

μ(z) := number of eigenvalues λ ∈ {ζ ∈ C : |Re(ζ − z)| ≤ �λr, |Im(ζ − z)| ≤ �λi}
4�λr�λi

,

(5.1)

where �λr,�λi ∈ R are half-sizes of a cell used to count the eigenvalues with �λi ≈
500�λr reflecting the fact that the plots are stretched in the vertical direction. We see that
as the resolution N is refined the eigenvalue density μ(z) increases near the origin.

As discussed in § 2.1, a key question concerning the linear stability of 2-D Euler
flows is the existence of point spectrum Π0(L) of the linear operator L, cf. (2.1).
However, the usual approach based on discretizing the continuous eigenvalue problem
(2.9)–(2.10), cf. § 4.1, is unable to directly distinguish numerical approximations of the
true eigenvalues from those of the approximate eigenvalues. This can be done indirectly
by solving the discrete problem (4.2) with different resolutions N since approximations
to true eigenvalues will then converge to well-defined limits as the resolution is refined;
in contrast, approximations to approximate eigenvalues will simply fill up the essential
spectrum Πess(L) ever more densely in this limit. In this way we have found a single
eigenvalue, denoted λ0, which together with its negative −λ0 and complex conjugates
±λ∗0, satisfy the above condition (see table 1). As is evident from table 1, the differences
between the real parts of λ0 computed with different resolutions N are very small and just
over 1 %, although the variation of the imaginary part is larger. Moreover, as is discussed
in § 6, λ0 is in fact the only eigenvalue associated with a linearly growing mode.

We now take a closer look at the purely imaginary eigenvalues which are plotted for
different resolutions N in figure 6. It is known that these approximate eigenvalues are
related to the periods of Lagrangian orbits associated with closed streamlines in the
base flow (Cox 2014). In particular, if the maximum period is bounded τmax < ∞, this
implies the presence of horizontal gaps in the essential spectrum. However, as shown in
Appendix C, the Lamb–Chaplygin dipole does involve Lagrangian orbits with arbitrarily
long periods, such that the essential spectrum Πess(L) includes the entire imaginary
axis iR. The results shown in figure 6 are consistent with this property since the gap
evident in the spectra shrinks, albeit very slowly, as the numerical resolution N is refined.
The reason why these gaps are present is that the orbits sampled with the discretization
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Figure 4. Eigenvalues obtained by solving the discrete eigenvalue problem (4.2) with different indicated
resolutions N: (a) N = 40, (b) N = 80, (c) N = 160, (d) N = 260. The eigenvalues ±λ0 and ±λ∗0 which
converge to well-defined limits as the resolution N is refined, cf. Table 1, are marked in red. The eigenvalue λ0
is associated with the only linearly unstable mode, cf. § 6.

N λ0

40 0.1272 ± i31.5543
80 0.1263 ± i25.2577
160 0.1256 ± i32.7466
260 0.1260 ± i42.2629

Table 1. Eigenvalue λ0 associated with the linearly growing mode, cf. § 6, obtained by solving the discrete
eigenvalue problem (4.2) with different resolutions N.

described in § 4.1 have only finite maximum periods which, however, become longer as
the discretization is refined.

Finally, we analyse eigenvectors of problem (4.2) and choose to present them in terms
of vorticity, i.e. we show ω̃i = −�ψ̃ i, where the subscript i = 0, 1, 2 enumerates the
corresponding eigenvalues. First, in figure 7(a–c) we illustrate the convergence pattern
of the eigenvector ω̃0 corresponding to the eigenvalue λ0, cf. table 1, and representing
an exponentially growing mode as the resolution is refined. We see that as N increases
the approximations of the eigenvector converge to a constant value within the domain
A0 and diverge near its boundary, in agreement with the distributional nature of these
eigenvectors established by our asymptotic analysis in § 3. More specifically, we see
that the magnitude |ω̃1(r, θ)| of the eigenvector grows rapidly near the boundary, i.e.
as r → 1, which is consistent with the behaviour of the function f 0

m(r) describing the
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Figure 5. Eigenvalue densities (5.1) corresponding to the spectra shown in figure 4(a–d): (a) N = 40,
(b) N = 80, (c) N = 160, (d) N = 260.

10–14

10–8

10–2

104

40 80 160 260

|I
m
(λ
)|

N

Figure 6. Purely imaginary eigenvalues obtained by solving the discrete eigenvalue problem (4.2) with
different indicated resolutions N.

asymptotic solution, cf. expressions (3.7)–(3.9) and figure 3(a,b). In addition, a rapid
variation of |ω̃1(r, θ)| in the azimuthal coordinate θ is also evident for r � 1. However,
something that could not be discerned by the asymptotic analysis is that these oscillations
are mostly concentrated near the azimuthal angles θ = ±π/4,±3π/4. As expected, both
the growth in the radial direction and the oscillations in the azimuthal direction become
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Figure 7. Real parts of the eigenvector ω̃0 corresponding to the eigenvalue λ0, cf. table 1, and representing
an exponentially growing mode obtained by solving the discrete eigenvalue problem (4.2) with different
resolutions N: (a) N = 40, (b) N = 80 and (c) N = 120. The grids covering the surface plots represent the
discretizations of the domain A0 used for different N.

more rapid as the resolution N is refined. Given the distributional nature of the solutions
of the eigenvalue problem (2.9), the classical notion of ‘convergence’ of a numerical
scheme is not entirely applicable here and instead one would need to refer to more refined
concepts such as ‘weak convergence’, but since they are quite technical, we do not pursue
this avenue here. However, as is shown in § 6, even if they are not fully resolved, the
eigenvectors computed here still contain useful information.

Next, in figure 8(a,c,e) we compare the real parts of the eigenvectors associated with
different eigenvalues: the complex eigenvalue λ0 corresponding to the exponentially
growing mode (already shown in figure 7), a purely real eigenvalue λ1 and a purely
imaginary eigenvalue λ2. We see that while these eigenvectors are qualitatively similar
and share the features described above, the eigenvector ω̃0 is symmetric with respect
to the flow centreline, whereas the eigenvectors ω̃1 and ω̃2 are antisymmetric. Another
difference is that in the eigenvector ω̃0 associated with the eigenvalue λ0 the oscillations
are mostly concentrated near the azimuthal angles θ = ±π/4,±3π/4, cf. figure 8(a); on
the other hand, in the eigenvectors ω̃1 and ω̃2 the oscillations are mostly concentrated near
the stagnation points xa and xb, cf. figure 8(c,e).

The numerical approximations of the eigenvectors are characterized by short-wavelength
oscillations. Here, ‘short wavelength’ means that a significant variation of the magnitude
|ω̃(r, θ)| of the eigenvector with respect to both r and θ occurs on the length scale given
by the grid size which shrinks as the resolution is refined. This feature is also borne out in
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Figure 8. Real parts of the eigenvectors corresponding to the indicated eigenvalues obtained by solving (a,c,e)
eigenvalue problem (4.2) and (b,d, f ) the regularized problem (4.3) using the resolution N = 80: (a) λ0 =
0.126 ± i25.258, (b) λδ,0 = 0.129 ± i67.489, δ = 0.05, (c) λ1 = 1.585, (d) λδ,1 = 0.406, δ = 0.05, (e) λ2 =
±i149.873 and ( f ) λδ,2 = ±i150.233, δ = 0.05. The grid shown on the surface represents the discretization of
the domain A0 used in the numerical solution of problems (4.2) and (4.3).

figure 10 showing the enstrophy spectrum of the initial condition involving the eigenvector
ω̃0. It is evident from this figure that significant contributions to the enstrophy come
from a broad range of length scales, including the smallest length scales resolved on the
numerical grid. The eigenvectors associated with all other eigenvalues (not shown here for
brevity) are also dominated by short-wavelength oscillations localized near different parts
of the boundary ∂A0. Since due to their highly oscillatory nature the eigenvectors shown
in figure 8(a,c,e) are not fully resolved, in figure 8(b,d, f ) we show the corresponding
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On the linear stability of the Lamb–Chaplygin dipole

eigenvectors of the regularized eigenvalue problem (4.3) where we set δ = 0.05. We see
that in the regularized eigenvectors oscillations are shifted to the interior of the domain
A0 and their typical wavelengths are much larger. The eigenvalues obtained by solving
the regularized problem (4.3) are distributed following a similar pattern as revealed by
the eigenvalues of the original problem (4.2), cf. figures 4(b) and 5(b). In particular,
for the main eigenvalue of interest λ0, cf. table 1, the difference with respect to the
corresponding eigenvalue of the regularized problem λδ,0 is rather small and we have
|Re(λ0 − λδ,0)|/Re(λ0) ≈ 0.024 (both are computed here with the resolution N = 80).
The remaining eigenvalues of the regularized problem also form a ‘cloud’ filling the
essential spectrum Πess(L).

Solution of the discrete eigenvalue problem (4.2) for asymmetric dipoles with η > 0
leads to eigenvalue spectra and eigenvectors qualitatively very similar to those shown in
figures 4(a–d) and 8(a,c,e), hence for brevity they are not shown here. The only noticeable
difference is that the eigenvectors are no longer symmetric or antisymmetric with respect
to the flow centreline.

6. Solution of the evolution problem

As in § 5, we focus on the symmetric case with η = 0. The 2-D Euler system (1.1)–(1.2)
is solved numerically as described in § 4.2 with the initial condition for the perturbation
vorticity ω̄(t, x) given in terms of the eigenvectors shown in figure 8(a–f ), i.e.

ω̄(0, x) = ε
‖ω̃i‖L2(Ω)

‖ω0‖L2(Ω)

ω̃i(x) or ω̄(0, x) = ε
‖ω̃δ,i‖L2(Ω)

‖ω0‖L2(Ω)

ω̃δ,i(x), i = 0, 1, 2. (6.1)

Unless indicated otherwise, the numerical resolution is M = 512 grid points in each
direction. By taking ε = 10−4 we ensure that the evolution of the perturbation vorticity
is effectively linear up to t � 70 and to characterize its growth we define the perturbation
enstrophy as

E(t) :=
∫
Ω

ω̄(t, x)2 dx. (6.2)

The evolution of this quantity is shown in figure 9(a) for the six considered initial
conditions and times before nonlinear effects become evident. In all cases we see that after
a transient period the perturbation enstrophy starts to grow exponentially as exp(λ̃t), where
the growth rate (found via a least-squares fit) is λ̃ ≈ 0.127 and is essentially equal to the
real part of the eigenvalue λ0, cf. table 1. The duration of the transient, which involves an
initial decrease of the perturbation enstrophy, is different in different cases and is shortest
when the eigenfunctions ω̃0 and ω̃δ,0 are used as the initial conditions in (6.1) (in fact,
in the latter case the transient is barely present). The reason for this behaviour is that ω̃0
is the sole true eigenvector of the operator L, whereas ω̃1 and ω̃2 are only approximate
eigenvectors associated with the (approximate) eigenvalues λ1 and λ2 belonging to the
essential spectrum Πess(L) rather than to the point spectrum Π0(L). As a result, ω̃0
represents the only linearly growing mode, such that when ω̃1, ω̃2 or any other approximate
eigenvector is used as the initial condition in (6.1), a transient behaviour ensues where
the solution ω̄(t) of system (4.4) approaches the trajectory involving the growing mode
Re(eλ0tω̃0). Hereafter we focus on the flow obtained with the initial condition (6.1) given
in terms of the eigenfunction ω̃0, cf. figure 8(a).

The effect of the numerical resolution N used in the discrete eigenvalue problem (4.2) is
analysed in figure 9(b), where we show the perturbation enstrophy (6.2) in the flows with
the eigenvector ω̃0 used in the initial conditions (6.1) computed with different N. We see
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Figure 9. Time evolution of the normalized perturbation enstrophy E(t)/E(0) in the flow with the initial
condition (6.1) given in terms of (a) the different eigenvectors shown in figure 8(a–f ) and obtained with a
fixed resolution N = 80 and (b) the eigenvector ω̃0 computed with different resolutions N. In (a) the red solid
lines correspond to the eigenvectors ω̃0 and ω̃δ,0, black dotted lines to ω̃1 and ω̃δ,1 and blue dashed lines to ω̃2
and ω̃δ,2; thin and thick lines represent flows with initial conditions involving eigenvectors obtained as solutions
of the discrete eigenvalue problem (4.2) and its regularized version (4.3), respectively. In (b) the blue dashed
and red solid lines correspond to initial conditions involving eigenvectors ω̃0 obtained with the resolutions
N = 40 and N = 80, respectively.

that refined resolution leads to a longer transient period while the rate of the exponential
growth λ̃ is unchanged. This demonstrates that this growth rate is in fact a robust property
unaffected by the underresolution of the unstable mode.

The enstrophy spectrum of the initial condition (6.1) and of the perturbation vorticity
ω̄(t, x) at different times t ∈ (0, 60] is shown in figure 10 as a function of the wavenumber
k := |k|. It is defined as

e(t, k) :=
∫

Sk

| ˆ̄ωk(t)|2 dσ, (6.3)

where σ is the azimuthal angle in wavenumber space and Sk denotes the circle of radius k
in this space (with some abuse of notation justified by simplicity; here we have treated
the wavevector k as a continuous rather than discrete variable). Since its enstrophy
spectrum is essentially independent of the wavenumber k, the eigenvector ω̃0 in the
initial condition (6.1) turns out to be a distribution rather than a smooth function. The
enstrophy spectra of the perturbation vorticity ω̄(t, x) during the flow evolution show
a rapid decay at high wavenumbers which is the effect of the applied filter, cf. § 4.2.
However, after the transient, i.e. for 20 � t ≤ 60, the enstrophy spectra have very similar
forms, except for a vertical shift which increases with time t. This confirms that the
time evolution is dominated by linear effects as there is little energy transfer to higher
(unresolved) modes. This is also attested to by the fact that for all the cases considered in
figure 9(a) the relative change of the total energy

∫
Ω

|u(t, x)|2 dx and of the total enstrophy∫
Ω
ω(t, x)2 dx, which are conserved quantities in the Euler system (1.1)–(1.2), is at most

of O(10−4) (this small variation of the conserved quantities is due to the action of the
filter and the fact that the time-integration scheme is not strictly conservative, cf. § 4.2).
Since in the numerical solution the total circulation is given by the Fourier coefficient
[ω̂(t)]0 = [ω̂0(t)]0 + [ω̂i(t)]0, it remains zero by construction throughout the entire flow
evolution.

We now go on to discuss the time evolution of the perturbation vorticity in physical
space and in figures 11(a) and 11(b) we show ω̄(t, x) at the times t = 4 and t = 21,
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Figure 10. Enstrophy spectra (6.3) of (blue squares) the initial condition (6.1) involving the eigenvector ω̃0 and
(red circles) the corresponding perturbation vorticity ω̄(t, x) at times t = 10, 20, . . . , 60. The arrow indicates
the trend with the increase of time t.

respectively, which correspond to the transient regime and to the subsequent period of
an exponential growth. During that period, i.e. for 20 � t ≤ 60, the structure of the
perturbation vorticity field does not change much. We see that as the perturbation evolves a
number of thin vorticity filaments is ejected from the vortex core A0 into the potential flow
with the principal ones emerging at the azimuthal angles θ ≈ ±π/4,±3π/4, i.e. in the
regions of the vortex boundary where most of the short-wavelength oscillations evident in
the eigenvector ω̃0 are localized, cf. figure 8(a). With thickness of the order of a few grid
points, these filaments are among the finest structures that can be resolved in computations
with the resolution M we use. The perturbation remains symmetric with respect to the flow
centreline for all times and since the vorticity ω0 of the base flow is antisymmetric, the
resulting total flow ω(t, x) does not possess any symmetries. The perturbation vorticity
ω̄(t, x) realizing the exponential growth in the flows corresponding to the initial condition
involving the eigenvectors ω̃1 and ω̃2 (and their regularized versions ω̃δ,1 and ω̃δ,2) is
essentially identical to the perturbation vorticity shown in figure 11(b), although its form
during the transient regime can be quite different. In particular, the perturbation eventually
becomes symmetric with respect to the flow centreline even if the initial condition (6.1)
is antisymmetric. The same is true for flows obtained with initial condition corresponding
to all approximate eigenvalues other than λ1 and λ2 (not shown here for brevity). We did
not attempt to study the time evolution of asymmetric dipoles with η > 0 in (1.5a), since
their vorticity distributions are discontinuous making computation of such flows using the
pseudospectral method described in § 4.2 problematic.

7. Discussion and final conclusions

In this study we have considered an open problem concerning the linear stability of
the Lamb–Chaplygin dipole which is a classical equilibrium solution of the 2-D Euler
equation in an unbounded domain. We have considered its stability with respect to 2-D
circulation-preserving perturbations and while our main focus was on the symmetric
configuration with η = 0, cf. figure 1(a), we also investigated some aspects of asymmetric
configurations with η > 0. Since the stability of the problem posed on a unbounded
domain is difficult to study both with asymptotic methods and numerically, we have
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Figure 11. Perturbation vorticity ω̄(t, x) in the flow corresponding the initial condition (6.1) involving the
eigenvector ω̃0 during (a) the transient regime (t = 4) and (b) the period of exponential growth (t = 21).

introduced an equivalent formulation with all relations defined entirely within the compact
vortex core A0, which was accomplished with the help of a suitable D2N map accounting
for the potential flow outside the core, cf. Appendix A. The initial-value problem for the
2-D Euler equation with a compactly supported initial condition is of a free-boundary type
since the time evolution of the vortex boundary ∂A(t) is a priori unknown and must be
determined as a part of the solution of the problem. This important aspect is accounted for
in our formulation of the linearized problem, cf. relation (2.4). The operator representing
the 2-D Euler equation linearized around the Lamb–Chaplygin dipole has been shown to
have an infinite-dimensional null space Ker(L) and the eigenfunctions ψ̃C, C = 2, 3, . . .,
spanning this null space, cf. figure 2(a–d), can potentially be used to search for nearby
equilibrium solutions.

We have studied the linear stability of the Lamb–Chaplygin dipole using a
combination of asymptotic analysis (§ 3) and numerical computation (§ 5) employed
to construct approximate solutions of the eigenvalue problem (2.9) together with
the numerical time integration of the 2-D Euler system (4.4) in § 6. These three
approaches offer complementary insights reinforcing the main conclusion, namely that
the Lamb–Chaplygin dipole is linearly unstable with the instability realized by a single
eigenmode ω̃0, cf. figure 8(a), featuring high-frequency oscillations localized near the
vortex boundary ∂A0 and the corresponding eigenvalue λ0 embedded in the essential
spectrumΠess(L) of the linearized operatorL. In other words, there is no ‘smallest’ length
scale characterizing the unstable mode, which is why it cannot be accurately resolved using
any finite numerical resolution. This is one of the reasons why this form of instability
specific to the inviscid evolution is so fundamentally different from the mechanisms
underlying the growth of perturbations during the viscous evolution of the dipole that
were observed in all earlier studies (Nielsen & Rasmussen 1997; van Geffen & van Heijst
1998; Billant et al. 1999; Donnadieu et al. 2009; Brion et al. 2014; Jugier et al. 2020).

An approximate solution of eigenvalue problem (2.9) obtained in § 3 using an
asymptotic technique reveals the existence of approximate eigenfunctions in the form
of short-wavelength oscillations localized near the vortex boundary ∂A0. Remarkably,
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eigenfunctions with such properties exist when Re(λ0) < 4, i.e. when λ0 is in the essential
spectrum Πess(H) of the 2-D linearized Euler operator and it is interesting that the
asymptotic solution has been able to capture this value exactly. We remark that with
exponential terms involving divergent expressions as arguments, cf. (3.7), this approach
has the flavour of the Wentzel–Kramers–Brillouin analysis. We note that while providing
valuable insights about the structure of the approximate eigenvectors, the asymptotic
analysis developed in § 3 does not allow us to determine the eigenvalues of problem (2.9),
i.e. λ0 serves as a parameter in this analysis. Moreover, since the obtained approximate
solution represents only the asymptotic (in the short-wavelength limit m → ∞) structure
of the eigenfunctions, it does not satisfy the boundary conditions (3.2c)–(3.2d). To account
for these limitations, complementary insights have been obtained by solving eigenvalue
problem (2.9) numerically as described in § 4.1.

Our numerical solution of eigenvalue problem (2.9) obtained in § 5 using different
resolutions N yields results consistent with the general mathematical facts known about the
spectra of the 2-D linearized Euler operator, cf. § 2.1. In particular, these results feature
eigenvalues of the discrete problem (4.2) filling ever more densely a region around the
origin which is bounded in the horizontal (real) direction and expands in the vertical
(imaginary) direction as the resolution N is increased, which is consistent with the
existence of an essential spectrum Πess(H) in the form of a vertical band with the width
determined by the largest Lyapunov exponent of the flow, cf. (2.2). The corresponding
eigenvectors are dominated by short-wavelength oscillations localized near the vortex
boundary ∂A0, a feature that was predicted by the asymptotic solution constructed in
§ 3. However, solutions of the evolution problem for the perturbation vorticity with the
initial condition (6.1) corresponding to different eigenvectors obtained from the discrete
problems (4.2)–(4.3) reveal that λ0 (and its complex conjugate λ∗0) are the only eigenvalues
associated with an exponentially growing mode with a growth rate equal to the real
part of the eigenvalue, i.e. for which λ̃ ≈ Re(λ0). When eigenvectors associated with
eigenvalues other than λ0 or λ∗0 are used in the initial condition (6.1), the perturbation
enstrophy (6.2) reveals transients of various duration followed by exponential growth with
the growth rate again given by Re(λ0). This demonstrates that ±λ0 and ±λ∗0 are the
only ‘true’ eigenvalues and form the point spectrum Π0(H) of the operator associated
with the 2-D Euler equation linearized around the Lamb–Chaplygin dipole. On the other
hand, all other eigenvalues of the discrete problems (4.2)–(4.3) can be interpreted as
numerical approximations to approximate eigenvalues belonging to the essential spectrum
Πess(H). More precisely, for each resolution N the eigenvalues of the discrete problems
other than ±λ0 and ±λ∗0 approximate a different subset of approximate eigenvalues in the
essential spectrumΠess(H) and the corresponding eigenvectors are approximations to the
associated approximate eigenvectors. This interpretation is confirmed by the eigenvalue
density plots shown in figure 5(a–d) and is consistent with what is known in general about
the spectra of the 2-D linearized Euler operator, cf. § 2.1.

In figure 9(a) we noted that when the initial condition (6.1) is given in terms of the
eigenvector ω̃0, the perturbation enstrophy E(t) also exhibits a short transient before
attaining exponential growth with the rate λ̃ ≈ Re(λ0). The reason for this transient is that,
being non-smooth, the eigenvector ω̃0 is not fully resolved, which is borne out in figure 10
(in fact, due to the distributional nature of this and other eigenvectors, they cannot be
accurately resolved with any finite resolution). Thus, this transient period is needed for
some underresolved features of the perturbation vorticity to emerge, cf. figure 11(a) versus
figure 11(b). However, we note that in the flow evolution originating from the eigenvector
ω̃0 the transient is actually much shorter than when other eigenvectors are used as the
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initial condition (6.1), and is nearly absent in the case of the regularized eigenvector
ω̃δ,0. We emphasize that non-smoothness of eigenvectors associated with eigenvalues
embedded in the essential spectrum is consistent with the known mathematical results
predicting this property (Lin 2004). Interestingly, the eigenfunctions ψ̃C, C = 2, 3, . . .,
associated with the zero eigenvalue λ = 0 are smooth, cf. figure 2(a–d). We also add that
there are analogies between our findings and the results of the linear stability analysis of
Hill’s vortex with respect to axisymmetric perturbations where the presence of both the
continuous and point spectrum was revealed, the latter also associated with non-smooth
eigenvectors (Protas & Elcrat 2016).

In the course of the linear evolution of the instability the vortex region A(t) changes
shape as a result of the ejection of thin vorticity filaments from the vortex core A0,
cf. figure 11(a,b). However, both the area |A(t)| of the vortex and its total circulation Γ
are conserved at the leading order, cf. (2.5) and (2.8). We reiterate that the perturbation
vorticity fields shown in figure 11(a,b) were obtained with underresolved computations
and increasing the resolution M would result in the appearance of even finer filaments
such that in the continuous limit (M → ∞) some of the filaments would be infinitely thin.

In this study we have considered the linear stability of the Lamb–Chaplygin dipole with
respect to 2-D perturbations. It is an interesting open question how the picture presented
here would be affected by inclusion of three-dimensional effects. We are also exploring
related questions in the context of the stability of other equilibria in 2-D Euler flows,
including various cellular flows.
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Appendix A. Construction of the D2N map

We consider the Laplace subproblem consisting of (2.3c)–(2.3d) and (2.3f ) whose solution
has the general form

ψ ′
2(r, θ) =

∞∑
k=1

αk cos(kθ)+ βk sin(kθ)
rk , r ≥ 1, 0 ≤ θ ≤ 2π, (A1)

where αk, βk ∈ R, k = 1, 2, . . ., are expansion coefficients to be determined and the
constant term is omitted since we adopt the normalization

∮
∂A0

f ′(s) ds = 0. The boundary
value f ′ of the perturbation streamfunction on ∂A0 serves as the argument of the D2N
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operator, cf. (2.3c). Expanding it in a Fourier series gives

f ′(θ) =
∞∑

k=1

f̂ c
k cos(kθ)+ f̂ s

k sin(kθ), (A2)

where f̂ c
k , f̂ s

k ∈ R, k = 1, 2, . . ., are known coefficients. Then, using the boundary
condition ψ ′

2(1, θ) = f ′(θ), θ ∈ [0, 2π], cf. (2.3c), the corresponding Neumann data can
be computed as

[Mf ′](θ) := ∂ψ ′
2

∂n

∣∣∣∣
∂A0

= ∂ψ ′
2

∂r

∣∣∣∣
r=1

= −
∞∑

k=1

k[ f̂ c
k cos(kθ)+ f̂ s

k sin(kθ)], (A3)

which expresses the action of the D2N operator M on f ′. In order to make this expression
explicitly dependent on f ′, rather than on its Fourier coefficients as in (A3), we use the
formulas for these coefficients together with their approximations based on the trapezoidal
quadrature (which are spectrally accurate when applied to smooth periodic functions
(Trefethen 2000)):

f̂ c
k = 1

π

∫ 2π

0
f ′(θ ′) cos(kθ ′) dθ ′ ≈ 2

N

N∑
l=1

f ′(θl) cos(kθl), (A4a)

f̂ s
k = 1

π

∫ 2π

0
f ′(θ ′) sin(kθ ′) dθ ′ ≈ 2

N

N∑
l=1

f ′(θl) sin(kθl), (A4b)

where {θl}N
l=1 are grid points uniformly discretizing the interval [0, 2π]. Using these

relations, the D2N map (A3) truncated at N/2 Fourier modes and evaluated at the grid
point θj can be written as

[Mf ′](θj) ≈
N∑

l=1

Mjlf ′(θl), j = 1, . . . ,N, (A5)

where

Mjl := − 2
N

N/2∑
k=1

k[cos(kθj) cos(kθl)+ sin(kθj) sin(kθl)] (A6)

are entries of a symmetric matrix M ∈ RN×N approximating the D2N operator.

Appendix B. Solution of outer problem (2.12)

Assuming separability, we use the ansatz φ(r, θ) = R(r)T(θ), where R : [0, 1] →
R and T : [0, 2π] → R. Plugging this ansatz into (2.12a), we obtain the relation
ur

0T(θ)(dR/dr) = −(uθ0/r)R(r)(dT/dθ), which using expressions (2.10a)–(2.10b) for the
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velocity components can be rewritten as

rJ1(br)
brJ0(br)− J1(br)

1
R(r)

dR
dr

= tan(θ)
T(θ)

dT
dθ

= C, (B1)

with some real constant C /= 0. The azimuthal part dT/dθ − C cot(θ)T(θ) = 0 can be
integrated using the periodic boundary conditions to give

T(θ) = A sinC(θ), A ∈ R. (B2)

The radial part of (B1) is dR/dr − C[brJ0(br)− J1(br)]/[rJ1(br)]R(r) = 0, which upon
integration gives

R(r) = B[J1(br)]C, B ∈ R. (B3)

Imposing the boundary condition (2.12b) and requiring the solution to be real-valued while
noting that J1(0) = 0 and (d/dr)J1(br)|r=0 /= 0, restricts the values of C to integers larger
than 1. Thus, combining (B2) and (B3) finally gives

φ(r, θ) = φC(r, θ) := B[J1(br) sin θ ]C, C = 2, 3, . . . . (B4)

Appendix C. Maximum periods of Lagrangian orbits

In this appendix we estimate the maximum period τmax of Lagrangian orbits in the flow
field of the Lamb–Chaplygin dipole where we focus on the symmetric case with η = 0
in (1.5). We consider the heteroclinic trajectory connecting the two hyperbolic stagnation
points xa and xb, cf. figure 1(a), which coincides with a part of the boundary ∂A0. Let
s = s(t) denote the arc-length coordinate of a material point on this orbit. Then, assuming
the dipole has unit radius a = 1, we have the following, cf. (2.11):

ds
dt

= dθ
dt

= uθ0(1, θ) = 2U sin θ, θ ∈ [0,π]. (C1)

Separating variables and integrating, we obtain∫ π

0

dθ
sin θ

= 2U
∫ τmax

0
dt = 2Uτmax, (C2)

where the integral on the left-hand side is
∫ π

0 dθ/sin θ = ln((1 − cos θ)/sin θ)|π0 = ∞
and hence τmax = ∞. Since there are closed orbits in the interior of the dipole lying
arbitrarily close to this heteroclinic trajectory, their orbit periods are not bounded and
can be arbitrarily long.
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