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Abstract

In 1985 John Reade determined the spectrum of C\ regarded as an operator on the space CQ of
all null sequences normed by ||x|| = supn>0 \xn\. It is the purpose of this paper to determine the
spectrum of C\ regarded as an operator on the space bvQ of all sequences x such that x^ —> 0
as k -> oo and ||JC|| = J2£Lo \xk+i ~ xk\ < °°-
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NOTATION, S; C0; /,; bv0; bs; T*; X*B{X); A'; a(T); 0(1); o(l); x;Re(z);
will denote the set of all sequences; convergent to zero sequences, that is,
null sequences; sequences such that YlT=o \xk I < °°; sequences such that
YlT=o \xk+\ - xk\ < °°; bounded series, that is, sequences x such that
supn>01 X)/t=o ̂  I < °°' ^ e a4joint operator of T; the space of all contin-
uous linear functional on X, that is, the continuous dual of X; the linear
space of all bounded linear operators, say, T on X into itself; the transposed
matrix of A; the spectrum of T; capital order, that is, xn = 0(1) if there
exists M e R+ such that \xn\ < M for all n; small order, that is, xn = o(l)
as n —* oo, that is, limn_oo xn = 0; lies between two positive constant mul-
tiples, for example an >; bn means that there exist m, M e R+ such that
mbn <an< Mbn; the real part of the complex number z, respectively.
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1. Introduction

[2]

In his 1985 paper Reade considers the operator which converts a sequence
§° into its sequence of averages

/'X + X + 4- X \ ° °

\ n~+~l Jn=0'
He shows it is a bounded operator on c0. We shall denote this operator by
C\ = (C, 1) and call it the Cesaro operator. It can be represented by the
matrix

/ I 0 0 0 •••
\ 0 0 •••

; i o ...

i

i

v- •
The key to determining the spectrum a(C\) of a bounded linear operator C\:
bvo -+ bvo on a Banach space bvo is the determination of all eigenvalues of
C* € B(bv^), that is, the determination of all X e C such that (Q - A/)"1 €
B(bv0).

1.1 THEOREM. Let T e B(X), where X is any Banach space. Then the
spectrum ofT* is identical with the spectrum ofT. Furthermore, Ri(T*) =
(RxiT))* for k 6 p(T) = p(T*), where RX(T) = (T - A/)"1 and p(T) = {Xe
C: (T-XI)~l exists}.

PROOF. See [2, page 568] and [3, page 71].

1.2. LEMMA. C\: bv0 -» bv0 and Cx e B{bv0) with \\Ci\\bVo = 1.

PROOF. Since d: bv0 -* bv0, write yn = C{x and define xn = ao + a\ +
Yan. Then yn -> 0 as n -> oo and

1

n=0 n=0
oo

(»+ 2)

n+l

vav
v=\

(!, +2)
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Direct manipulation gives

Clearly lim,,-^ -^ = 0 and hence C\ e B(bv0).

1.3. LEMMA. Each bounded linear operator T: X —> Y, where X = CQ,IP

and Y = CQ,IP (I < p < oo), /<» (where lp denotes sequences x such that
YUkLo \xk\p < °° and loo denotes bounded sequences) determines and is deter-
mined by an infinite matrix of complex numbers.

PROOF. See Taylor [13, pages 221-223].

1.4. LEMMA. Let Cx: bv0 -> bv0. Then C*: bv^ -»• bv£ is given by C*
and C[ e B{bs).

PROOF. Since bvo has AK and bv^ is isomorphic to bs under the map
h: bv$ - • bs, h(f) = (to,t\,t2,---), where tn = f(S"), n > 0, / e bv%, we
have (see Lemma 1.3)

i i i 4 - ^
0 4r* - c' - 3 4
0 ° 3 4

v
But for any operator T on a normed linear space X, \\T\\x = \\T*\\x» (see [2,
page 478], [3, page 54] and [7, page 232]), so

Thus C\ e Bibv^), that is, C\ e B(bs) since it is also clear that each column
of C[ is null (C\ being a normal matrix).

1.5. COROLLARY. C\ G B(bvo) has not eigenvalues.

PROOF. The proof follows from the fact that C\ GB{CQ) has no eigenvalues
(see [10]) since bv^ c CQ.

1.6. LEMMA. Let

i/=0

7Ae« the partial sums ofY^L\ Zn are bounded if and only if Re(l/X) > 1.

PROOF. When A = 1, Zn = 0 for all n and so the partial sums of J^Lo
are certainly bounded.
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Let C be a constant depending only on A which may be different at each
occurrence and A a non-zero constant. We have that

(1.1)

uniformly in |w| < | , « € C . Now given A ^ 0 there is VQ such that |A|(i/ +1) >
2 for v > i/0,

(1-2)

A ̂  1 +v
V=VQ

where tv = 0{\/v2), and

Also

(1.4)

since if C = £"=o ^ - log n, then

Therefore

= c+f;(c+1 - o - f; (c+, - c), c0 = o,
f=0 u=n+\

that is,

(1.5) C+1 = C - f ] (C+1 -CU) = C + O ( i

Hence as n - oo, logZn = C - 1/Alogn + O(i) so Zn = An~l'x{l + £
= An~l/X + 0(n~ReW-1). If Re(l/A) > 1, A = 1, the partial sums of

~ i n~l/x are bounded and J2T=i «-R e ( 1 / A )-1 < oo, so the partial sums of
OZi zn are bounded. If 0 < Re(l/A) < 1 or A = 1 then the partial sums
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of £ " i n~l/x are unbounded, but we still have £ ~ , /t-Re(i/*)-i < oo. If
Re(l/A)<Othen

(1.6)

Now

n=\

, if Re(l/A) < 0,

if Re(l/A) = 0.

Using (1.6) we see that the partial sums of YlT=i n l^ a r e unbounded al-
though Y^i «~Re(1/A)~' < oo, and hence we conclude that the partial sums
of E ~ i Zn are bounded if and only if Re(l/A) > 1.

2. Determination of the spectrum of C\ on bv0

2.1. THEOREM. The eigenvalues ofC\ e B{bv£), that is, C[ e B(bs), are
allXeC satisfying \X-\\<\.

PROOF. Suppose C\x — Xx, x e bs, x ^ 6 where 6 is the zero sequence.
Then as in Lemma 1.4,

/I i | | -

= c[ =

2 3
A 1 1 10 2 3 4
0 0 i

and solving the system of equations

+ 3*2 + • • • =

+ \x2 + • • • =

^TT^ • • — Xn
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we obtain

(2.2)

By Lemma 1.6, (xN)f e bs if and only if Re(l/A) > 1, that is, \X - \\ < \.
Hence the result follows.

2.2. THEOREM. Let C\: bv0 -> bv0. Then the spectrum ofC\ is

2.3. DEFINITION (Weighted mean method). The weighted mean method
is a matrix A = (a^) with

Ink = Pk\Pn, Pn =
k=0

2.4. LEMMA. If(M,p) = (N,p) is a regular (conservative) weighted mean
method then (M,p) = (N,p) is absolutely regular (conservative).

(See [1], [14] for further details.)
PROOF. Since (N,p) is a regular (conservative) mean method we have by

the Kojima-Schur conditions

(2.3) \Pn\ —> oo as n -• oo,

where Pn = Y,"=oP>>

(2.4) P;=J2\pv\
i/=0

We need to prove that (N,p) is absolutely regular (conservative), that is, that

oo

(2.5)
1 1
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pn = £"=o \P»\- T h e n (2-4) becomes />„* < K\Pn\ for all n > 1 (AT some
constant). Thus

Since |PB| ->• oo as « -> oo by (2.3), we have that P* -> oo (since P* > \Pn\),
therefore ET=k(l/Pn-i ~ xlPn) = l/Pk-\ and so (2.5) follows, provided that
\pk-i\/p

k*-i < M for some M. But M = 1 will do and the result follows.
We now prove Theorem 2.2.

PROOF. By virtue of Theorem 2.1 and the fact that a(C{) = ^(Cf) (see
Theorem 1.1), it is enough to prove that B = (Cx - A/)"1 e B(bv0) for all
I* ~ 51 > 1'that i s > t n a t Q i s absolutely regular where B = -I/k - Q/A(A - 1)
except when X is the reciprocal of a positive integer, B = (C — XI)~l =
IIX - Q/X(X - 1), where Q = {qnk), qnk = A^IA^f,

n + a
n ) n\

is a Hausdorff matrix (n,fin),

It is also clear that Q is the Hausdorff matrix (fi, (1 - j)/((n + 1) - £)). The
proof of this is trivial (see Rhoades [11]).

Now Q is a regular Hausdorff transformation when Re(l/A) < 1. To see
this we simply check the regularity conditions, namely:

(i) lim^oo qnk = lim,,_oo A~XJ^IAX~_}(X = 0 since

\Qnk\ = \AZlJx
kIA\-_f\ = I ^ T l • O(n"-1)

and a = Re(l/A) < 1, whence qnk —* 0 as n —> oo;

(») E*-i ^ * T = 4 - ' A a n d therefore lim^oo E L i Ink = U

(i«) E*-i^*-? = E L i °(k~") = O(n'-tt) s< Od^lJ^I) and therefore

EL. M;Tl = 0{\Al-_\/l\).
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It is clear that Q = (qnk) is a weighted mean method (matrix) (N,A^*)

with J2l=\ ^k-\ = •A-li-i*'- Since Q is a weighted mean method and a regular
Hausdorff method, theorem 2.2 follows.
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