ON THE SPECTRUM OF C_{1} AS AN OPERATOR ON $b v_{0}$

J. I. OKUTOYI

(Received 28 March 1988; revised 3 March 1989)

Communicated by \mathbf{S}. Yamamuro

Abstract

In 1985 John Reade determined the spectrum of C_{1} regarded as an operator on the space c_{0} of all null sequences normed by $\|x\|=\sup _{n \geq 0}\left|x_{n}\right|$. It is the purpose of this paper to determine the spectrum of C_{1} regarded as an operator on the space $b v_{0}$ of all sequences x such that $x_{k} \rightarrow 0$ as $k \rightarrow \infty$ and $\|x\|=\sum_{k=0}^{\infty}\left|x_{k+1}-x_{k}\right|<\infty$.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 40 F 05, 47 A 10.

Notation. $s ; c_{0} ; l_{1} ; b v_{0} ; b s ; T^{*} ; X^{*} B(X) ; A^{t} ; \sigma(T) ; O(1) ; o(1) ; \simeq ; \operatorname{Re}(z)$; will denote the set of all sequences; convergent to zero sequences, that is, null sequences; sequences such that $\sum_{k=0}^{\infty}\left|x_{k}\right|<\infty$; sequences such that $\sum_{k=0}^{\infty}\left|x_{k+1}-x_{k}\right|<\infty$; bounded series, that is, sequences x such that $\sup _{n \geq 0}\left|\sum_{k=0}^{n} x_{k}\right|<\infty$; the adjoint operator of T; the space of all continuous linear functionals on X, that is, the continuous dual of X; the linear space of all bounded linear operators, say, T on X into itself; the transposed matrix of A; the spectrum of T; capital order, that is, $x_{n}=O(1)$ if there exists $M \in \mathbf{R}^{+}$such that $\left|x_{n}\right| \leq M$ for all n; small order, that is, $x_{n}=o(1)$ as $n \rightarrow \infty$, that is, $\lim _{n \rightarrow \infty} x_{n}=0$; lies between two positive constant multiples, for example $a_{n} \asymp b_{n}$ means that there exist $m, M \in \mathbf{R}^{+}$such that $m b_{n} \leq a_{n} \leq M b_{n}$; the real part of the complex number z, respectively.

[^0]
1. Introduction

In his 1985 paper Reade considers the operator which converts a sequence $\left(x_{n}\right)_{0}^{\infty}$ into its sequence of averages

$$
\left(\frac{x_{0}+x_{1}+\cdots+x_{n}}{n+1}\right)_{n=0}^{\infty}
$$

He shows it is a bounded operator on c_{0}. We shall denote this operator by $C_{1}=(C, 1)$ and call it the Cesàro operator. It can be represented by the matrix

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 & \cdots \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & \cdots \\
\cdots & \cdots & \cdots & &
\end{array}\right) .
$$

The key to determining the spectrum $\sigma\left(C_{1}\right)$ of a bounded linear operator C_{1} : $b v_{0} \rightarrow b v_{0}$ on a Banach space $b v_{0}$ is the determination of all eigenvalues of $C_{1}^{*} \in B\left(b v_{0}^{*}\right)$, that is, the determination of all $\lambda \in \mathbb{C}$ such that $\left(C_{1}-\lambda I\right)^{-1} \in$ $B\left(b v_{0}\right)$.
1.1 Theorem. Let $T \in B(X)$, where X is any Banach space. Then the spectrum of T^{*} is identical with the spectrum of T. Furthermore, $R_{\lambda}\left(T^{*}\right)=$ $\left(R_{\lambda}(T)\right)^{*}$ for $\lambda \in \rho(T)=\rho\left(T^{*}\right)$, where $R_{\lambda}(T)=(T-\lambda I)^{-1}$ and $\rho(T)=\{\lambda \in$ $\mathrm{C}:(T-\lambda I)^{-1}$ exists $\}$.

Proof. See [2, page 568] and [3, page 71].
1.2. Lemma. $C_{1}: b v_{0} \rightarrow b v_{0}$ and $C_{1} \in B\left(b v_{0}\right)$ with $\left\|C_{1}\right\|_{b v_{0}}=1$.

Proof. Since $C_{1}: b v_{0} \rightarrow b v_{0}$, write $y_{n}=C_{1} x$ and define $x_{n}=a_{0}+a_{1}+$ $\cdots+a_{n}$. Then $y_{n} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left|y_{n}-y_{n+1}\right| & =\sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)}\left|\sum_{\nu=1}^{n+1} \nu a_{\nu}\right| \\
& \leq \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} \sum_{\nu=1}^{n} \nu\left|a_{\nu}\right| \\
& =\sum_{\nu=1}^{\infty} \nu\left|a_{\nu}\right| \sum_{n=\nu-1}^{\infty} \frac{1}{(n+1)(n+2)} \\
& \leq \sum_{\nu=1}^{\infty}\left|a_{\nu}\right|=\sum_{\nu=0}^{\infty}\left|x_{\nu}-x_{\nu-1}\right|
\end{aligned}
$$

Direct manipulation gives

$$
\left\|C_{1}\right\|_{\left(b v_{0}, b v_{0}\right)}=\sup \{1,0,0, \ldots\}=1 .
$$

Clearly $\lim _{n \rightarrow \infty} \frac{1}{1+n}=0$ and hence $C_{1} \in B\left(b v_{0}\right)$.
1.3. Lemma. Each bounded linear operator $T: X \rightarrow Y$, where $X=c_{0}, l_{p}$ and $Y=c_{0}, l_{p}(1 \leq p<\infty)$, l_{∞} (where l_{p} denotes sequences x such that $\sum_{k=0}^{\infty}\left|x_{k}\right|^{p}<\infty$ and l_{∞} denotes bounded sequences) determines and is determined by an infinite matrix of complex numbers.

Proof. See Taylor [13, pages 221-223].
1.4. Lemma. Let $C_{1}: b v_{0} \rightarrow b v_{0}$. Then $C_{1}^{*}: b v_{0}^{*} \rightarrow b v_{0}^{*}$ is given by C_{1}^{*} and $C_{1}^{t} \in B(b s)$.

Proof. Since $b v_{0}$ has $A K$ and $b v_{0}^{*}$ is isomorphic to $b s$ under the map $h: b v_{0}^{*} \rightarrow b s, h(f)=\left(t_{0}, t_{1}, t_{2}, \ldots\right)$, where $t_{n}=f\left(\delta^{n}\right), n \geq 0, f \in b v_{0}^{*}$, we have (see Lemma 1.3)

$$
C_{1}^{*}=C_{1}^{t}=\left(\begin{array}{ccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots \\
0 & 0 & \frac{1}{3} & \frac{1}{4} & \cdots \\
\cdots & \cdots & \cdots & &
\end{array}\right)
$$

But for any operator T on a normed linear space $X,\|T\|_{X}=\left\|T^{*}\right\|_{X^{*}}$ (see [2, page 478], [3, page 54] and [7, page 232]), so

$$
\left\|C_{1}\right\|_{b v_{0}}=\left\|C_{1}^{*}\right\|_{b v_{0}^{*}}=\left\|C_{1}^{t}\right\|_{b s}=1
$$

Thus $C_{1}^{*} \in B\left(b v_{0}^{*}\right)$, that is, $C_{1}^{t} \in B(b s)$ since it is also clear that each column of C_{1}^{t} is null (C_{1} being a normal matrix).
1.5. Corollary. $C_{1} \in B\left(b v_{0}\right)$ has not eigenvalues.

Proof. The proof follows from the fact that $C_{1} \in B\left(c_{0}\right)$ has no eigenvalues (see [10]) since $b v_{0} \subset c_{0}$.

1.6. Lemma. Let

$$
Z_{n}=\prod_{\nu=0}^{n}\left(1-\frac{1}{\lambda(\nu+1)}\right), \quad \lambda \neq 0, \lambda \in \mathbb{C} .
$$

Then the partial sums of $\sum_{n=1}^{\infty} Z_{n}$ are bounded if and only if $\operatorname{Re}(1 / \lambda) \geq 1$.
Proof. When $\lambda=1, Z_{n}=0$ for all n and so the partial sums of $\sum_{n=0}^{\infty} Z_{n}$ are certainly bounded.

Let C be a constant depending only on λ which may be different at each occurrence and A a non-zero constant. We have that

$$
\begin{equation*}
\log _{e}(1-u)=-\sum_{n=1}^{\infty} \frac{1}{n} u^{n}=-u+O\left(u^{2}\right) \tag{1.1}
\end{equation*}
$$

uniformly in $|u| \leq \frac{1}{2}, u \in \mathbb{C}$. Now given $\lambda \neq 0$ there is ν_{0} such that $|\lambda|(\nu+1)>$ 2 for $\nu \geq \nu_{0}$,

$$
\begin{align*}
\log _{e} Z_{n} & =\sum_{\nu=0}^{n} \log \left(1-\frac{1}{\lambda(\nu+1)}\right) \tag{1.2}\\
& =C-\frac{1}{\lambda} \sum_{\nu=\nu_{0}} \frac{1}{1+\nu}+\sum_{\nu=\nu_{0}}^{n} t_{\nu}
\end{align*}
$$

where $t_{\nu}=O\left(1 / \nu^{2}\right)$, and

$$
\begin{equation*}
\sum_{\nu=\nu_{0}}^{n} t_{\nu}=\sum_{\nu=\nu_{0}}^{\infty} t_{\nu}-\sum_{\nu=n+1}^{\infty} t_{\nu}=C+O\left(\frac{1}{n}\right) \tag{1.3}
\end{equation*}
$$

Also

$$
\begin{equation*}
\sum_{\nu=\nu_{0}}^{n} \frac{1}{\nu+1}=C+\log n+O\left(\frac{1}{n}\right) \tag{1.4}
\end{equation*}
$$

since if $C=\sum_{\nu=0}^{n} \frac{1}{\nu+1}-\log n$, then

$$
C_{n+1}-C_{n}=\frac{1}{2+n}-\log \left(\frac{n+1}{n}\right)=O\left(\frac{1}{n^{2}}\right)
$$

Therefore

$$
\begin{aligned}
C_{n+1} & =C+\sum_{\nu=0}^{n}\left(C_{\nu+1}-C_{\nu}\right) \\
& =C+\sum_{\nu=0}^{\infty}\left(C_{\nu+1}-C_{\nu}\right)-\sum_{\nu=n+1}^{\infty}\left(C_{\nu+1}-C_{\nu}\right), \quad C_{0}=0
\end{aligned}
$$

that is,

$$
\begin{equation*}
C_{n+1}=C-\sum_{\nu=n+1}^{\infty}\left(C_{\nu+1}-C_{\nu}\right)=C+O\left(\frac{1}{n}\right) \tag{1.5}
\end{equation*}
$$

Hence as $n \rightarrow \infty, \log Z_{n}=C-1 / \lambda \log n+O\left(\frac{1}{n}\right)$ so $Z_{n}=A n^{-1 / \lambda}\left(1+O\left(\frac{1}{n}\right)\right)$ $=A n^{-1 / \lambda}+O\left(n^{-\operatorname{Re}(1 / \lambda)-1}\right)$. If $\operatorname{Re}(1 / \lambda) \geq 1, \lambda=1$, the partial sums of $\sum_{n=1}^{\infty} n^{-1 / \lambda}$ are bounded and $\sum_{n=1}^{\infty} n^{-\operatorname{Re}(1 / \lambda)-1}<\infty$, so the partial sums of $\sum_{n=1}^{\infty} Z_{n}$ are bounded. If $0<\operatorname{Re}(1 / \lambda)<1$ or $\lambda=1$ then the partial sums
of $\sum_{n=1}^{\infty} n^{-1 / \lambda}$ are unbounded, but we still have $\sum_{n=1}^{\infty} n^{-\operatorname{Re}(1 / \lambda)-1}<\infty$. If $\operatorname{Re}(1 / \lambda) \leq 0$ then

$$
\begin{equation*}
\sum_{n=1}^{N} n^{-1 / \lambda} \asymp N^{1-1 / \lambda} /\left(1-\frac{1}{\lambda}\right) \tag{1.6}
\end{equation*}
$$

Now

$$
\sum_{n=1}^{N} n^{-\operatorname{Re}(1 / \lambda)-1}= \begin{cases}O\left(N^{-\operatorname{Re}(1 / \lambda)}\right), & \text { if } \operatorname{Re}(1 / \lambda)<0 \\ O(\log N), & \text { if } \operatorname{Re}(1 / \lambda)=0\end{cases}
$$

Using (1.6) we see that the partial sums of $\sum_{n=1}^{\infty} n^{-1 / \lambda}$ are unbounded although $\sum_{n=1}^{\infty} n^{-\operatorname{Re}(1 / \lambda)-1}<\infty$, and hence we conclude that the partial sums of $\sum_{n=1}^{\infty} Z_{n}$ are bounded if and only if $\operatorname{Re}(1 / \lambda) \geq 1$.

2. Determination of the spectrum of C_{1} on $b v_{0}$

2.1. Theorem. The eigenvalues of $C_{1}^{*} \in B\left(b v_{0}^{*}\right)$, that is, $C_{1}^{t} \in B(b s)$, are all $\lambda \in \mathbb{C}$ satisfying $\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}$.

Proof. Suppose $C_{1}^{t} x=\lambda x, x \in b s, x \neq \theta$ where θ is the zero sequence. Then as in Lemma 1.4,

$$
C_{1}^{*}=C_{1}^{t}=\left(\begin{array}{cccccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \\
0 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \cdots & \\
0 & 0 & & \frac{1}{3} & \frac{1}{4} & \cdots \\
& \cdots & & \cdots & \cdots &
\end{array}\right)
$$

and solving the system of equations

$$
\begin{aligned}
& x_{0}+\frac{1}{2} x_{1}+\frac{1}{3} x_{2}+\cdots=x_{0} \\
& \frac{1}{2} x_{1}+\frac{1}{3} x_{2}+\cdots=x_{1} \\
& \frac{1}{3} x_{2}+\cdots=x_{2} \\
& \cdots \\
& \frac{1}{n} x_{n-1}+\frac{1}{n+1} x_{n}+\cdots=x_{n-1} \\
& \frac{1}{n+1} x_{n}+\cdots=x_{n}
\end{aligned}
$$

we obtain

$$
\begin{align*}
& x_{1}=\left(1-\frac{1}{\lambda}\right) x_{0} \\
& x_{2}=\left(1-\frac{1}{\lambda}\right)\left(1-\frac{1}{2 \lambda}\right) x_{0} \\
& x_{3}=\left(1-\frac{1}{\lambda}\right)\left(1-\frac{1}{2 \lambda}\right)\left(1-\frac{1}{3} \lambda\right) x_{0} \tag{2.2}
\end{align*}
$$

$$
x_{N}=\prod_{n=1}^{N}\left(1-\frac{1}{n \lambda}\right) x_{0}
$$

By Lemma $1.6,\left(x_{N}\right)_{1}^{\infty} \in b s$ if and only if $\operatorname{Re}(1 / \lambda) \geq 1$, that is, $\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}$. Hence the result follows.
2.2. Theorem. Let $C_{1}: b v_{0} \rightarrow b v_{0}$. Then the spectrum of C_{1} is

$$
\sigma\left(C_{1}\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{1}{2}\right| \leq \frac{1}{2}\right\}
$$

2.3. Definition (Weighted mean method). The weighted mean method is a matrix $A=\left(a_{n k}\right)$ with

$$
a_{n k}=p_{k} \mid P_{n}, \quad P_{n}=\sum_{k=0}^{n} p_{k} \neq 0
$$

2.4. Lemma. If $(M, p)=(N, p)$ is a regular (conservative) weighted mean method then $(M, p)=(N, p)$ is absolutely regular (conservative).
(See [1], [14] for further details.)
Proof. Since (N, p) is a regular (conservative) mean method we have by the Kojima-Schur conditions

$$
\begin{equation*}
\left|P_{n}\right| \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

where $P_{n}=\sum_{\nu=0}^{n} p_{\nu}$ and

$$
\begin{equation*}
P_{n}^{*}=\sum_{\nu=0}^{n}\left|p_{\nu}\right|=O\left(P_{n}\right) \tag{2.4}
\end{equation*}
$$

We need to prove that (N, p) is absolutely regular (conservative), that is, that

$$
\begin{equation*}
P_{k-1} \sum_{n=k}^{\infty}\left|\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right| \leq M \tag{2.5}
\end{equation*}
$$

Let $P_{n}^{*}=\sum_{\nu=0}^{n}\left|p_{\nu}\right|$. Then (2.4) becomes $P_{n}^{*} \leq K\left|P_{n}\right|$ for all $n \geq 1$ (K some constant). Thus

$$
\begin{aligned}
\left|P_{k-1}\right| \sum_{n=k}^{\infty} \frac{\left|p_{n}\right|}{\left|P_{n}\right|\left|P_{n-1}\right|} & \leq\left|P_{k-1}\right| \sum_{n=k}^{\infty} \frac{\left|P_{n}\right| K^{2}}{P_{n}^{*} \cdot P_{n-1}^{*}} \\
& \leq K^{2}\left|P_{k-1}\right| \sum_{n=k}^{\infty}\left(\frac{1}{P_{n-1}^{*}}-\frac{1}{P_{n}^{*}}\right) .
\end{aligned}
$$

Since $\left|P_{n}\right| \rightarrow \infty$ as $n \rightarrow \infty$ by (2.3), we have that $P_{n}^{*} \rightarrow \infty$ (since $P_{n}^{*} \geq\left|P_{n}\right|$), therefore $\sum_{n=k}^{\infty}\left(1 / P_{n-1}^{*}-1 / P_{n}^{*}\right)=1 / P_{k-1}^{*}$ and so (2.5) follows, provided that $\left|P_{k-1}\right| / P_{k-1}^{*} \leq M$ for some M. But $M=1$ will do and the result follows.

We now prove Theorem 2.2.
Proof. By virtue of Theorem 2.1 and the fact that $\sigma\left(C_{1}\right)=\sigma\left(C_{1}^{*}\right)$ (see Theorem 1.1), it is enough to prove that $B=\left(C_{1}-\lambda I\right)^{-1} \in B\left(b v_{0}\right)$ for all $\left|\lambda-\frac{1}{2}\right|>\frac{1}{2}$, that is, that Q is absolutely regular where $B=-I / \lambda-Q / \lambda(\lambda-1)$ except when λ is the reciprocal of a positive integer, $B=(C-\lambda I)^{-1}=$ $I / \lambda-Q / \lambda(\lambda-1)$, where $Q=\left(q_{n k}\right), q_{n k}=A_{k-1}^{-1 / \lambda} / A_{n-1}^{1-1 / \lambda}$,

$$
A_{n}^{\alpha}=\binom{n+\alpha}{n}=\frac{(\alpha+n) \cdots(\alpha+1)}{n!}
$$

is a Hausdorff matrix $\left(\mu, \mu_{n}\right)$,

$$
\mu_{n}=\frac{1}{\lambda}\left(-1-\frac{\frac{1}{\lambda}}{(n+1)-\frac{1}{\lambda}}\right)
$$

It is also clear that Q is the Hausdorff matrix $\left(\mu,\left(1-\frac{1}{\lambda}\right) /\left((n+1)-\frac{1}{\lambda}\right)\right)$. The proof of this is trivial (see Rhoades [11]).

Now Q is a regular Hausdorff transformation when $\operatorname{Re}(1 / \lambda)<1$. To see this we simply check the regularity conditions, namely:
(i) $\lim _{n \rightarrow \infty} q_{n k}=\lim _{n \rightarrow \infty} A_{n-1}^{-1 / \lambda} / A_{n-1}^{1-1 / \lambda}=0$ since

$$
\left|q_{n k}\right|=\left|A_{k-1}^{-1 / \lambda} / A_{n-1}^{1-1 / \lambda}\right|=\left|A_{k-1}^{-1 / \lambda}\right| \cdot O\left(n^{\alpha-1}\right)
$$

and $\alpha=\operatorname{Re}(1 / \lambda)<1$, whence $q_{n k} \rightarrow 0$ as $n \rightarrow \infty$;
(ii) $\sum_{k=1}^{n} A_{k-1}^{-1 / \lambda}=A_{n-1}^{1-1 / \lambda}$, and therefore $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} q_{n k}=1$;
(iii) $\sum_{k=1}^{n} A_{k-1}^{-1 / \lambda}=\sum_{k=1}^{n} O\left(k^{-\alpha}\right)=O\left(n^{1-\alpha}\right) \asymp O\left(\left|A_{n-1}^{1-1 / \lambda}\right|\right)$ and therefore $\sum_{k=1}^{n}\left|A_{k-1}^{-1 / \lambda}\right|=O\left(\left|A_{n-1}^{1-1 / \lambda}\right|\right)$.

It is clear that $Q=\left(q_{n k}\right)$ is a weighted mean method (matrix) $\left(N, A_{k-1}^{-1 / \lambda}\right)$ with $\sum_{k=1}^{n} A_{k-1}^{-1 / \lambda}=A_{n-1}^{1-1 / \lambda}$. Since Q is a weighted mean method and a regular Hausdorff method, theorem 2.2 follows.

Acknowledgement

I would like to thank Professor A. Kuttner and Dr. B. Thorpe, both of the University of Birmingham (U.K.), for their guidance throughout the production of this paper.

References

[1] D. Borwein, 'On strong and absolute summability', Proc. Glasgow Math. Assoc. 4 (1959), 81-83.
[2] N. Dunford and J. T. Schwartz, Linear operators, Part I, General theory (John Wiley and Sons, 1967).
[3] S. Goldberg, Unbounded Linear operators-theory and applications, (McGraw-Hill, 1966).
[4] G. H. Hardy, Divergent series, (Oxford, 1949).
[5] A. Jakimovski and S. M. Ramanujan, 'A uniform approximation theorem and its application to moment problems', Math. Z. 84 (1964), 143-153.
[6] A. Jakimovski and D. C. Russel, 'Matrix mappings between $B K$-spaces', Bull. London Math. Soc. 4 (1972), 345-353.
[7] E. Kreyszig, Introductory functional analysis with applications, (John Wiley and Sons, 1980).
[8] G. Leibowitz, 'The Cesàro operators and their generalizations: Examples in infinite dimensional linear analysis.' Amer. Math. Monthly 80 (1973), 654-661.
[9] I. J. Maddox, Elements of functional analysis, (Cambridge Univ. Press, 1970).
[10] J. B. Reade, 'On the spectrum of the Cesàro operator,' Bull. London Math. Soc. 17 (1985), 263-267.
[11] B. E. Rhoades, 'Spectra of some Hausdorff operators,' Acta Sci. Math. (Szeged) 32 (1971), 91-100.
[12] M. Stieglitz and H. Tietz, 'Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht,' Math Z. 154 (1977), 1-16.
[13] A. E. Taylor and D. C. Lay, Introduction to functional analysis (2nd ed., John Wiley and Sons, 1980).

Kenyatta University
P.O. Box 43844

Nairobi
Kenya

[^0]: (c) 1990 Australian Mathematical Society $0263-6115 / 90 \$$ A $2.00+0.00$

