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1. Introduction. Any extension of a group A by a group B can be embedded in their
wreath product A Wr B. Here we consider generalizations of this result for inverse semi-
groups.

Suppose S is an inverse semigroup and p0 is a congruence on S. We put T = S/p0 and
denote the natural map from S to T by p. The kernel of p is the inverse image ETp~x of the
semilattice ET of idempotents of T. First we show that if each po-class of idempotents of S
is inversely well-ordered, then S can be embedded in K Wr T, the standard wreath product of
K and T. In general, not all elements of K Wr T have inverses. However, we can define a
wreath product W{K, T) which is an inverse semigroup and which contains S when the previous
condition holds. If p0 is idempotent-separating and S is O-bisimple, A" is the union of zero and
a family of isomorphic groups. In this case, we can replace A" by a single component group G
of K, augmented by zero, and show that S can be embedded in W(G°, T). These results are
analogous to the extension theories of D'Alarcao [1] and Munn [3] and they give conditions
under which all inverse semigroup extensions of an inverse semigroup A by an inverse
semigroup T are contained in a semigroup with structure depending only on A and T.

N. R. Reilly (see [6]) has previously obtained results related to some of those presented
here, using a construction generalizing the wreath product of permutation groups. I thank
the referee for his comments and for informing me of Reilly's work.

2. Embedding in the standard wreath product. We recall the definition of the standard
wreath product of two semigroups, due to Neumann [4].

Let A and T be inverse semigroups and let F denote the set of maps from T to A. Then F
is an inverse semigroup with respect to multiplication given by x{fg) = (xf)(xg) for xeT
and/, geF. For feF and tsT, we define ' / e F by x('f) = (xt)f for all xeT. The wreath
product W — A Wr T is the semigroup consisting of all pairs ft w i th / eF , teT, under the
multiplication (ft)(gu) = (f.'g)(tu), for / , geF, t, ueT. In general, W is not an inverse
semigroup; if A and T contain zero, the element// has no inverse if we take t = 0, 0 / = 0
and x / # 0, for some xe T.

Given an inverse semigroup 5 and a congruence p0 on S such that T = S/p0, we consider
the possibility of constructing a homomorphism a> from S to A Wr T such that sea =fs(sp),
where p is the natural map from S to T a n d / s e F . Clearly this is equivalent to rinding
{fs:seS} £ F with/rs =fr.

rpfs for all r, seS. Evaluating this expression gives

for all teT. If we require co to be injective, the corresponding condition on {/s} is that if
rp = sp but r # s, then there exists teT such that tfr # tfs.

Let us define a partial multiplication on the set T x S by putting (t, r)(u, s) = (/, rs)
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whenever t(rp) = u. Then T x S is an associative partial groupoid, in the sense of Clifford
and Preston [2].

LEMMA 1. Let n\W -* T be theprojection map. There is a one-one correspondence between
the homomorphisms (ofrom S to Wsuch that am = p and the homomorphisms ft from T x S to A.
Furthermore, a> is injective if and only if the corresponding /? has the property that for r, seS
with rp = sp but r # s, there exists teTsuch that (t, r)/? # (t, s)P.

Proof. Given such an a>, with sa> =fs(sp), we put (t, s)fi = tfs. Conversely, given /?,
put sco =f£sp), with tfs = (t, s)p. The results follow immediately.

We shall now give sufficient conditions for the existence of a homomorphism /? from
T x S to the kernel K of p.

Let Es be the set of idempotents of S and recall that Es is partially ordered by the relation
e g / i f and only if ef= e. Suppose x is a left inverse of p such that, for all te T and seS,

(tT.s)~ltx.s^ ((t.sp)x)~1(t.sp)r.
For (/, s) e T x S, put

We show that y is a homomorphism from T x S to its subgroupoid M consisting of those
(e, k) with e, kp e Es and kp^e. If r e S then

(t,s)y.(t.sp,r)y = (tt-1,tx.s((t.sp)T)-1)(t.sp(t.spy1,(t.sp)t.r(it.sp.rp)x)-1)

= (K-\ ft.s((t.sp)x)-1(t.sp)x.r((t.(sr)p)xyl).

By the assumption on T,

tx. s((t. sp)x)~1{t. sp)x = tx.s

and so
(t,s)y.(t.sp,r)y = (t,sr)y.

We note that if (t, s)y = (e, k) then

kp = t.sp(t.sp)~1 - t{sp){sp)~lt~l ^ tt~l = e.

If (e, k), (kp,h)eM then (e, k)(kp, h) = (e, kh). Thus the projection map £, given by
(e, k)5 = k, is a homomorphism from M to the kernel Kofp. Then j? = y<5 is a homomorphism
from Tx StoK.

Suppose now that for each seS there exists te T such that (tx)~1tx ^ ss'1. For such /
and s, using the previous assumption on x,

((t.sp)x)~1(t.sp)x ^ (tx.s)~1tx.s = s'^txy^x.s = s~ 1s.

Now (t, s)fl - tx.s((t.sp)x)~1 and so

{tx)-\t, 5)jS. (t. sp)x = (tx)~ hx .s.(t. sp)x((t. sp)x)~l = s.

Thus if rp = sp but r # 5, then (t, r)J? ̂  (f, s)j3.
We summarise and apply these results.
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LEMMA 2. Suppose p has a left inverse x such that

(i) for all teTandseS,

(tx.syift.sg, ((t.sp)x)~1(t.sp)x,

(ii) for each seS there exists teT such that (tx)~ltx ^ss~l.

Then /?, given by

is a homomorphismfrom T x S to K = Ker p, satisfying the conditions of Lemma 1 with A = K.
We recall that a partially ordered set is inversely well-ordered if each subset has a greatest

element.

THEOREM 3. Let S be an inverse semigroup and let p be a homomorphism from S onto T
such that, for each eeET, ep~l nEs is inversely well-ordered. Then there is a monomorphism <o
from S to K Wr T such that con = p, where K is the kernel of p and n is the projection map from
KVJtTto T.

Proof. We find a map x satisfying the conditions of Lemma 2. For teT and setp~x

we have s~1se(t~1t)p~l nEs. Choose setp'1 such that s~1s is maximal in ( / " ^ p " 1 r>Es

and define x by the rule that tx = s. For any teT, seS, we have (tx.s)p = t.sp so

(tx.s)~ltx.s^ ({t.sp)x)~\t.sp)x.

Given ueT, for seup~l it follows that (ss'^p -uu~l and

{(uu-l)x)-\uu-l)x ^ {ss~x)~lss~l = ss~\

From Lemmas 2 and 1, a>, given by sco =fs(sp) with tfs = tx. s((t. sp)x)~1, is a monomorphism
of the required type.

We note that the result of Theorem 3 holds for any idempotent-separating homomorphism
of an arbitrary inverse semigroup. On the other hand, it holds for an arbitrary homomorphism
of an inverse semigroup with inversely well-ordered semilattice of idempotents.

3. Embedding in a wreath product related to principal left ideals. We now define a wreath
product of inverse semigroups which is itself an inverse semigroup and for which the embedding
result of Theorem 3 holds. Let A and T be inverse semigroups and let F now consist of all
maps from principal left ideals of T to A. We denote the domain o f /eF by D(/) and recall
that each principal left ideal has an idempotent generator, since Tt = Tt~lt. Thus if/, geF
and D(f) = Td, D(g) = Te, with d, eeET, then D(f)nD(g) = Tde. We define fg by taking
D(fg) = D(f) r\D{g) and x(fg) = (xf)(xg) for xeD(fg). Then F is an inverse semigroup.

Suppose teT and feF. Since D{f) = Te, for some eeET, we have

D(f)rxt = TeCH S Te = D(f).

Putting x('f) = (xt)ffor all xeD(f)t~\ we see that 'feF with Z>('/) = D(f)Cl. We now
define W = W(A, T) to consist of all pairs ft with feF, teT and D(f) = Tt~\ Ue = tt~i,
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the last condition implies that xe = x for xeD(f) and hence ef=f. As before, the rule
(ft)(gu) = (/. 'g){tu) defines an associative multiplication on W; we note that

l = Tt'1 nTu^f-1 = T{tu)-\

If gueW is an inverse of/ie W then
gu = gu .ft. gu = (g ."/. u'g)(utu)

and
ft=ft.gu.ft = (f.'g.'"f)(tut).

Thus i ^ r 1 and so '"g=g, tuf=f Then g = g.uf.g and "f="f.g."f so g = (uf)~i.
Conversely, if u = t~l, then (" /^weW and is an inverse of/?. Thus ^ is an inverse
semigroup. We call W = W(A, T) the wreath product of A and T with respect to principal left
ideals. It is related to the " partial wreath product " defined by Petrich [5].

As before, we suppose p is a homomorphism from S onto T and we consider the possibility
of constructing a homomorphism co from S to W such that sa> =fs{sp). The argument follows
the previous lines, except that we now have to consider the domains of the functions involved.

Let C be the subset of T x S consisting of those (/, s) such that teT(spyl. If (/, s),
(t.sp, r)eC, then t.speT{rp)~l and so t = t(sp){sp)~1 eT((sr)p)~] and (t, sr)eC. Thus C is
a subgroupoid of the associative partial groupoid T x S. Suppose 9 is a homomorphism
from C to an inverse semigroup A. Define a map co:S-> W= W{A, T) by the rule that
soi =fs(sp), where fs is the map from T(sp)~l to A given by tfs = {t, s)9. Then a> will be a
homomorphism if and only if frs =/P . rp/s for all r, seS. Now

D(fr.'»fs) = D(f)nDrfs) = T(rp)-ln TW^rpy1

= T((rs)Prl=D(frs)
and, for teD(frs),

t(fr.rpD = (', r)0 • 0 • rp, 5)0 = (t, rs)t) = t/rs,

as required.
Suppose that ep~l n Es is inversely well-ordered, forallee£r. In the proof of Theorem 3,

we constructed a map T satisfying the conditions of Lemma 2 and thus giving rise to
homomorphisms /? and y from r x S to f̂ and ET x K respectively, defined by

THEOREM 4. Let S be an inverse semigroup and let p be a homomorphism from S onto T
such that, for each eeET, ep~x r\Es is inversely well-ordered. Then there is a monomorphism co
from S to W = W{K, T) such that con = p, where K is the kernel of p, W is the wreath product of
K and T with respect to principal left ideals, and n is the projection map from W to T.

Proof. From the remarks above, the restriction 9 of j? to C corresponds to a homo-
morphism co from S to W with con = p, and it remains to prove that co is injective. If r, se S
with rco = sco then rp = sp and/r —fs. In particular, since e = (ss~1)peT(sp)~1 = D(fs), we
have efr - efs and so (e, r)fi = (e, s)fi. For teT,tx was chosen so that (tr)~\tz) is maximal in
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(t~lt)p~i nEs. Taking t = e = {ss~l)p, we have (ez)~l{ex) ^ ss~l, and taking t = sp, we have
(spx)~1(spt) ^ s~ls. Then

s = ss~l. s. s~is = (ez)~1 (ez)ss~i. s. s~1 s(spi)~ 1(spt)

= ( « ) " i(ez)s(spxy >(spt) = ( e t ) " ' . (e, s)j9. (spi).

Since rp = jp, a similar argument shows that r = (ez)~l. (e, r)fi. (rpz) and hence r = s.
Finally we consider the case where S is O-bisimple and p is idempotent-separating. In

this situation, the Jf -class of an idempotent e of S contains (ep)p~1 as a subgroup. Further-
more, the isomorphism of [2, Theorem 2.20] between the ^f-classes of two non-zero
idempotents of S induces an isomorphism between the corresponding subgroups. Thus the
inverse images of non-zero idempotents of T are isomorphic groups. For G representing such
a group, we shall construct a homomorphism from C to G° which leads to an embedding of S
mW= W(G°,T).

Since p is idempotent-separating, ep~l nEs is trivially inversely well-ordered, for eeET,
and so we are in the situation of Theorem 4. Then y, defined by (t,s)y = (tt~1,(t,s)pr),
induces a homomorphism from C to ET x K. For (t, s)eC, we have te T^p)"1 and so

0, s)pP = (rt. s((t. sp)t)- O P = *(sp)(Sp)- J r ' = « " ' .

Thus the image of C under y is contained in the set N of all (e, &) with keep'1, eeET. Now
TV is the disjoint union of a zero element (0, 0) and copies of G, with multiplication defined
only in the components of the union. Thus there is a homomorphism a from N to G° inducing
a monomorphism on each component of N. Combining y and a we have a homomorphism
<p = ya from C to G°. The map a> from S to W(G°, T) corresponding to <j> will be a
homomorphism and it remains to show that a> is injective.

If r, seS with ra> = sco then rp = sp and/ r = / s ; in particular, efr = efs, for e = (ss~l)p.
Then

(e, (e, r ) p > = (e, r)(j> = efr = efs = (e, s)<p = (e, (e, s)P)a.

Now a acts as a monomorphism on the component groups of N, and (e, (e, r)P), (<?, (e, J)/?)
are in the same component. Thus (e, /•)/? = (e, .s)/J and it follows from the proof of Theorem 4
that r = s. We have thus proved the following result.

THEOREM 5. Let S be a O-bisimple inverse semigroup and let p be an idempotent-separating
homomorphism from S onto T. Let G be a group isomorphic to the inverse images of the
non-zero idempotents of T. Then there is a monomorphism w from S to W such that con = p,
where W = ^ (C 0 , T) is the wreath product of G° and T with respect to principal left ideals and
7t is the projection map from W to T.
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