
LIFTINGS OF THE ELEMENTARY GROUP OVER
ASSOCIATIVE RINGS

BENJAMIN KLOPSCH
Mathematical Institute, University of Oxford, Oxford OX1 3LB, UK

e-mail:klopsch@maths.ox.ac.uk

(Received 17 July, 1998)

Abstract. Let R be an associative ring with 1, and let I be a nilpotent two-sided
ideal of R. Assume further that there exists z 2 Z�R� such that z; z2 ÿ 1 2 R�. Let
m 2 N with m � 3. In this paper we describe all liftings of the elementary group
Em�R=I � to the general linear group GLm�R�, i.e. all splittings of the natural projec-
tion Em�R� �Mm�I � ! Em�R=I �.
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1. Introduction. Let R be an associative ring with 1, and let I be a nilpotent
two-sided ideal of R. We denote by R� the group of units of R and by Z�R� the
centre of R. Let m 2 N with m � 3. We denote by Mm�R� the set of m�m matrices
over R, and we write GLm�R� for the set of invertible m�m matrices over R. We
denote by Id the m�m identity matrix over R. For i; j 2 N we write �ij for the
Kronecker delta. For all i; j 2 N�m let Eij :� ��ik�jl�kl 2Mm�R�. We recall that the
elementary group over R is de®ned as

Em�R� :� hId� aEij j a 2 R and i; j 2 N�m with i 6� ji � GLm�R�:
The purpose of this paper is to describe all splittings of the natural projection

Em�R� �Mm�I � ! Em�R=I �. We recall that a monomorphism � : Em�R=I � !
GLm�R� is said to be standard if it is induced by a ring monomorphism modulo an
inner automorphism, i.e. if there exist a ring monomorphism � : R=I! R and a
matrix C 2 GLm�R� such that for all A � �Aij� 2 Em�R=I � we have A� � Cÿ1�Aij��C.
We prove the following result.

Theorem 1. (Liftings of the elementary group). Let R be an associative ring with
1, and let I be a nilpotent two-sided ideal of R. Assume further that there exists
z 2 Z�R� such that z; z2 ÿ 1 2 R�. Let � : Em�R� �Mm�I � ! Em�R=I � denote the
natural projection. Then every group monomorphism � : Em�R=I � ! GLm�R� with
�� � idEm�R=I � is standard.

Under the given assumptions, Theorem 1 asserts in particular that there exists a
splitting of Em�R� �Mm�I � ! Em�R=I � if and only if there exists a splitting of
R! R=I. We emphasise that the conclusion of the theorem does not follow without
assuming the existence of z 2 Z�R� with z; z2 ÿ 1 2 R�. As explained below, the
group SL3�Z=2Z� lifts to SL3�Z=4Z�, but clearly the ring Z=2Z does not lift to Z=4Z.

It seems worth noting that results like Theorem 1 have interesting applications,
for example in the theory of cohomology. In [4] Sah bene®ts from proving that for
natural numbers n � 2 and prime numbers p the special linear group SLn�Z=pZ�
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does not lift to SLn�Z=p2Z� unless �n; p� 2 f�2; 2�; �3; 2�; �2; 3�g [4, Section II, Theo-
rem 7]. Replacing Z by the ring of integers of an algebraic number ®eld K over Q

and assuming that p is unrami®ed in K, he obtains in a second paper a generalisation
of this result [5]. Note that both versions are essentially covered by Theorem 1,
which excludes the cases n � 2 and p � 2. Moreover we do not require any
assumptions concerning rami®cation. It would be interesting to ®nd out whether our
theorem gives rise to similar applications in the theory of cohomology.

We would also like to point out that the problem which we solve in Theorem 1
is related to questions which are usually investigated in the isomorphism theory for
linear groups over rings. We do not wish to elaborate on this, but refer the reader to
[1] for an introduction to the subject. Petechuk has published a number of papers in
this area. In [2] and [3] he describes the homomorphisms between various linear and
projective linear groups, where his results depend on certain conditions imposed
upon the underlying rings (such as commutativity or 2 being invertible). Although
our theorem deals with a very similar situation, there seems to be no direct link with
his results.

The rest of the paper is organised as follows. In Section 2 we recall some basic
facts about elementary matrices. In Section 3 we derive two key lemmata. Finally, in
Section 4 we prove Theorem 1.

Standing Assumptions and Further Notation. Throughout the rest of the paper let
R be an associative ring with 1. We assume further that there exists z 2 Z�R� such
that z; z2 ÿ 1 2 R�. Let r 2 N, and let I be a two-sided ideal of R with I r � 0. We
write a for the image of a 2 R under the natural projection R! R=I. Let m 2 N

with m � 3, and let N�m :� fn 2 N j n � mg. Let � : Mm�R� !Mm�R=I � denote
the natural projection. We denote by Dm�R� the set of diagonal m�m-matrices
over R. Furthermore, for all b 2 R� and all i; j 2 N�m with i 6� j we de®ne
Dij�b� :� Id� �bÿ 1�Eii � �bÿ1 ÿ 1�Ejj 2 GLm�R�, and write

bDm�R� :� hDij�b� j b 2 R� and i; j 2 N�m with i 6� ji � GLm�R� \Dm�R�:

We use a similar notation for (sets of) matrices over R=I or I. If G is a semigroup
and if x; y; z 2 G such that y and z are invertible, we write xy :� yÿ1xy and
�y; z� :� yÿ1zÿ1yz.

2. Some basic facts.

Lemma 2.1. Let a 2 R. Then a 2 R� if and only if a 2 �R=I ��.

Proof. This is a consequence of I being nilpotent. &

We note that in particular 1� I is a subgroup of R�. Moreover, a similar argu-
ment shows that Id�Mm�I � is a subgroup of GLm�R�.

Lemma 2.2. Let i; j; k; l 2 N�m. Then the following hold.
(a) EijEkl � �jkEil.
(b) If i 6�k, then the map R! GLm�R�; a 7!Id� aEik is a group monomorphism

from �R;�� into GLm�R�.
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(c) If i; j; k are pairwise distinct, and if a; b 2 R� and c; d 2 R, then

�a�Id� cEij�; b�Id� dEjk�� � �a; b�Id� ��a; b�dÿ da�a; b��Ejk � ��a; b�cb ÿ c�a; b��Eij

� ��a; b�cbdÿ c�a; b�d� cda�a; b��Eik:

(d) If i6�j, then for every b 2 R� we have

Dij�b� � Id� �bÿ 1�Eij

ÿ �
Id� Eji

ÿ �
Id� �bÿ1 ÿ 1�Eij

ÿ �
Idÿ bEji

ÿ �
:

Proof. These assertions are easily checked by direct computation. &

Corollary 2.3. The group bDm�R� is contained in Em�R�.

Proof. This follows from part (d) of Lemma 2.2. &

3. Two lemmata. In this section we begin to analyse the splittings of
Em�R� �Mm�I � ! Em�R=I �. In Lemma 3.1 we show that diagonal matrices lift
essentially to diagonal matrices, and in Lemma 3.2 we prove that elementary
matrices lift essentially to elementary matrices. We use these two results in Section 4
to establish Theorem 1.

Lemma 3.1. (Liftings of diagonal matrices). Let � : bDm�R=I � ! GLm�R� be a
group monomorphism with �� � idbDm�R=I �. Then there exists C 2 Id�Mm�I � such
that e� : bDm�R=I � ! GLm�R�; D 7!Cÿ1�D��C has the following properties.

(a) The map e� is a group monomorphism with e�� � idbDm�R=I �.

(b) For all b 2 R� and all i; j 2 N�m with i 6� j we have Dij�b�e� 2 Dm�R�.

Proof. We argue by induction on r. The case r � 1 is clear, since � � id.

Induction Step: r > 1. We prove the result in four steps.

(i) We have z; z2 ÿ 1; zÿ 1; zÿ1 ÿ 1; zÿ zÿ1 2 R�.
Proof. This is clear, since by standing assumption we have z; z2 ÿ 1 2 R�.

(ii) Without loss of generality we may assume that for all b 2 R� and all i; j 2 N�m
with i 6� j,

Dij�b�� 2 Dm�R� �Mm�I rÿ1�:

Proof. Let � : Mm�R� !Mm�R=I rÿ1� and b� : Mm�R=I rÿ1� !Mm�R=I � denote
the natural projections. Put b� :� �� : bDm�R=I � ! GLm�R=I rÿ1�. Replacing
�R; I; �; �; . . .� by �R=I rÿ1; I=I rÿ1;b�;b�; . . .�, we now apply the induction hypothesis
to obtain a matrix bC 2 Id�Mm�I=I rÿ1� such that bCÿ1�Dij�b�b� �bC 2 Dm�R=I rÿ1� for
all b 2 R� and all i; j 2 N�m with i 6� j. By the remark following Lemma 2.1, we can
lift bC to some C 2 Id�Mm�I � so that Cÿ1�Dij�b���C 2 Dm�R� �Mm�I rÿ1� for all
b 2 R� and all i; j 2 N�m with i 6� j.
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(iii) Let b 2 R�, and let i; j 2 N�m with i 6� j. Then for all k; l 2 N�m n fi; jg with
k 6� l the �k; l�-entry of Dij�b�� equals zero.

Proof. Let k; l 2 N�m n fi; jg with k 6� l. By (ii), we ®nd DB;DZ 2 Dm�I � such that

B :� Dij�b��ÿDij�b� ÿDB 2Mm�I rÿ1�;
Z :� Dkl�z��ÿDkl�z� ÿDZ 2Mm�I rÿ1�:

Since Dij�b� and Dkl�z� commute, so do Dij�b�� and Dkl�z��, hence so do
Dij�b� �DB � B and Dkl�z� �DZ � Z. We have

�Dij�b� �DB � B��Dkl�z� �DZ � Z� � �Dkl�z� �DZ � Z��Dij�b� �DB � B�:

Recalling that I r � 0 and k 6� l, this implies that the �k; l�-entries of
Dij�b�Z� BDkl�z� and ZDij�b� �Dkl�z�B are equal. This gives

Zkl � Bklz
ÿ1 � Zkl � zBkl:

Recalling that z 2 Z�R� and zÿ zÿ1 2 R�, we obtain Bkl � 0.

(iv) There exists C 2 Id�Mm�I � such that the map e� : bDm�R=I � ! GLm�R�;
D 7!Cÿ1�D��C has properties �a� and �b� as stated in the lemma.

Proof. We claim that for all n 2 f0; 1; . . . ;mÿ 1g we ®nd Cn 2 Id�Mm�I � such
that for all b 2 R� and all i; j; k; l 2 N�m with i 6� j, k 6� l and minfk; lg � n the �k; l�-
entry of Cn

ÿ1�Dij�b���Cn is zero. Then C :� Cmÿ1 has the desired properties.

So let n 2 f0; 1; . . . ;mÿ 1g. We argue by induction. In the case n � 0 there is
nothing to show.

Induction Step: n � 1. By induction hypothesis, we may assume without loss of
generality that for all b 2 R� and all i; j; k; l 2 N�m with i 6� j, k 6� l and
minfk; lg � nÿ 1 the �k; l�-entry of Dij�b�� is zero. By (ii), we ®nd DZ 2 Dm�I � such
that

Z :� Dn;n�1�z��ÿDn;n�1�z� ÿDZ 2Mm�I rÿ1�:

Moreover, from (iii) we know that non-zero non-diagonal entries of Dn;n�1�z�� may
only occur in the n-th or �n� 1�-th row or column. We de®ne

C�1�n :� Idÿ
X
�zÿ 1�ÿ1ZnkEnk j n� 2 � k � m
� 	

;

C�2�n :� Id�
X

Zkn�zÿ 1�ÿ1Ekn j n� 2 � k � m
� 	

;

C�3�n :� Idÿ �zÿ zÿ1�ÿ1Zn;n�1En;n�1;

C�4�n :� Id� �zÿ zÿ1�ÿ1Zn�1;nEn�1;n:

We put Cn :� C �1�n C �2�n C �3�n C �4�n 2 Id�Mm�I rÿ1�. Recalling Lemma 2.2, it is easy to
check that conjugation by Cn only changes matrix entries in positions �k; n� and
�n; k�, where n� 1 � k � m, and moreover that all these entries are zero for
Cn
ÿ1�Dn;n�1�z���Cn. So, conjugating by Cn, we may assume without loss of generality
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that for all k 2 N�m with k � n� 1 the �k; n�-entry and the �n; k�-entry of Dn;n�1�z��
are both zero.

Now let b 2 R�, and let i; j; k; l 2 N�m with i 6� j, k 6� l and minfk; lg � n. To
®nish the proof, we have to show that the �k; l�-entry of Dij�b�� is zero. We know
already that this is true if minfk; lg � nÿ 1. So let us assume that minfk; lg � n. By
(ii), we ®nd DB 2 Dm�I � such that B :� Dij�b��ÿDij�b� ÿDB 2Mm�I rÿ1�. Since
Dn;n�1�z� and Dij�b� commute, so do Dn;n�1�z�� and Dij�b� �DB � B � Dij�b��.
Recalling that I r � 0 and k 6� l, we deduce that the �k; l�-entries of �Dn;n�1�z���B and
B�Dn;n�1�z��� are equal. We distinguish four cases.

Case 1: �k; l� � �n; n� 1�. Then zBn;n�1 � Bn;n�1zÿ1. Recalling that z 2 Z�R� and
zÿ zÿ1 2 R�, we obtain Bkl � Bn;n�1 � 0.

Case 2: k � n and l � n� 2. Then zBnl � Bnl. Recalling that zÿ 1 2 R�, we
obtain Bkl � Bnl � 0.

Case 3: �k; l� � �n� 1; n�. This is similar to Case 1.
Case 4: k � n� 2 and l � n. This is similar to Case 2.

This ®nishes the proof of the lemma. &

Lemma 3.2. (Liftings of elementary matrices). Let � : Em�R=I � ! GLm�R� be a
group monomorphism with �� � idEm�R=I � and such that for all b 2 R� and all
i; j 2 N�m with i 6� j we have Dij�b�� 2 Dm�R�. �DL�

Then for all a 2 R and all i; j 2 N�m with i 6� j there exists dij�a� 2 I such that

�Id� aEij�� � Id� �a� dij�a��Eij:

Proof. We argue by induction on r. The case r � 1 is clear, since � � id.

Induction Step: r > 1. We divide the proof into seven steps.

(i) For all d1 2 I and all d2 2 I rÿ1 we have �1� d1��1� d2� � �1� d2��1� d1�.
Proof. This follows from I r � 0.

(ii) Without loss of generality we may assume that for all a 2 R and all i; j 2 N�m
with i 6� j there exists dij�a� 2 I such that

�Id� aEij��ÿ Id� �a� dij�a��Eij

ÿ � 2Mm�I rÿ1�:

Proof. This follows by the induction hypothesis, just as claim (ii) did in the
proof of Lemma 3.1.

(iii) Let b 2 R�, and let i; j 2 N�m with i 6� j. Let n 2 N�m. Then the �n; n�-entries
of �Id� Eij�� and �Id� b

2
Eij�� are equal.

Proof. From (DL), (i) and (ii) we have: for all a 2 R� and all k; l 2 N�m n fng
with k 6� l the �n; n�-entries of �Id� Eij�� and Dkl�a��Id� Eij�Dkl�aÿ1�

ÿ �
� �

Dkl�a�� �Id� Eij��Dkl�aÿ1�� are equal. We distinguish three cases.
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Case 1: n 62 fi; jg. The result follows from
�Id� b

2
Eij�� � Dij�b�� �Id� Eij��Dij�bÿ1��:

Case 2: n � i. Choose k 2 N�m n fi; jg. The result follows from
�Id� b

2
Eij�� � Dkj�b 2�� �Id� Eij��Dkj�bÿ2��:

Case 3: n � j. This is similar to Case 2.

(iv) Let s; t; u; v 2 N�m with s 6� t, t 6� u, u 6� v, v 6� s. Let a; b 2 R and
X :� Id� aEst, Y :� Id� bEuv. By (ii), we ®nd dA; dB 2 I such that

A :� X��ÿ X 2 dAEst �Mm�I rÿ1�;
B :� Y��ÿ Y 2 dBEuv �Mm�I rÿ1�:

By Lemma 2.2, the matrices X and Y commute, hence so do X�� and Y��,
hence so do X� A and Y� B. We also note that AB � BA � 0. Thus we obtain

aEstB� AbEuv � �X� A��Y� B� ÿ XYÿ Aÿ B

� �Y� B��X� A� ÿ YXÿ Aÿ B

� BaEst � bEuvA:

(v) Let a 2 R, and let i; j 2 N�m with i 6� j. We set A :� �Id� aEij��ÿ
�Id� aEij� 2Mm�I �. Then for all k; l 2 N�m with k 6� l and �k; l� 6� �i; j� we have
Akl � 0.

Proof. Let k; l 2 N�m with k 6� l and �k; l� 6� �i; j�. We consider four cases.

Case 1: fk; lg \ fi; jg � ;. Set B :� �Id� Elk��ÿ �Id� Elk� 2Mm�I �. Then (iv)
applied to �s; t; u; v; b� � �i; j; l; k; 1� reads at the �l; l�-position: 0� 0 � 0� Akl.
Hence Akl � 0.

Case 2: �k; l� � �j; i�. Choose n 2 N�m n fi; jg. Set B :� �Id� Ein��ÿ �Id� Ein�
2Mm�I �. Then (iv) applied to �s; t; u; v; b� � �i; j; i; n; 1� reads at the �j; n�-position:
0� Aji � 0� 0. Hence Akl � Aji � 0.

Case 3: k � i. Then l 6� j. Set B :� �Id� Elj��ÿ �Id� Elj� 2Mm�I �, and set
Z :� �Id� z2Elj��ÿ �Id� z2Elj� 2Mm�I �. Then (iv) applied to �s; t; u; v; b� �
�i; j; l; j; 1� and �s; t; u; v; b� � �i; j; l; j; z2� gives at the �i; j�-position: aBjj � Ail �
Biia� 0 and aZjj � Ailz

2 � Ziia� 0. By (iii), Bjj � Zjj. Hence Ail�z2 ÿ 1� � 0.
Recalling that z2 ÿ 1 2 R�, we obtain Akl � Ail � 0.

Case 4: k � j and l 6� i. This is similar to Case 3.

(vi) Let b 2 R, and let i; j 2 N�m with i 6� j. We set B :� �Id� bEij��ÿ
�Id� bEij� 2Mm�I �. Then Bkk � Bll for all k; l 2 N�m.

Proof. Let k; l 2 N�m. If k � l, there is nothing to prove. So assume k 6� l. We
consider four cases.

Case 1: fk; lg \ fi; jg � ;. Put A :� �Id� Ekl��ÿ �Id� Ekl� 2Mm�I �. Then (iv)
for �s; t; u; v; a� � �k; l; i; j; 1� reads at the �k; l�-position: Bll � 0 � Bkk � 0. Hence
Bkk � Bll.
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Case 2: fk; lg \ fi; jg � fig. Without loss of generality we may assume that k � i
and l 6� j. Put A :� �Id� Eil��ÿ �Id� Eil� 2Mm�I �. Then (iv) for �s; t; u; v; a� �
�i; l; j; l; 1� reads at the �i; l�-position: Bll � Aijb � Bii � 0. By (v), we have Aij � 0.
Hence Bkk � Bii � Bll.

Case 3: fk; lg \ fi; jg � fjg. This is similar to Case 2.
Case 4: fk; lg � fi; jg. Since m � 3, this follows from Cases 2 and 3.

(vii) Let a 2 R, and let i; j 2 N�m with i 6� j. Then there exists dij�a� 2 I such that
�Id� aEij�� � Id� �a� dij�a��Eij.

Proof. Choose k 2 N�m n fi; jg. By (ii), (v) and (vi), we ®nd d1; d2; d3 2 I rÿ1 and
d4; d5; d6 2 I such that

�Id� Eik�� � �1� d1��Id� �1� d4�Eik�;
�Id� aEkj�� � �1� d2��Id� �a� d5�Ekj�;
�Id� aEij�� � �1� d3��Id� �a� d6�Eij�:

By (i) and Lemma 2.2 (c), we also have

�Id� aEij�� � �Id� Eik��; �Id� aEkj��
� �
� �1� d1� Id� �1� d4�Eik� �; �1� d2� Id� �a� d5�Ekj

ÿ �� �
�Id� a� d5 ÿ �1� d1�ÿ1�a� d5��1� d1�

ÿ �
Ekj

� �1� d4��1� d1�ÿ1�a� d5��1� d1�Eij:

Comparing components yields a� d5 ÿ �1� d1�ÿ1�a� d5��1� d1� � 0, and
hence �Id� aEij�� � Id� �1� d4��a� d5�Eij.

This ®nishes the proof of the lemma. &

4. Proof of the theorem. In this section we show that every splitting of
Em�R� �Mm�I � ! Em�R=I � is standard.

Proof of Theorem 1. Let � : Em�R=I � ! GLm�R� be a group monomorphism
with �� � idEm�R=I �. We divide the proof into four steps.

(i) By Lemma 3.1, we may assume without loss of generality that for all b 2 R�

and all i; j 2 N�m with i 6� j we have Dij�b�� 2 Dm�R�.

(ii) Without loss of generality we may assume that for all i; j 2 N�m with i 6� j we
have

�Id� Eij�� � Id� Eij:

Proof. For all i 2 N�m set eii :� 1. By Lemma 3.2, we ®nd, for all i; j 2 N�m
with i 6� j, a (unique) eij 2 1� I � R� such that �Id� Eij�� � Id� eijEij. Let
D 2 Id�Dm�I � with diagonal entries �e11; e21; e31; . . . ; em1�. Then for all i; j 2 N�m
with i 6� j we have Dÿ1�Id� eijEij�D � Id� eÿ1i1 eijej1Eij. Hence it su�ces to show that
eÿ1i1 eijej1 � 1 for all i; j 2 N�m with i 6� j. Indeed it is enough to prove

(a) for all pairwise distinct i; j; k 2 N�m we have eijejk � eik,
(b) for all i; j 2 N�m with i 6� j we have eijeji � 1.
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Recalling Lemma 2.2, we obtain for pairwise distinct i; j; k 2 N�m,

Id� eijejkEik � �Id� eijEij; Id� ejkEjk�
� �Id� Eij��; �Id� Ejk��
� �
� Id� Eij; Id� Ejk

� �
�

� �Id� Eik�� � Id� eikEik;

hence eijejk � eik. This proves claim (a).
Now let i; j 2 N�m with i 6� j. We choose k 2 N�m n fi; jg. Then using Lemma

2.2, we have

Id� ejiEji � �Id� Eji��
� Id� Eji; Id� Eik

� �
; Id� Ekj; Id� Eji

� �� �
�

� �Id� Eji��; �Id� Eik��
� �

; �Id� Ekj��; �Id� Eji��
� �� �

� �Id� ejiEji�; �Id� eikEik�
� �

; �Id� ekjEkj�; �Id� ejiEji�
� �� �

� Id� eji�eikekj�ejiEji

� Id� eji�eijeji�Eji:

Since eji 2 R�, we have eijeji � 1. This proves claim (b).

(iii) For all i; j 2 N�m with i 6� j we ®nd a (unique) map �ij : R=I! R such that,
for all a 2 R,

�Id� aEij�� � Id� �a�ij�Eij:

Put � :� �12. Then for all i; j 2 N with i 6� j we have �ij � �.

Proof. Since m � 3, it is enough to show that for all pairwise distinct
i; j; k 2 N�m we have: �ij � �ik � �jk. So let a 2 R, and let i; j; k 2 N�m be pairwise
distinct. Then we have

Id� �a�ij�Eik � �Id� �a�ij�Eij; Id� Ejk�
� ��Id� aEij��; �Id� Ejk���
� �Id� aEij; Id� Ejk��
� �Id� aEik��
� Id� �a�ik�Eik

and

Id� �a�ik�Eik � �Id� aEik��
� �Id� Eij; Id� aEjk��
� ��Id� Eij��; �Id� aEjk���
� �Id� Eij; Id� �a�jk�Ejk�
� Id� �a�jk�Eik:

This gives a�ij � a�ik � a�jk as desired.
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(iv) The map � is a ring monomorphism from R=I into R. So � is induced by � and
hence standard.

Proof. We need to show
(a) for all a1; a2 2 R we have �a1 � a2�� � a1� � a2�,
(b) for all a1; a2 2 R we have �a1a2�� � a1� a2�.

Let a1; a2 2 R. Then we have

Id� �a1 � a2��E12 � �Id� �a1 � a2�E12��
� �Id� a1E12�� �Id� a2E12��
� �Id� �a1��E12��Id� �a2��E12�
� Id� �a1� � a2��E12:

This gives (a). Furthermore we have

Id� �a1a2��E12 � �Id� a1a2E12��
� Id� a1E12; Id� E23� �; Id� E31; Id� a2E12� �� ��
� Id� �a1��E12; Id� E23� �; Id� E31; Id� �a2��E12� �� �
� Id� �a1���a2��E12:

This gives (b) and ®nishes the proof of the theorem. &
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