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Abstract. Let θ be a real number greater than 1, and let (( )) be the fractional part
function. Then, θ is said to be a Z-number if there is a non-zero real number λ such
that ((λθn)) < 1

2 for all n ∈ �. Dubickas (A. Dubickas, Even and odd integral parts of
powers of a real number, Glasg. Math. J., 48 (2006), 331–336) showed that strong Pisot
numbers are Z-numbers. Here it is proved that θ is a strong Pisot number if and only
if there exists λ �= 0 such that ((λα)) < 1

2 for all α ∈ {θn | n ∈ �} ∪ {∑N
n=0 θn | N ∈ �}.

Also, the following characterisation of Pisot numbers among real numbers greater than
1 is shown: θ is a Pisot number ⇔ ∃ λ �= 0 such that ‖λα‖ < 1

3 for all α ∈ {∑N
n=0 anθ

n |
an ∈ {0, 1}, N ∈ �}, where ‖λα‖ = min{((λα)), 1 − ((λα))}.

2000 Mathematics Subject Classification. 11R80, 11J71, 11R06.

1. Introduction. For a point t of the real line � we denote by [t] the largest element
of the ring � of rational integers, not exceeding t. We also denote by ((t)) and ‖t‖ the
difference t − [t] and the minimum of the set {((λα)), 1 − ((λα))}, respectively. Namely,
[t] is the integer part of t, (( )) is the fractional part function and ‖t‖ is the usual distance
from t to �.

Let throughout θ ∈ (1,∞), λ ∈ �\{0} and n ∈ � := � ∩ [0,∞). Dubickas in [3]
defined a subset Z of (1,∞), with the property that for each θ ∈ Z, there is λ = λ(θ )
such that ((λθn)) < 1

2 for all n. An element of Z is called a Z-number. A result due
to Tijdeman, and cited in [3] gives immediately that [3,∞) ⊂ Z. Set Y := (1,∞)�Z.
Some classes of algebraic integers, which belong to Z ∩ (1, 3), or to Y ∩ (1, 2), are
exhibited in [3], and from this one can easily deduce that 2 is a left-hand limit point of Z,

and 1 is a limit point of Y . Dubickas proved in particular that strong Pisot numbers are
Z-numbers. Recall that a Pisot number is a real algebraic integer greater than 1 whose
other conjugates are of modulus less than 1. The set of Pisot numbers is usually noted S.
A Pisot number θ of degree d is called a strong Pisot number if d = 1, or if d ≥ 2 and θ

has a conjugate belonging to the interval (0, 1), which is greater than the absolute values
of d − 2 remaining conjugates of θ [2]. We denote by Sst the set of strong Pisot numbers.

Let

A0 = A0(θ ) := {θn | n ∈ �} ∪
{

N∑
n=0

θn | N ∈ �

}
,

Am = Am(θ ) :=
{

N∑
n=0

anθ
n | an ∈ {0, . . . , m} , N ∈ �

}
,
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where m ∈ �\{0}, and

Bm = Bm(θ ) := Am(θ ) − Am(θ ).

The first aim of this note is to show that strong Pisot numbers are a kind of ‘strong
Z-numbers’ :

THEOREM 1. The following are equivalent.
(i) θ ∈ Sst.

(ii) For any ε > 0 and any m, there is λ such that ((λα)) < ε for all α ∈ Am(θ ).
(iii) There exist m and λ such that ((λα)) < 1

2 for all α ∈ Am(θ ).
(iv) There is λ such that ((λα)) < 1

2 for all α ∈ A0(θ ).

In terms of fractional part function, Theorem 1 may be viewed as a characterisation
of strong Pisot numbers among real numbers greater than 1. This contrasts with the
famous characterisation of Pisot numbers among real numbers, due to Pisot [4], which
says: If there is λ such that

∑
n∈� ‖λθn‖2 < ∞, then θ ∈ S. The important question

whether there is a transcendental number θ satisfying limn→∞ ‖λθn‖ = 0 for some λ,

is still unsolved [1]. We shall mainly use this last mentioned result of Pisot to prove
Theorem 1 and the result below:

THEOREM 2. The following are equivalent.
(i) θ ∈ S.

(ii) For any ε > 0 and any m ∈ �, there is λ such that ||λβ|| < ε for all β ∈ Bm(θ ).
(iii) For any ε > 0 and any m ∈ �, there is λ such that ||λα|| < ε for all α ∈ Am(θ ).
(iv) There is λ such that ‖λα‖ < 1

3 for all α ∈ A1(θ ).

In these pages when we speak about conjugates, minimal polynomial and degree
of an algebraic number we mean over the field of the rationals �. For a Pisot number
θ of degree d, we denote by θ := θ1, . . . , θd, the conjugates of θ, and by σ1, . . . , σd, the
embeddings of �(θ ) into the complex field �, where σ1 is the identity of �(θ ). As usual,
for an element α of the field �(θ ), we denote by Trace(α) the sum σ1(α) + · · · + σd(α),
namely the trace of α for the extension �(θ )/�. The proofs of Theorems 1 and 2
appear in the following sections, consecutively. It is interesting to determine whether
the constant 1/3 in Theorem 2(iv) is optimal, or whether we may replace A1(θ ) by
one of its proper subsets without affecting the conclusion. Analogue questions may
be posed for Theorem 1. Distribution in � of the elements of the set Sst is another
problem related to Theorem 1. Some computations suggest the following conjecture:
min Sst = 2, min(Sst\{2}) = (3 + √

5)/2 and min S′
st = 3, where S′

st is the derived set of
Sst. From the proof of the result below, one can easily deduce that 3 is a left-hand limit
point of Sst.

PROPOSITION. The set S′
st contains � ∩ [3,∞).

Proof. Let b be a rational integer greater than 2 and let Pn(x) := xn(x − b) + 1,

where n ≥ b. Since |bzn| = b > 2 ≥ |zn+1 + 1| when the complex number z runs through
the unit circle, Rouché’s theorem gives that Pn has n roots with modulus less than 1, and
so the polynomial Pn has a unique root, say θ(n), of modulus greater than 1, as Pn(0) = 1.
Hence, Pn is irreducible over � and is the minimal polynomial of θ(n). Notice also that
the real function Pn(t) is decreasing on the interval (0, nb/(n + 1)) and is increasing on
(nb/(n + 1),∞) because its formal derivative is (n + 1)tn−1(t − nb/(n + 1)). It follows
by the relations Pn(0) = 1, Pn(1) = 2 − b, b − 1 < nb/(n + 1) and Pn(b) = 1 that Pn
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has a unique root, say ρ, in the interval (0, 1) and θ(n) ∈ (b − 1, b). Consequently, θ(n)

is a Pisot number, and

lim
n→∞ θ(n) = b,

since 0 < b − θ(n) = 1
θn

(n)
< 1

(b−1)n ≤ 1
2n . If α is a conjugate of θ(n) such that α �= θ(n), then

b|α|n = |αn+1 + 1| ≤ |α|n+1 + 1; hence P(|α|) = |α|n+1 − b|α|n + 1 ≥ 0 and so |α| ≤ ρ,

as Pn(ρ) = 0 and Pn(t) is decreasing on (0, 1). Moreover, the equality |α| = ρ holds
only if |αn+1 + 1| = |α|n+1 + 1 that is when αn+1 is a positive real number. It follows in
this case by the equality αn+1 = bαn − 1 that αn > 1/b > 0, and so α = αn+1/αn is also
a positive real number; thus, α = ρ and so θ(n) ∈ Sst. �

REMARK. A simple computation shows that any polynomial of the form x2 −
bx + k, where b ∈ � ∩ [3,∞[ and k ∈ {1, . . . , b − 2}, is the minimal polynomial of
a quadratic strong Pisot number, say θk, satisfying b − 1 < θk < b. Similarly, as in
the above proof, by considering the sequence of polynomials xn(x2 − bx + k) + 1, we
easily obtain that θk is a left-hand limit point of the set Sst, when b ≥ 4 and k ≤ b − 3.

Consequently, each interval of the form [n, n + 1], where n ≥ 3, contains at least n
elements of the set S′

st.

2. Proof of Theorem 1. To make clear the proof of Theorem 1, let us recall some
results on Pisot numbers. The first two results are due to Pisot [4] and Smyth [6].

LEMMA 1. ([4]) If
∑∞

n=0 ‖λθn‖2 < ∞ for some λ, then θ ∈ S and λ ∈ �(θ ).

LEMMA 2. ([6]) Two distinct conjugates of a Pisot number having the same modulus
are complex conjugates.

Theorem (ii) and Lemma 2 of [7] yield the following :

LEMMA 3. If λ satisfies limn→∞ ‖λθn‖ = 0 for some θ ∈ S, then λ ∈ �(θ ) and there
is N ∈ � such that Trace(λθn) ∈ � for all n ≥ N.

Finally, let us show a simple argument on the conjugates of a Pisot number.

LEMMA 4. Let θ be a Pisot number of degree d. Then for any positive rational integer
p, θp is a Pisot number of degree d. If ρeiaπ is a conjugate of θ, where i2 = −1 and
(ρ, a) ∈ (0, 1) × (0, 1), then for any b ∈ �, the sequence (((na + b)))n is dense in [0, 1].

Proof. Let p be a positive rational integer. Then, θp ∈ �(θ ), and the conjugates
of θp are among the numbers θp, θ

p
2 , . . . , θ

p
d . Since |θp

k | < 1 for all k ∈ {2, . . . , p}, θp is
not repeated by the action of embeddings σ1, . . . , σd ; thus �(θ ) = �(θp) and θp is a
Pisot number of degree d. Let ρeiaπ be a non-real conjugate of θ, then ρe−iaπ is also
another conjugate of θ, and so (by the first part of Lemma 4) ρpeipaπ and ρpe−ipaπ

are two distinct conjugates of θp. Hence, a /∈ �, and the result follows immediately by
Kronecker’s theorem (see for instance Appendix 8 in [5]). �

Proof of Theorem 1. Let θ be a strong Pisot number with degree d, and let ε > 0.

If d = 1, then Am ⊂ � and so ((α)) = 0 < ε for all α ∈ Am. Now, suppose d ≥ 2,

and θ2 > |θ3| ≥ . . . ≥ |θd |. Then, tn := Trace(θn) = θn + θn
2 + · · · + θn

d ∈ �, θn
2 + · · · +

θn
d = tn − θn ∈ �, θn

2 + · · · + θn
d < dθn

2 and limn→∞
∑d

k=2( θk
θ2

)n = 1. Let n1 be a positive
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rational integer such that for all n ≥ n1 we have

0 < θn
2 + · · · + θn

d (1)

and

mdθn
2

1 − θ2
< min {1, ε}. (2)

Setting λ := −θn1 , we have λθn = −θn+n1 = −tn+n1 + θ
n+n1
2 + · · · + θn+n1

d , and the
relations (1) and (2) give 0 < θ

n+n1
2 + · · · + θn+n1

d < dθ
n+n1
2 < (1 − θ2)/m < 1 for all n.

Hence, −tn+n1 = [λθn], ((λθn)) = θ
n+n1
2 + · · · + θn+n1

d , and so ((λθn)) < (1 − θ2)ε/m <

ε for all n. Similarly, if α = ∑N
n=0 anθ

n, where an ∈ {0, 1, . . . , m} and N ∈ �, then λα =∑N
n=0 anλθn = −∑N

n=0 antn+n1 + ∑N
n=0 an(θn+n1

2 + · · · + θn+n1
d ), and the inequalities

(1) and (2) again yield 0 <
∑N

n=0 an(θn+n1
2 + · · · + θn+n1

d ) <
∑N

n=0 an(dθ
n+n1
2 ) ≤

mdθ
n1
2

∑N
n=0 θn

2 <
mdθ

n1
2

1−θ2
< min{1, ε}; thus, ((λα)) = ∑N

n=0 an(θn+n1
2 + · · · + θn+n1

d ) < ε,

as −∑N
n=0 antn+n1 ∈ �, and so Theorem 1(ii) holds. The implications (ii) =⇒ (iii) =⇒

(iv) in Theorem 1 are trivially true, since A0 ⊂ A1 ⊂ Am. To show that the proposition
(iv) =⇒ (i), is true, let us first verify the equalities

N∑
n=0

((λθn)) =
((

λ

N∑
n=0

θn

))
, (3)

where λ satisfies ((λα)) < 1
2 for all α ∈ A0, and N ∈ �. It is clear that (3) holds for N =

0. By the relations λ
∑N+1

n=0 θn = [λ
∑N

n=0 θn] + ((λ
∑N

n=0 θn)) + [λθN+1]+ ((λθN+1))
and 0 ≤ ((λ

∑N
n=0 θn))+ ((λθN+1)) < 1

2 + 1
2 , where N ∈ �, we have ((λ

∑N+1
n=0 θn)) =

((λ
∑N

n=0 θn))+ ((λθN+1)), and a simple induction gives (3). Letting N tends to infinity
in (3), we obtain

∞∑
n=0

((λθn)) ≤ 1
2

and so
∑∞

n=0 ‖λθn‖ ≤ 1
2 . It follows by Lemma 1 that θ ∈ S and λ ∈ �(θ ). The last

inequality also gives limn→∞ ‖λθn‖ = 0, and so by Lemma 3, there is n2 ∈ � such that
tn := Trace(λθn) ∈ � for all n ≥ n2. Let d be the degree of θ. If d = 1, then θ ∈ Sst.

Suppose d ≥ 2, and |θ2| ≥ . . . ≥ |θd |. Lemma 2 says that we have to prove that θ2 is a
positive real number. Assume that n ≥ n2. Then, tn = λθn + λ2θ

n
2 + · · · + λdθ

n
d , where

λk = σk(λ) for k ∈ {1, . . . , d}, λ2θ
n
2 + · · · + λdθ

n
d = tn − λθn ∈ �, and

tn − [λθn] = ((λθn)) + λ2θ
n
2 + · · · + λdθ

n
d . (4)

Let n3 be the smallest element of � satisfying

d |θ2|n3 max
2≤j≤d

∣∣λj
∣∣ < 1/2.

Then, (4) gives, for n ≥ max{n2, n3},

−1/2 < tn − [λθn] < 1/2 + 1/2,
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since |λ2θ
n
2 + · · · + λdθ

n
d | < d |θ2|n max1≤j≤d |λj| (recall that 0 ≤ ((λθn)) < 1/2 for all

n); thus tn − [λθn] = 0 and so

λ2θ
n
2 + · · · + λdθ

n
d = −((λθn)) ≤ 0. (5)

Now we claim that the result follows directly by (5) and Lemmas 2 and 4. Indeed,
if θ2 /∈ �, then d ≥ 3, θ3 = θ2 and λ3 = λ2. Set θ2 := ρeiaπ and λ2 = ηeibπ , where
i2 = −1, (|a|, ρ) ∈ (0, 1) × (0, 1), b ∈ (−1, 1] and η > 0. Then, Lemma 4 states that
there are infinitely many n such that the corresponding quantities 2η cos((na + b)π ) +∑d

k=4 λk
θn

k
ρn are all positive because limn→∞

θn
k

ρn = 0 for all k ∈ {4, . . . , d}; this leads

to a contradiction since by (5) we have ρn(2η cos((na + b)π ) + ∑d
k=4 λk

θn
k

ρn ) = λ2θ
n
2 +

λ3θ
n
3 + · · · + λdθ

n
d ≤ 0. Finally, if θ2 ∈ �, then the relation (5), together with Lemma 2,

again gives limn→∞
−((λθn))

θn
2

= λ2, and so θ2 > 0 and λ2 < 0, as λ = σ−1
2 (λ2) = 0 when

λ2 = 0; thus θ ∈ Sst. �

3. Proof of Theorem 2. Let ε > 0, and let β = ∑N
n=0 bnθ

n, where θ is a Pisot
number of degree d, N ∈ � and bn ∈ {−m,−m + 1, . . . , m}. If d = 1, then Bm ⊂ �

and so ||β|| = 0 < ε. Suppose d ≥ 2. It is clear that β is an integer of the field
�(θ ), the conjugates of β are among the numbers βk := σk(β) = ∑N

n=0 bnθ
n
k , where

k ∈ {1, . . . , d}, and

|βk| ≤ m
N∑

n=0

|θk|n <
m

1 − |θk| for k ∈ {2, . . . , d} . (6)

Set λ := θp, where p ∈ � and satisfies |θk|p <
ε(1−|θk|)
m(d−1) for all k ∈ {2, . . . , d}. Then,

t := Trace(λβ) = θpβ + θ
p
2 β2 + · · · + θ

p
d βd ∈ �, and by the relation (6) we obtain

||λβ|| ≤ |λβ − t| = ∣∣θp
2 β2 · · · +θp

d βd
∣∣ < ε;

thus, Theorem 2(ii) holds. The implications (ii) ⇒ (iii) ⇒ (iv) in Theorem 2 are trivially
true because A1 ⊂ Am ⊂ Bm. Now assume that there is λ such that ‖λα‖ < 1

3 for
all α ∈ A1. We shall use Lemma 1 to prove that θ ∈ S. Set λθn := xn + yn, where
xn ∈ � and |yn| = ‖λθn‖. If sN = ∑N

n=0 anθ
n, where an ∈ {0, 1} and N ∈ �, then λsN =∑N

n=0 anxn + ∑N
n=0 anyn and

∑N
n=0 anxn ∈ �. Similarly, as in the proof of Theorem 1,

let us show the relation ∣∣∣∣∣
N∑

n=0

anyn

∣∣∣∣∣ <
1
3

for all N. (7)

If N = 0, then a0y0 ∈ {0, y0}, and so −1/3 < a0y0 < 1/3, as |y0| = ‖λ‖. Suppose that
(7) holds for some N ∈ �, and let sN+1 = ∑N+1

n=0 anθ
n, where (an)0≤n≤N+1 is a sequence

of elements of the set {0, 1}. By the hypothesis and the induction hypothesis we
have | ∑N+1

n=0 anyn| ≤ |∑N
n=0 anyn| + |an+1yn+1| < 1

3 + 1
3 . Since λsN+1 = x + y, where

x ∈ � and |y| = ‖λsN+1‖ < 1/3, and λsN+1 = ∑N+1
n=0 anxn + ∑N+1

n=0 anyn, we see that∑N+1
n=0 anyn − y ∈ �. It follows by the inequalities |∑N+1

n=0 anyn − y| ≤ |∑N+1
n=0 anyn| +

|y| < 2
3 + 1

3 that
∑N+1

n=0 anyn − y = 0, | ∑N+1
n=0 anyn| = |y| < 1

3 , and so (7) is true. Now
fix (for a moment) a positive rational integer N, and consider the subsets, say U and
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V, of {0, 1, . . . , N} defined as follows: n ∈ U ⇔ yn > 0, and n ∈ V ⇔ yn < 0. Then,∑N
n=0 ‖λθn‖ = ∑N

n=0 |yn| = ∑
n∈U yn + ∑

n∈V (−yn), and so

N∑
n=0

∥∥λθn
∥∥ <

2
3
, (8)

since by (7) we have |∑n∈U yn| < 1
3 and |∑n∈V (−yn)| < 1

3 . Letting N tend to infinity in
(8), we obtain the result by Lemma 1. �
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