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A SIMPLE PROOF OF AN IDENTITY OF RAMANUJAN
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Abstract

One of Ramanujan's unpublished, unproven identities has excited considerable interest over the years.
Indeed, no fewer than four proofs have appeared in the literature. The object of this note is to present
yet another proof, simpler than the others, relying only on Jacobi's triple product identity.

1980 Mathematics subject classification (Amer. Math. Soc): 10 A 45.

The identity referred to in the title is

0 - 1 ) I I 7 J~: = 1 ~~ 5 ^ —• —,

where

if n = ± 1 (mod 5),

if n = ± 2 (mod 5),

i f n = 0(mod5) .

Ramanujan stated this identity in an unpublished manuscript, and proofs have
been given by Darling (1921), Mordell (1922) and Bailey (1952a, b). Andrews
(1980) also discussed the identity.
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32 M. D. Hirschhorn [2]

My object is to present a simple proof of (1.1), depending only on Jacobi's
triple product identity

(1.2) I] (1 + «<72"-')(l + a V ^ ' H l - q1") = I a"q"\
13=1 -00

a proof of which may be found in Hirschhorn (1976).

We start by proving the identity

(2.1) I] (1 + V ~ ' ) 0 + a V ~ ' ) 0 + V~ ' ) ( l + b-lq2"-l)(\ - q2nf

= ( n o + ^y°"~5)o + a-^b-y0"-5)

X (1 + fl2&-y°«-5)(l + a-2bqw"~5)

+ aq I] (1 + a^1 0"-3)(l + a-'Zry0"-7)

X (1 + a2ft-^10"-1)(l + a-2V°"~9)

+ bq

We have by (1.2),
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which we choose to write

= 2 I arbsqr2+sl-
n = -oo r + 2s~n

We now consider the five cases n — 5m, n — 5m + 1, n = 5m — 1, n = 5m + 2,
n — 5m — 2.

In the first, set r = m + 2t, s = 2m — t,
in the second, r = m + 1 + 2t, s = 2m — t,
in the third, r = m — 1 + 2t, s = 2m — t,
in the fourth, r = m + 2t, s = 2m + 1 — t,
and in the last, r = m + 2t, s = 2m — \ — t,
and the sum becomes

OC 00 00 00

2 amblmq5m\ 2 a2lb-'q5'2 + aq^ a
mb2mq5m2 + 2m. 2 a2tb-'q5'2+4'

- 0 0 - 0 0 - 0 0 - 0 0

+ a~lq 1 amb2mqim2-2m. f a2lb-q5'2-*'

00

+ bq 2 amb2mq5ml+4

- 0 0

00

which, again by (1.2), yields (2.1).

We now prove (1.1). In (2.1), put -a2q for a, ~a4q for b, then q for q2, multiply
by a3, make use of (1.2), and we obtain

(3.1) {a'-a-a-1 + a ~ 3 )

X [] (1 - a2qn){\ - a-2qn)(\ - a4q")(\ - a-4q")(l - q"f

X 2 (-l)"(a10"

X 2 (-l)"(alo"
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If we now differentiate with respect to a, multiply by a, differentiate with
respect to a again and set a = 1, we obtain

(3.2)

16 n o-<7")6

0 ~ <75"
«3= 1

- <75") 2 (-l)"2(10« - 3)
- 0 0

(i - q5n) 2 (-i)"2(io« -

~ qin) 18 + 8 0 ^ 2 (-

= n

- n o - <75"~4)0 - <75"~')O - q5n)[2 + wqj-

= n o-9s-3)o-?5--2)o-?5n)

X (l8 + 8 0 ^ ) n (1 - q5-4)(l ~ ^"" 'Kl " q5")

( 1 — Q } \ * — Q ) \ ' — Q }

no

X 18 - 80
JS 1

5n

^5n-4

-no-?5"-
I I v Q

X 2.-80 2

n ( i - ^ 5 " - 4

1 - <75"-2 1 - q5
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X 16 - 801 1 - q5^4 1 - qs"~3

(5n - 2)q5"-2 ^
|

1 - q5"-2

1 6 - 8 0 2 ^

as required.
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