ON EXCEPTIONAL VALUES OF MEROMORPHIC
FUNCTIONS WITH THE SET OF SINGU-
LARITIES OF CAPACITY ZEROV

KIKUJI MATSUMOTO

1. Let £ be a compact set in the z-plane and let £ be its complement
with respect to the extended z-plane. Suppose that E is of capacity zero. Then
f is a domain and we shall consider a single-valued meromorphic function w =
/(2) on 2 which has an essential singularity at each point of E. We shall say
that a value w is exceptional for f(z) at a point ¢ € E if there exists a neighbor-
hood of ¢ where the function f(z) does not take this value w.

In our previous paper [7], we showed that the set of all exceptional values
of f(z) at a point ¢ of £ may be non-countable. In fact, we proved the follow-
ing:

For every K,-set K* of capacity zero in the w-plane, there exist a compact
set £ of capacity zero in the z-plane and a single-valued meromorphic function
f(z) on its complementary domain £ such that f(z) has an essential singularity
at each point of E and such that the set of exceptional values at each singu-
larity coincides with K.

In the opposite direction, we do not know, except for countable sets, any
characterization of sets £ for which all functions have very few exceptional
values. Here we raise the following question: Is there any perfect set £ in
the z-plane such that any function, which is single-valued and meromorphic in
the complementary domain 2 of E and has an essential singularity at each
point ¢ of E, has “at most two” or “at most a countable number of” excep-
tional values at each (€ E?

The purpose of this paper is to give a sufficient condition for sets E for
which every function f(z) has at most a finite number of exceptional values.
We shall show the existence of such a perfect set £ by means of a Cantor set.

Received December 15, 1960.
1) In this paper, capacity is always logarithmic.
2 By a Ks-set we mean the union of an at most countable number of compact sets.
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2. Let {@u}n-0.1,2 .. be an exhaustion of £ with the following conditions:

1°) £, 82,1 for every n,

2°) for each #, the boundary 982, of £, consists of a finite number of
closed analytic curves,

3°) each component of the open set % 2,” contains points of E,

4°) each component of the open set 2,— £.-; is doubly-connected.

We shall use in the sequel the graph associated with {2,} which is defined
as follows”: The open set @,— @.-, (n=1) consists of a finite number of
doubly-connected domains Rar (=1, 2, ..., N(»n)). The boundary of Rnx
consists of closed curves contained in 922,-,1U22,. Denote by an-1,» the part
of the boundary of Ru.,r on 92,-: and (. that on 92,. Let #sr(2) be the
harmonic function in R, which vanishes on as-1,% and is equal to a constant
an,k ON B 1 and whose conjugate function v, :(2) satisfies

avnr=2m,
Bn, x
where the integral is taken in the positive sense with respect to Rnr. The
quantity un,r is called the harmonic modulus of Rn,r. Now we define the
harmonic modulus ¢» of the open set £2,— @,-:. Let u,(z) be the harmonic
function in 2. — 2,-¢ which is equal to zero on 9%-; and to ¢, on 982, and

whose conjugate function v.(z) has the variation 27, ie,
S dvn =2
9Qp-y

This quantity ¢, is called the harmonic modulus of 2.— 2.-;. If we choose an

additive constant of v,(z) suitably, the regular function #(z) + #v.(2) maps Rn.r

(=1, 2,..., N(n)) with one suitable slit onto a rectangle 0 <u, <on, bp<va
< a+ by one-to-one conformally, where ar(k=1, 2,..., N(n)) and b (=1,
2,..., N(n)) are constants satisfying the relations that

P N(nm)
ar=2n"", Dlar=2n
Hnk k=1
and

k-1

b =0, bk=§a,‘ (1<k=< N(n)).

8 We denote the complement of a set A with respect to the extended complex plane
by % A.
4) See Kuroda [6].
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Consequently, the function #,(z)+w.(z) maps £2,— 2,-1 with N(n) suitable

slits onto a slit-rectangle 0<#,<ogn, 0<v,<2m one-to-one conformally. We
n-—1

define the function #(2) + iv(2) by #n(2) + iva(2) +§oj on each 2n— 2n-1 (n=1).
Then this function «#(z) + fv(2) maps 2 — £, with at most a countable number of
suitable slits onto a strip domain 0<#<R, 0<v<2r with a countable number
of slits one-to-one conformally, where

R=1g< + .
=1

This strip domain is the graph of 2 associated with the exhaustion {£2,} in the
sense of Noshiro [8]. The number R is called the length of this graph. By
the theorems of Sario [11] and Noshiro [8], £ is the complementary domain of
a compact set of capacity zero in the z-plane if and only if there exists a graph
of 2 whose length R is infinite.

3. Let 7, be the niveau curve #(z) =7 (0<7r<R) on £. The niveau curve
7- consists of a finite number of simple closed curves rrr (B=1,2, ..., n(r)).

n-1

If 2N0;<7r<>)sj, then each 1,x (E=1,2,..., n(r) =N(n)) is a simple closed
j=1 J=1

analytic curve in R, which separates an-1,r from Bur. If r= :E_—iaj, then each
e (B=1,2, ..., n(r) =N(n)) coincides with an-;,.. We shall call each
component of the open set 2, — 2» (n>m) an R-chain. For every 7, (0<7
<R, 1=k=<mnlr)) we consider the longest doubly-connected R-chain R(y.z)
such that 7, is contained in R(y,,z) or is the one of the two boundary com-

ponents of R(r-%), and denote by u(rr,z) the harmonic modulus of this R-chain.
We set

u#(r) = min ulr,e).
1=kSn(r)

Here we note that if %:0‘;’§7’<andj, then R(r,,z) DR, r because of the con-
dition 4°) of {2x}. ’ ’

Generally Ry, r may branch off into a finite number of Ry.i,»/s. If every
Rur (n=1,2,...;k=1,2, ..., N(n)) branches off into at most p number of
Rui1,m's, we say that the exhaustion {£2,} branches off at most p-times every-
where. Then we obtain the following

TueoreMm 1. Let E be a compact set of capacity zero in the z-plane and let
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2 be its complementary domain. If there exists an exhaustion {Qn) of 2 which
satisfies the conditions 1°), 2°), 3°) and 4°) stated in § 2, branhces off at most
po-times everywhere and has the graph with infinite length satisfying the con-
ditions that

limu(r) = + o and lim = =90,

r>®o r->o

then every function, which is single-valued and meromorphic in 2 and has an
essential singularity at each point C of E, has at most py+1 exceptional values
at each singularity.

If we replace the last condition of the above by the condition

m"—‘r’l<+oo,

r-w

then the functions have at most a finite number of exceptional values at each

stngularity.

4. Before proving the theorem, we give two lemmas. Let C; and C; be two
disjoint closed discs in the extended w-plane and let {4} be the class of recti-

' which lie outside C; and C; except for their end points and join

fiable curves®
C: and C,. For a subclass {4'} of {4}, we can consider the extremal length
1A'}, which is defined as follows: Let {p} be the collection of functions p
which are non-negative and lower semi-continuous in the extended w-plane.

The quantity

mfj oldwl
A}y =sup 2214

P jjpﬁ dudy

(w=u+1v)

is called the extremal length of {.1'}, where we understand that 0/0 = o /o =0
(Ahlfors and Beurling [1], Ahlfors and Sario [2]).® We have

0<Z(A>< -+ <o,

If we consider a set ¢ consisting of a finite number of continua in the closure

of the ring domain (C;, C;) and set
5) This means that curves are rectifiable with respect to the spherical distance.
6/ For properties of extremal lengths, see, e.g., Ahlfors and Sario [2], Hersch [5],
Ohtsuka [9].
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{A)e={Ae{4}; A Nc=9¢},
then it holds that
+ oo = {4} = A{4}.

Given a positve number z, we shall denote by C-. the class of sets ¢ with the
property that

2d(£y)<f,
v
where {,} are the components of ¢ and d(x,) means the spherical diameter
Of Ky.

LemMma 1. There is a positive number v such that

sup A{4'}c< + o,
cECT

Proof. By means of linear transformations, which correspond to rotations
of sphere around the center and hence do not change spherical distance, we
may assume that C. is a disc |w|=R. If we denote by d.(x,) the diameter of

r, with respect to the euclidean metric, then we have that

Ddelry) £ (1+ R) Xd(xy).

We map the ring domain (C;, C:) conformally onto the annulus 1<|¢|<u by

2nA(A)

¢(w), where u=e¢ With an interior point « of C;, we can represent the

function ¢(w) by

¢(w) =ei°.czR~k%

and hence we see that

M= sup [€Cw) —C(we) | - p(R+ 1))

s < + oo,
wi,mE (0, () | W1— Wz | R(R—|a]) +

Therefore we have that

E de(C(ICy)) s ME de(lfv) = M(1 +R?) 2 d(’fv)-

The number

= 77T
T M1+ R)
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is one of the wanted. In fact, if we delete from the annulus 1<|¢|<gu all

segments sp: arg ¢=0(0<0<2n), 1<|¢| <y, which intersect U ¢(x,), then we

have a finite number of domains D;: 6-1<arg (<6, 1<|¢|<pu(i=1,2,...,
) such that they are disjoint from each other and

N
PEI (02i - ﬂZi-—l) ZT[.

Let {y} be the class of all curves in the annulus 1<|¢{|<u which join two

boundary circles of the annulus and do not touch U<¢(x,) and let {si} be the
v

class of segments sp: 621 <0<6;;. Then

1 2mi{4} o
Msiy= —=—logu= "2
( 1) O2i — Oai-1 g# 02 — O2i-1

and since domains D; are disjoint from each other

1o 2mid)

N
Kahe=Mr)SHUD =5 1 = <24}
= 2”[ 23 (O2i — O2i-1)
= Msi) i=1
Thus our proof is complete.
We shall consider distinct n(=3) points wy, we, . . . , ws in the extended

w-plane and denote by ¢ = T’}, m(w) (i% 7, m and j= m) the linear transformation
which transforms w;, w; and w: to the point at infinity, the origin and the point
¢ =1 respectively. Now we prove the following lemma which is a consequence
of Bohr-Landau’s theorem [3]:

If g(z) is regular in |z| <1 and g(z) %0, 1 there, then

for all »<1,

max| g(z) | < exp( 2198 (1|§(0) |+ 2))
lzl=r 7

where A is a positive constant (a precise form of Schottky’s theorem).

LemMa 2. Let R be an annulus a<|z|<b in the z-plane and let ¢ and d

be positive numbers such that
a<c<d<b andlog &, log & za(s>0).

Then there is a positive constant 6 with the following properties:
1) the spherical closed discs C; (i=1,2, ..., n) with the centers at w; and

with the spherical radius 6 are mutually disjoint and
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C:ic(T) (™ (ixj,m and j = m),

where U is the unit disc |¢|<1,

2) if, for all r (cSr=d), a single-valued meromorphic function f(z) in
R omitting the values wi, wy, . .., ws takes on |zl =7 a value contained in
(Ti‘,m)"l(U), then f(2) takes no value in C; in the annulus c<|z|<d.

Here 6 depends only on o and does not depend on R and f(z).

Proof. From Bohr-Landau’s theorem we can see easily that if g(z) is a
regular function in R such that

g(2) %0, 1 and min |g(2)| <1 for all 7: ¢c<r=<d,

2] =r
then there is a positive constant K depending only on ¢ and satisfying
lgl2)| =K for every z: c¢<lz|=d.
Therefore, if T m(f(2z)) has the same properties as g(z), it holds that
|T§,m(f(z))l§K for every z: c<lz|<d

Hence the image of the outside V of |¢| £ K by (T’,‘-,,,,)‘1 is an open disc which
contains w; and has the following property: If, for all » (c=7=d), f(2) takes
on |z] =7 a value contained in (T »)"(U), f(2) takes no value in (T}_,,,)"‘( V)
in the annulus ¢<!z|<d. Set
Uw)= N (Th)(VINTE)TO)).

’ J{Tn':;i
Since (T%,,») (V) and (T}*;)"X(U) are open discs containing w;, each term in
the right side is a non-empty open set containing w; and hence U(w;) is also a
non-empty open set containing w;. Therefore

[ — wi|

0<d;i= min v
wedvwy Y (1+]w F)(1+wil?)

and hence

0'= min 0:>0.

1=i=n

If we choose a positive number ¢ < ¢’ so that the spherical closed disc C; with

" Note that T, T ,; that is, T}*, transforms w; w; and w. to the origin, the
point w=1 and the point at infinity respectively and T,m transforms w:, wj; and
w to the point at infinity, the arigin and the point w=1 respectively.
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the centers at w; and with the spherical radius & are mutually disjoint, then
discs C; satisfy all conditions of the lemma.

5. Proof of the theorem. In the case where p, =1, E consists of just one
point and hence our assertion is true from Picard’s theorem.

Let po be greater than 1. Contrary to our assertion, let us suppose that
there exists a function f(z) which is single-valued and meromorphic in £2, has
an essential singularity at each point of E and has more than g, + 1 exceptional
values at a singularity {= E. We denote by U({) a neighborhood of ¢ where
f(2) does not take distinct po+2 values wy, w, . . ., wp+2. Then we can find
an n and a k such that the domain R, is contained in U({) and separates the
boundary of U(¢) from ¢. Consider the component £', containing &, of the
complement of 2,-: with respect to the extended z-plane. The complement of
the closed set EN £ with respect to the extended z-plane is a domain and if
we take %@, as the first domain of an exhaustion {2,} of T(EN Q') and
G0 U (2N 2nirp-1) as the (p+1)-th (p=1), the graph associated with this
exhaustion satisfies our conditions too. In the below we shall use the notation
2 instead of ¥ (EN ') and the notation {2.} instead of {£;,}. We consider the
graph associated with this exhaustion and denote by u(z) +dv(z) the function
which maps one-to-one conformally 2 ~ &, with at most a countable number of
suitable slits onto our graph.

First we shall show that there exist a positive number ¢ and an 7, such
that for all »=7,, the spherical length of the image of the niveau curve 7,:

u(z) = 7 is not less than r, i.e., for all r=7,,

~( 1@l >
L(f) = Trl'l; |f(z)lzld2[=f>0.
Applying Lemma 2 to the set of points w1, ws, . . ., W,+2, We can find a
positive constant ¢ such that the spherical closed discs C; (1=1,2, ..., 00+2)

with the centers at w; and with the spherical radius ¢ satisfy the conditions of
the lemma.

Let {4;;} (ixj) be the class of rectifiable curves in the extended w-plane
which lie outside C; and C; except for their end points and join C; and Cj.

From Lemma 1 we can find a positive constant r;; such that

uii=2m sup A< + o,
cEC“i,j
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where the definition of C-, ; was given just before Lemma 1.

Set
! =min ;,; r—min{ v 4 }
b 1,79 = 2 4 2
and
p#=max ujj.
%)

Suppose that there is an increasing sequence of positive numbers {r.}

such that

Nn<rn< o <py< cos 5> 4o
and for each n,
Lira)<rt.
We may assume from the assumption of our theorem that
wr)>nu+20

for all » = 7., where ¢ is a positive constant. Further we may assume that f(z)

takes in a component 2(7;, ;) of the open set 7; <u(2) <7 two values w; and
pot2
wy’ such that they lie outside U C; and the spherical distance between them

i=1
is greater than 2, because E is of capacity zero and hence f(z) takes all values
w infinitely often with possible exception of a set of capacity zero in any neigh-

borhood of each point of E. Let n# and p be positive integers with the property

that
n—p=—1 n—p n—1 n
2 g =n<2g and X oi=7<2] 0.
7=1 i=1 i=1 j=1

The boundary 22(7;, 7.) of 2(71, 72) consists of one of {y,,, rte=1,2,...,nry. SAY
rri,1, and some of {yry,k)k=1,2 ..., nren SAY {770 klk=1,2, .., m (M < n(72)). We shall
say that rr,; and rs,; are of »-th kin if a component R(7,,i, 1r,.;) of 2n—

Op-y-1 is the smallest R-chain which contains 7, ;/U7rs, ;. Since

d(f ) = <

) L(?’z) T
2 2 <

and ]E_ld(f(rn,k)) = 97

we can cover U f(7,, %) by a finite number of mutually disjoint spherical closed
k=1

discs S; (¢=1,2, ..., m'; m'<m) with the property that
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m’
Ed(sq) <r,
g=1

and U f(77,, 1)U f(7,,,1) by a finite number of mutually disjoint spherical closed
k=1

discs S; (¢=1,2,...,m"; m'"<m'+1) satisfying that

US,CUS)and 2 d(S;) <2
q=1 q=1 g=1

Let z; and z;' be the points of 2(7, ) satisfying that f(z;) = ws and f(z')
=w, and let y be an arbitrary curve in 2(71, 7;) joining 2 and z'. Since the
image f(y) of r joins w; and wi and the spherical distance between w; and w{'
is greater than 2+, we can find a point w; < f(y) such that for all 7 there are

m’’

curves 4; which join w, and C: and do not touch qL_Jl S}. Here we denote by C:
the concentric spherical closed disc of C; with the spherical diameter . Let
zyer be a point satisfying that f(z)) =wo. Since f(z) does not take values
{wili-1,...,p+2 ON @(71, 7), all curves in Ci joining the end point of 4; on T
and w; intersect the image of 92(7,, ). In fact, if there is a curve A not inter-
secting this image, the element e(w; z) of the inverse function /™' correspond-
ing to 2o can be continued analytically in the wider sense along 4;\UA up to a
point arbitrarily near w; so that the path corresponding to this continuation is
contained in £2(7, 72). This is a contradiction. Observing that

dfrn=sEP c T<8 Gmt g m,
we see that the inside of each C; contains the image of at least one 1y, C02(r1, 73)
possibly except for one C; which may contain the image of 7,,1. Let (rr, s,
Tr,,n') be one of the nearest of kin among all pairs (y,,, 7, #) Whose images
are contained in distinct discs, let C; and Ci» (i % ¢') be the discs containing
their images respectively, let them be of »-th kin and let Rs-.,: be the domain
which determines their kinship. Since our exhaustion branches off at most go-
times everywhere, we can find at least two discs, say C;and Cj. (= ;'), which
do not contain the image of any y,, & of »-th or nearer than »-th kin to 7r, or
Tra b’

Let R be the longest doubly-connected R-chain containing Ru-,,:&. Then
from our assumption the harmonic modulus of R is greater than ¢+ 2¢. Further
R= R(r,,,1) and hence RC (7, ), for if R= R(yr.1) all yrr,e (=12, ..., m)
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are of v-th or nearer than p-th kin to 7s,,x or 7»,» and C; and C; can not con-
tain the image of any 7/, (k=1,2,...,m). We may consider R as an annulus
a<l|z|<b (log b/a>p+2¢) and denote ae” and be ° by ¢ and d respectively.
We observe that for each s (@ <s <) the image of the circle Ks: [z|=s by
/() intersects (T% ;)"YU) and (T%, ;)™M U). In fact, we know that Ci C
(7L )™ MU)N(TL /)" (U). Suppose that f(Ks) NCi = ¢ and denote by r(%') a
curve in 2(r1, 72) joining z, and a point of r,,». The images of 7,,: of »-th
or nearer than p-th kin to 7., 5 or 7., 4’ are covered by some of {S,}(1<g=<m'),
say {S;}(1<qg=mi; mi<m'). Since

Std(s)<cs -
q=1

and since (Tf', 7)1 is spherical disc containing Cy, there are point w'e

f(#(R"))YNCy outside U S, and a curve A in (T, ;) (U) which joins »’ and w;
q=1

and does not touch U S,. Let 2’ be the point of y(#') such that f(z’) = w’ and let
q=1

e(w; 2') be the element of ' corresponding to z’. Continue e(w; z') along A.
If A does not intersect f(Ks), f(2) must take the value wj. in 2(7y, 7,); this is
a contradiction. By the same reasoning we see that f(Ks) N (T ;) H(U) = ¢.
It now follows by Lemma 2 that f(z) does not take any value of C;NC; in
c<l|z|<d. Consequently if we consider the class of all rectifiable curves {4;,;}
which lie outside C;UC; except for their end points, join C; and C;and do not

m’’

intersect qk{lSZ,., then by the same reasoning as above, we can see easily that
each 4i; contains a curve which is the image of a curve 7 in the annulus
¢ <]zl <d joining its two boundary circles. Let {I'} be the class of all rectifiable
curves in ¢<|z|<d joining its two boundary circles and let {I"’} be the subclass
of {I'} such that for each I there is a A4;; containing its image f(I’). Then

we have that
My s My <1y < a{di 0.2

Since

mrt

(S <27 =7,

g=1
we see from the definitions of r’/ and x that

2nk{dijt = p
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and hence
27T} < p.
But on the other hand we have
2 7z2{I'} = mod (the annulus ¢ <|z|<d)>p¥?.

Thus we are led to a contradiction and we can conclude that there is an 7,
such that

Lir) =<
for all = 7,.
Let 2, denote the subdomain of £ bounded by the niveau curve 7,: u(z2)
=7, let @, denote the Riemannian image of 2, and let A(#) denote the spherical

area of @,. Then

) . T lf’(Z)lz ' .y 2
A(r)—soso A+ 7)) l¢'(u + iv) |* dvdu,

where we denote by ¢ the invease function of #(z) +iv(z). Set

S(r) === and ¢= linz %E?)ﬁ .

Then the following holds:

If ¢ is finite, then f(2) takes every value in the extended w-plane infinitely
often with possibie 2 +[£] exceptions, where [£] denotes the greatest integer
not exceeding £ (Hallstrom [4], Tsuji [12], [13]).

Hence our theorem is obtained immediately. In fact, we showed in the

above that for all r=7

27
t=Lir) = So 1’—_{[’%;—]? ¢ (u+iv) | dv.

By the Schwarz inequality, we have
27 2
<2 ERPALLI o' (u +40) P dv,
and hence
< O ] P e _
é—n(r 70) éjofo AL (P @' (u+ 10) |* dvdu = A(r).

8 We denote by mod R the harmonic modulus of a doubly-connected domain R.
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From our condition, it follows that

wenl(r) _ 22, nly) 27 .. n(r)
< e et = 20 St = ),
O_EHES(r)_ ot P.m(r—ro) 2 0
This contradicts the assumption that f(z) has more than two exceptional values.
By the same arguments, we can see that f(z) has at most a finite number

of exceptional values if

rom 7
Thus our theorem is established.

Remark- Let D be a domain containing E completely. From our proof
we can see that every function, which is single-valued and meromorphic in the
domain D — E and has an essential singularity at each point of E, has at most

0o+ 1 exceptional values at each singularity.

6. Let E be the boundary of a domain D in the z-plane and let ¢ be a point
of E._ If ¢ has a neighborhood U(%) whose boundary consists of one closed
analytic curve not touching E, 2, = DN U({) is a domain. An exhaustion of 2,
whose first domain is 4 U(¢) is called a local exhaustion of D at ¢ and the

graph associated with this is called a local graph at ¢&.

THEOREM 2. Let E be the boundary of a domain D in the z-plane and let
¢ be a point of E. If there is a local exhaustion at ¢ which satisfies the con-
ditions 1°), 2°), 3°) and 4°) stated in § 2, branches off at most pytimes every-

where and has the local graph with infinite length satisfying the conditions that

limu(r) = + o and 1im~’?;ﬁ=o,

r—>0 r->%

or if there exists a sequence of points (L.} of E converging to ¢, at each point
of which the local exhaustion with the same properties as above is found, then
every function, whiclh is single-valued and meromorphic in D and las an essential
singularity at each point of E, las at most py + 1 exceptional values at &.

If at each &y, the local exhaustion branches off at most pa-times everywlhere

and has the local graph with infinite length satisfying the conditions that

limpu(7) = + ©  and lim/'»?r(—;-v—}< + oo,

r-> ’ r->®
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then the functions have at most a countable number of exceptional values at C.

(We vemark that integers o, depend on n and need not be bounded.)

For in the case where there is a local exhaustion at ¢ satisfying our con-
ditions, the assertion is true obviously from Theorem 1. If ¢ is the limiting
point of {¢,}, each neighborhood contains points of {¢,} and hence f(z) has at
most py+ 1 exceptional values at ¢.

If we replace the condition lim #(7)/7 =0 by limn(r)/7r< 4 « and if f(2)

r—>x r>%

has non-countable number of exceptional values, then we can find a neighbor-
hood where f(z) does not take an infinite number of values; this contradicts
the fact that this neighborhood contains points of {¢,} where f(z) has at most

a finite number of exceptional values.

7. In this section we shall show the existence of general Cantor sets in
whose complement the functions have a finite number of exceptional values.

First we state the definition of general Cantor sets.” Let &, &, ... be
integers greater than 1 and let pi, P2, . . . be finite numbers also greater than
1. We set h;=1/(kps). Let I be a closed interval with the length d>0. We
delete (k,— 1) intervals of equal length from I so that there remain &, intervals
of equal length h,d. We call this operation the g¢-operation applied to I. We
begin by applying the 1-operation to [0, 1], next apply the 2-operation to each
of the remaining intervals I,(1 < » < k), further apply the 3-operation to each

of the remaining intervals L. (1<»=<kk) and so on. We call the limiting
set of the union of I,./s(1 < » =TIk,) a general Cantor set and denocte by F(k&,, p,).
q=1

Now we prove the following

TrEOREM 3. If

kq§(}0(qzl) and lim pqr: + oo,

q>®

and if
n-1
11 &,
fim 1 (<4, resp),
et 1 1+ p’oe_g_l(.pj-l—l)
=1 log -5 5
Jj=1 kq

9) See Ohtsuka [10].
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then every function, which is single-valued and meromorpic in the complementary
domain 2 of F(kq, pg)'" and has an essential singularity at each point of Fkq, by),

has at most po+ 1 (a finite number of resp.) exceptional values at each singularity.

Proof. 1t is sufficient for us to prove that under the conditions of the
theorem, F(kq, p,) has the complement satisfying the conditions of Theorem 1.
Since p,—> °© as ¢~ « and since it suffices to prove locally, we may assume
that p,=2 for all g. We define an exhaustion {2,} of 2 as follows: First we

take the outside of the disc |z — %—\ <1 as the first domain £,. Let Ci(1=»

< k) be the circles with the centers at the middle points of I;,(1<» < k) and

with the same radius

L - 1)

Then for each v(1<v<k) Cn touches Ci+1). The domain bounded by all of
C,, is taken the second domain 2,. £2;— 2, is a doubly-connected domain with
the harmonic modulus

2
pri=a>log 5 7 >0,
RN
k-1 D

i i 1L 1 (1-1
because it contains the annulus 1>[z— - | > 5 (1+ k1—1<1 pi))' Next we
draw the circles C;, (1 <» < k1k.) with the centers at the middle points of L,

(1= v = kik:) and with the equal radius

—; h1<h2+k2—‘1_i(1 "“;2 ))

Then for each » (m—Dl+1=< v <mk; m=1,2, ..., k) Cy touches Coviy).
We take as the third domain £, the domain bounded by all of Cs, and see that
the open set 2; ~ 2, consists of k, doubly-connected domains R.,, Re2, . . ., Ro.1,

which are congruent and hence have the equal harmonic modulus

Po -
1_+p£1_(£1__1_) >0
2

(k=1, 2, o« o ey kl),

10) See the remark of Theorem 1.
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because they contain the annulus bounded by the concentric circles with radii

(h1+ 1- i)) and 111(1 + kzl (1 - %;)) Generally, let Cny (1=

k1 ].( § o2
» = I1 k,) be the circles with the centers at the middle points of I,,(1Z v = IIlkq)
g=1 q=

and with the equal radius

.}aqﬁ, ha( bt k,,1 1(1- E))

Take the domain bounded by these circles as the (#+1)-th domain 2,. Then,
n—1

since for each » ((m—Dks+1Zv<mhkn; m=1,2,..., III kq) Cay touches
P

n=1

Cniv+1), the open set 2,— 2,-; consists of Il k; congruent doubly-connected
g=1

n—1

domains R, (1< %< Il k;) with the equal harmonic modulus
q=1

n-1 -1+ k. ];;“i(l—*p‘l—‘l) p_o_l(j)n—l_].)
pnk = (I kg)on> log A= I I_ = log 0 5 >0
S g 50 L)
kn—]. pn
n—1
1=k 11 k).
g=1

For they contain the annulus bounded by the concentric circles with radii

ST ) (ho+ g2 (1= i) and G(Ts) (14 25(1- ). The
domains £, form obviously an exhaustion of £ which satisfies 1°), 2°), 3°) and

4°) in §2 and branches off at most g,-times everywhere.
Now we consider the graph associated with this exhaustion. The open sets

— Q-1 (#=1) have harmonic moduli ¢, such that

Po -
1+ po-—l(p”_l

a>0 and gy =2k > ,,_1v log 5 (n=2)
II %, H kq
g=1
and hence we see from our assumption that
0 © 1 1+““_)‘_0T’]‘-(_pn—l.—1)
R=210s> 21, log Pz =+ =,

n=1 n=2 H kq 2
qg=1

that is, the length of the graph is infinite. We shall show that
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lim pu(#) = + o and lim ——= n(r)

r>0 rw 7

=0 (< + o, resp.).

Since

+E)p%]‘_(17n—1"1) -1
2(7) = pa, 1> log 5 (Ea,§r<Ea,

and since p,— + © as n- o, the first relation holds. From our condition and
from the facts that

n~1 1 ]-+ __%]‘- (pn—l -1)
n(r) = Hkq(Ea,Sr<2,a,) and 2a,>2,,_ log — ,
=1 J=2 n ka 2
we have
n-1
1%
fim ) <Tim azi =0

(< + o, resp.).

Thus we see that all conditions of Theorem 1 are satisfied. The proof is now
complete.
For instance, the general Cantor set F(k,, p,) such that

ka=0(q=1) and p,=2 exp p3*? (>2)

satisfies the conditions of Theorem 3. In fact, we have that

-1
im0,
>® (¢=1)(j=1)
0o

o 7n-1
lim o P
n>wo —t 1+ &(2&’0 - 1)

}__' e log 00—1 5 J

n/\

M"

2

I

o\)_‘

0

<.
X}

8. In this last section, we shall show by an example that the conditions
of Theorem 1 for p, =2 are not sufficient’in order that the number of exceptional
values is not greater than two, that is, there exist a perfect set E satisfying
the conditions of Theorem 1 for p, =2 and a function f(z) which is single valued
and meromorphic in the complement of E, has an essential singularity at each

point of E and has three exceptional values at each singularity.
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ExaumrLeE. We delete from the w-plane the origin and the point w =1 and
denote by R the resulting domain. By induction we shall construct convering
surfaces R” of the w-plane and define an exhaustion {Ri}r=0,1,2,... of their limit-
ing surface R in the below.

Let A, B, C, ... denote simple closed analytic curves in R. Consider
three points: the point at infinity, the origin and the point w=1. We shall
denote by {4, B; C, D, E}=({A, B; C, D, Eh, {A, B; C, D, E};, resp.) a set
of five curves such that A and B separate the point at infinity (the origin, the
point w =1, resp.) from the other two points and touch each other, such that
C separates A from the point at infinity (the origin, the point w =1, resp.) and
such that D and E surround the origin and the point w =1 respectively (the
point w =1 and the point at infinity respectively, the point at infinity and the
origin respectively, resp.), touch each other and form with B the boundary of
a doubly-connected domain (B, DU E)". Further we shall denote by {F, G;
H II.({F, G; H, 1}, {F, G; H I}, resp.) a set of four curves such that F
separates the point at infinity (the origin, the point w =1, resp.) from the others,
G is homotopic to zero with respect to R and they touch each other and that
i and I separate F and G, respectively, from the point at infinity (the origin,
the point w =1, resp.).

First we take a replica R' of R. We can determine there {as,1, 1,25 a1,
a2, 02,30 SO that the harmonic moduli of doubly connected domains (a1, a2,1)
and (ay,»2, a2,2Uas,3) are not less than 8. In fact, first we determine curves as,»

and a»,3, next determine ay,» so that
mod (ay,2, @2, Uas,3) =8
and last determine a;,; and as,; so that
mod (1,1, az,1) = 8.

The domain bounded by 1,1 U a2 is taken as R; and the domain bounded by

aiUasUas,s is taken as R;. We determine R, so that RoCR: and R, — Ro

is a doubly-connected domain with the harmonic modulus not less than 2. De-

noting by ¢; the harmonic moduli of the open sets R;— I?j—x, we observe that
an=2, eo=4 and n(r) <2 for all »: 0= r<oi+ os.

) We denote by (Ci, C:) a doubly-connected domain, if Ci is one of its boundary
components and C:; is the other.
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Next we take three replicas {Ri}i-1,2,s of R. We draw {as,1, as2; a1, as1)e in
R" and {ass, ase; ase, ass, asq)- in R as follows: First we determine au,s,

as,3 and as,4 in Ry so that
mod (a,w, &s, 3Uafs,4) =9 25,

and next determine {as1, as25 @11, @51}, in B* s0 that as1 U as,: is contained
in the end part of R' bounded by a:,; and does not intersect the same curve

as a4 drawn in R, and that

mod (as,1, as,1\Uas,) =32° mod (as,1, s, 1) =62 and mod (a1, as,1) =9+2°,
Last we determine a.,» and as: so that the domain bounded by «,. and ay,
contains the same curve as a3, drawn in R; and

mod (a.’4,2, (Xs,z) 29‘25-
We connect R, with R' crosswise across a slit in the domain bounded by as,s.
If we choose this slit sufficiently small, we have

mod (ars, s, as2Uass) =625

In the similar manner, we draw {as,s, as,45 a1, @s30c and {azs, @s,65 aus Asols
in ﬁl, {a‘1,5, Q4,65 As,6y As,75 a’a,s)o in R, and {“»I,Sy Q65 s 10, 3511, a’s,m}x in Ry
and connect R, and R, with R' across suitable slits in domains bounded by
@34 and ass. The resulting surface is denoted by R°. We take as R; the do-

6 9
main of R? bounded by U as,i, as R, one bounded by Uay; and as R; one
i=1 i=1

12
bounded by U as,i. Then we see that
i=1

. 2 5
0i=2 (1£7<5) and n(») =9 for all 7: 2iai=7r < > aj.
j=1 =1

Suppose that R” and B, (0<%2=<3n—1) are obtained so that R” has 4"* sheets
and 9R ;-1 consists of 3¢4"7! simple closed analytic curves asn-1,i (1=7=3:4"71),
each of which separates one of the three points from the other two, and that

. 3p—4 Ip—-1
07 =2/ (1=7<3n-1) and n(r) £94°7% for all : Slo;<7r<>)a;
=1 i=1

25p=sn).

Then we take 3+4"7* replicas B (1<7=<3°4""") of R and connect each R; with

R" crosswise across a suitable slit in the end part of R™ divided by asn-1,i as
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follows: We consider only the case where a;n-1,: surrounds the point at infinity.
(In the other cases, it is sufficient for us to replace < by 0 or 1 in the below.)
In a similar way as above we determine {@sn,2i-1, @an,2i3 Qsn+1,3i-2, Xzntz,4i-3)e
in the end part of R” divided by asn-1,i and {@sn+10i-1, Qant1,8i; Qan+2,4i-2,
@3n+o,4i-1, Asn+2,4ifo iN Ry so that the harmonic moduli of the doubly-connected
domains (asn+1,3i-2, @sn+z,4i-3), (A3n+1,3i-1, Xan+e,4i-2) and (aan+1,3i, Asn+s,4i-1\J
asn+2,4i) are not less than 2°""% and that

3ant+1
2

3
mod (asn,2i-1, a3n+1,3i—2) = and mod (asn-1,i, afsn.zi-l) =2 ",

Then we connect R; with R” crosswise across a slit in the domain bounded

by asn,2i, where we choose it so small that

3n+1
mod (af:m,zi, A3n+1,3i-1 U (X:m+1,3i) Z2 .

n+1

In the surface R thus obtained we determine Rs»x, Rani: and Rinse as the

domains bounded by U asn,i, U asner,i and U asn+z,i Tespectively. It is easily
i I3 ¢

n+1

and Rr (0 k<3n+2) satisfy the all conditions added on R”

and Rr (0=k=38n—1) for n+1. The limiting surface R is a covering surface

seen that R

of the w-plane, has a null boundery and is of planar character.

We map R one-to-one conformally onto a domain £ in the z-plane which
is the complement of a compact set E of capacity zero and denote this map-
ping function by 7. By the same arguments used in [7] we see that f(z) =
¢ o 7 "Nz) is single-valued and meromorphic in @2, has an essential singularity
at each point of E and has at each singularity three exceptional values: values
0, 1 and infinity, where we denote by ¢ the projection of R into the w-plane.
But E satisfies the conditions of Theorem 1. In fact, if we take as an exhaus-
tion of 2 {@r=f (R k-o0,1.,.., it satisfies obviously the conditions 1°), 2°),
3°) and 4°) in §2 and branches off at most 2-times everywhere. Furthermore
since the harmonic moduli of the open sets £r — 2x-1 (k=1) are equal to =2k
and since

3p—-4 3p=-1

n(r) 94272 for all 7: Z:a,-§r< Mo (p=2),
j= Jj=1

we have that

gp-1
lim p(7) =lim 2 = + o and limM =lim 2;%1 = ilim 1

S B
r>x k->x r—>% 7 y>® 7 4 v ® 2P(1 __2-3P)
2]
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Remark. 1t is still open whether there is a perfect set E for which every

function has at most two exceptional values at each singularity.
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