ON EXCEPTIONAL VALUES OF MEROMORPHIC FUNCTIONS WITH THE SET OF SINGU-LARITIES OF CAPACITY ZERO¹⁾

KIKUJI MATSUMOTO

1. Let E be a compact set in the z-plane and let Ω be its complement with respect to the extended z-plane. Suppose that E is of capacity zero. Then Ω is a domain and we shall consider a single-valued meromorphic function w = f(z) on Ω which has an essential singularity at each point of E. We shall say that a value w is exceptional for f(z) at a point $\zeta \in E$ if there exists a neighborhood of ζ where the function f(z) does not take this value w.

In our previous paper [7], we showed that the set of all exceptional values of f(z) at a point ζ of E may be non-countable. In fact, we proved the following:

For every K_{σ} -set $K^{2)}$ of capacity zero in the w-plane, there exist a compact set E of capacity zero in the z-plane and a single-valued meromorphic function f(z) on its complementary domain \mathcal{Q} such that f(z) has an essential singularity at each point of E and such that the set of exceptional values at each singularity coincides with K.

In the opposite direction, we do not know, except for countable sets, any characterization of sets E for which all functions have very few exceptional values. Here we raise the following question: Is there any perfect set E in the z-plane such that any function, which is single-valued and meromorphic in the complementary domain Ω of E and has an essential singularity at each point ζ of E, has "at most two" or "at most a countable number of" exceptional values at each $\zeta \in E$?

The purpose of this paper is to give a sufficient condition for sets E for which every function f(z) has at most a finite number of exceptional values. We shall show the existence of such a perfect set E by means of a Cantor set.

Received December 15, 1960.

¹⁾ In this paper, capacity is always logarithmic.

²⁾ By a K_{σ} -set we mean the union of an at most countable number of compact sets.

- 2. Let $\{Q_n\}_{n=0,1,2,...}$ be an exhaustion of Q with the following conditions:
- 1°) $\Omega_n \supset \Omega_{n-1}$ for every n,
- 2°) for each n, the boundary $\partial \Omega_n$ of Ω_n consists of a finite number of closed analytic curves,
 - 3°) each component of the open set $\mathscr{C}\overline{\Omega}_n^{3}$ contains points of E,
 - 4°) each component of the open set $\Omega_n \Omega_{n-1}$ is doubly-connected.

We shall use in the sequel the graph associated with $\{\Omega_n\}$ which is defined as follows⁴⁾: The open set $\Omega_n - \overline{\Omega}_{n-1}$ $(n \ge 1)$ consists of a finite number of doubly-connected domains $R_{n,k}$ $(k=1, 2, \ldots, N(n))$. The boundary of $R_{n,k}$ consists of closed curves contained in $\partial \Omega_{n-1} \cup \partial \Omega_n$. Denote by $\alpha_{n-1,k}$ the part of the boundary of $R_{n,k}$ on $\partial \Omega_{n-1}$ and $\beta_{n,k}$ that on $\partial \Omega_n$. Let $u_{n,k}(z)$ be the harmonic function in $R_{n,k}$ which vanishes on $\alpha_{n-1,k}$ and is equal to a constant $\mu_{n,k}$ on $\beta_{n,k}$ and whose conjugate function $v_{n,k}(z)$ satisfies

$$\int_{\beta_{n,k}} dv_{n,k} = 2\pi,$$

where the integral is taken in the positive sense with respect to $R_{n,k}$. The quantity $\mu_{n,k}$ is called the harmonic modulus of $R_{n,k}$. Now we define the harmonic modulus σ_n of the open set $\Omega_n - \Omega_{n-1}$. Let $u_n(z)$ be the harmonic function in $\Omega_n - \overline{\Omega}_{n-1}$ which is equal to zero on $\partial \Omega_{n-1}$ and to σ_n on $\partial \Omega_n$ and whose conjugate function $v_n(z)$ has the variation 2π , i.e.,

$$\int_{\partial\Omega_{n-1}}dv_n=2\ \pi.$$

This quantity σ_n is called the harmonic modulus of $\Omega_n - \overline{\Omega}_{n-1}$. If we choose an additive constant of $v_n(z)$ suitably, the regular function $u_n(z) + iv_n(z)$ maps $R_{n,k}$ $(k=1, 2, \ldots, N(n))$ with one suitable slit onto a rectangle $0 < u_n < \sigma_n$, $b_k < v_n < a_k + b_k$ one-to-one conformally, where $a_k(k=1, 2, \ldots, N(n))$ and b_k $(k=1, 2, \ldots, N(n))$ are constants satisfying the relations that

$$a_k = 2 \pi \frac{\sigma_n}{\mu_{n,k}}, \quad \sum_{k=1}^{N(n)} a_k = 2 \pi$$

and

$$b_1 = 0, \ b_k = \sum_{i=1}^{k-1} a_i \qquad (1 < k \le N(n)).$$

³⁾ We denote the complement of a set A with respect to the extended complex plane by %A.

⁴⁾ See Kuroda [6].

Consequently, the function $u_n(z) + iv_n(z)$ maps $\Omega_n - \overline{\Omega}_{n-1}$ with N(n) suitable slits onto a slit-rectangle $0 < u_n < \sigma_n$, $0 < v_n < 2\pi$ one-to-one conformally. We define the function u(z) + iv(z) by $u_n(z) + iv_n(z) + \sum_{j=1}^{n-1} \sigma_j$ on each $\Omega_n - \overline{\Omega}_{n-1}$ ($n \ge 1$). Then this function u(z) + iv(z) maps $\Omega - \Omega_0$ with at most a countable number of suitable slits onto a strip domain 0 < u < R, $0 < v < 2\pi$ with a countable number of slits one-to-one conformally, where

$$R = \sum_{j=1}^{\infty} \sigma_j \leq + \infty.$$

This strip domain is the graph of Ω associated with the exhaustion $\{\Omega_n\}$ in the sense of Noshiro [8]. The number R is called the length of this graph. By the theorems of Sario [11] and Noshiro [8], Ω is the complementary domain of a compact set of capacity zero in the z-plane if and only if there exists a graph of Ω whose length R is infinite.

3. Let γ_r be the niveau curve $u(z) = r \ (0 < r < R)$ on Ω . The niveau curve γ_r consists of a finite number of simple closed curves $\gamma_{r,k} \ (k=1,2,\ldots,n(r))$. If $\sum_{j=1}^{n-1} \sigma_j < r < \sum_{j=1}^n \sigma_j$, then each $\gamma_{r,k} \ (k=1,2,\ldots,n(r)=N(n))$ is a simple closed analytic curve in $R_{n,k}$ which separates $\alpha_{n-1,k}$ from $\beta_{n,k}$. If $r = \sum_{j=1}^{n-1} \sigma_j$, then each $\gamma_{r,k} \ (k=1,2,\ldots,n(r)=N(n))$ coincides with $\alpha_{n-1,k}$. We shall call each component of the open set $\Omega_n - \overline{\Omega}_m \ (n > m)$ an R-chain. For every $\gamma_{r,k} \ (0 < r < R, 1 \le k \le n(r))$ we consider the longest doubly-connected R-chain $R(\gamma_{r,k})$ such that $\gamma_{r,k}$ is contained in $R(\gamma_{r,k})$ or is the one of the two boundary components of $R(\gamma_{r,k})$, and denote by $\mu(\gamma_{r,k})$ the harmonic modulus of this R-chain. We set

$$\mu(r) = \min_{1 \leq k \leq n(r)} \mu(\gamma_{r,k}).$$

Here we note that if $\sum_{j=1}^{n-1} \sigma_j \leq r < \sum_{j=1}^n \sigma_j$, then $R(\gamma_{r,k}) \supset R_{n,k}$ because of the condition 4°) of $\{\Omega_n\}$.

Generally $R_{n,k}$ may branch off into a finite number of $R_{n+1,m}$'s. If every $R_{n,k}$ $(n=1,2,\ldots;k=1,2,\ldots,N(n))$ branches off into at most ρ number of $R_{n+1,m}$'s, we say that the exhaustion $\{Q_n\}$ branches off at most ρ -times everywhere. Then we obtain the following

THEOREM 1. Let E be a compact set of capacity zero in the z-plane and let

 Ω be its complementary domain. If there exists an exhaustion $\{\Omega_n\}$ of Ω which satisfies the conditions 1°), 2°), 3°) and 4°) stated in \S 2, brankes off at most ρ_0 -times everywhere and has the graph with infinite length satisfying the conditions that

$$\lim_{r\to\infty}\mu(r)=+\infty\quad and\quad \lim_{r\to\infty}\frac{n(r)}{r}=0,$$

then every function, which is single-valued and meromorphic in Ω and has an essential singularity at each point ζ of E, has at most $\rho_0 + 1$ exceptional values at each singularity.

If we replace the last condition of the above by the condition

$$\overline{\lim}_{r\to\infty}\frac{n(r)}{r}<+\infty,$$

then the functions have at most a finite number of exceptional values at each singularity.

4. Before proving the theorem, we give two lemmas. Let C_1 and C_2 be two disjoint closed discs in the extended w-plane and let $\{\Lambda\}$ be the class of rectifiable curves⁵⁾ which lie outside C_1 and C_2 except for their end points and join C_1 and C_2 . For a subclass $\{\Lambda'\}$ of $\{\Lambda\}$, we can consider the extremal length $\lambda\{\Lambda'\}$, which is defined as follows: Let $\{\rho\}$ be the collection of functions ρ which are non-negative and lower semi-continuous in the extended w-plane. The quantity

$$\lambda \{ A' \} = \sup_{\rho} \frac{\inf_{\Lambda'} \int_{\Lambda'} \rho | dw |}{\int \int_{\rho^2} du dv} \qquad (w = u + iv)$$

is called the extremal length of $\{\Lambda'\}$, where we understand that $0/0 = \infty/\infty = 0$ (Ahlfors and Beurling [1], Ahlfors and Sario [2]).⁶⁾ We have

$$0 < \lambda \{\Lambda\} < + \infty$$
.

If we consider a set c consisting of a finite number of continua in the closure of the ring domain (C_1, C_2) and set

⁵⁾ This means that curves are rectifiable with respect to the spherical distance.

⁶⁾ For properties of extremal lengths, see, e.g., Ahlfors and Sario [2], Hersch [5], Ohtsuka [9].

$$\{\Lambda'\}_c = \{\Lambda' \in \{\Lambda\}; \ \Lambda' \cap c = \emptyset\},$$

then it holds that

$$+\infty \geq \lambda \langle \Lambda' \rangle_c \geq \lambda \langle \Lambda \rangle.$$

Given a positive number τ , we shall denote by C_{τ} the class of sets c with the property that

$$\sum_{\nu} d(\kappa_{\nu}) < \tau$$

where $\{\kappa_{\nu}\}$ are the components of c and $d(\kappa_{\nu})$ means the spherical diameter of κ_{ν} .

Lemma 1. There is a positive number τ such that

$$\sup_{c \in C_{\tau}} \lambda \{\Lambda'\}_c < + \infty.$$

Proof. By means of linear transformations, which correspond to rotations of sphere around the center and hence do not change spherical distance, we may assume that C_2 is a disc $|w| \ge R$. If we denote by $d_e(\kappa_v)$ the diameter of κ_v with respect to the euclidean metric, then we have that

$$\sum_{\nu} d_e(\kappa_{\nu}) \leq (1 + R^2) \sum_{\nu} d(\kappa_{\nu}).$$

We map the ring domain (C_1, C_2) conformally onto the annulus $1 < |\zeta| < \mu$ by $\zeta(w)$, where $\mu = e^{2\pi\lambda(\Delta)}$. With an interior point α of C_1 , we can represent the function $\zeta(w)$ by

$$\zeta(w) = e^{i\theta} \mu R \frac{w - \alpha}{R^2 - \bar{\alpha} w}$$

and hence we see that

$$M = \sup_{w_1, w_2 \in (\ell_1, \ell_2)} \frac{|\zeta(w_1) - \zeta(w_2)|}{|w_1 - w_2|} \leq \frac{\mu(R + |\alpha|)}{R(R - |\alpha|)} < + \infty.$$

Therefore we have that

$$\sum_{\nu} d_e(\zeta(\kappa_{\nu})) \leq M \sum_{\nu} d_e(\kappa_{\nu}) \leq M(1+R^2) \sum_{\nu} d(\kappa_{\nu}).$$

The number

$$\tau = \frac{\pi}{M(1+R^2)}$$

is one of the wanted. In fact, if we delete from the annulus $1 < |\zeta| < \mu$ all segments s_{θ} : arg $\zeta = \theta(0 \le \theta < 2\pi)$, $1 < |\zeta| < \mu$, which intersect $\bigcup_{\nu} \zeta(\kappa_{\nu})$, then we have a finite number of domains D_{i} : $\theta_{2i-1} < \arg \zeta < \theta_{2i}$, $1 < |\zeta| < \mu$ ($i = 1, 2, \ldots$, N) such that they are disjoint from each other and

$$\sum_{i=1}^{N} (\boldsymbol{\theta}_{2i} - \boldsymbol{\theta}_{2i-1}) \geq \pi.$$

Let $\{\gamma\}$ be the class of all curves in the annulus $1 < |\zeta| < \mu$ which join two boundary circles of the annulus and do not touch $\bigcup_{\nu} \zeta(\kappa_{\nu})$ and let $\{s_i\}$ be the class of segments s_{θ} : $\theta_{2i-1} < \theta < \theta_{2i}$. Then

$$\lambda \langle s_i \rangle = \frac{1}{\theta_{2i} - \theta_{2i-1}} \log \mu = \frac{2 \pi \lambda \langle \Lambda \rangle}{\theta_{2i} - \theta_{2i-1}}$$

and since domains Di are disjoint from each other

$$\lambda\langle \Lambda' \rangle_c = \lambda\langle \gamma \rangle \leq \lambda(\bigcup_{i=1}^N \langle s_i \rangle) = \frac{1}{\sum_{i=1}^N - \frac{1}{\lambda\langle s_i \rangle}} = \frac{2 \pi \lambda\langle \Lambda \rangle}{\sum_{i=1}^N (\theta_{2i} - \theta_{2i-1})} \leq 2 \lambda\langle \Lambda \rangle^{.6}$$

Thus our proof is complete.

We shall consider distinct $n(\geq 3)$ points w_1, w_2, \ldots, w_n in the extended w-plane and denote by $\zeta = T^i_{j, m}(w)$ $(i \neq j, m \text{ and } j \neq m)$ the linear transformation which transforms w_i, w_j and w_m to the point at infinity, the origin and the point $\zeta = 1$ respectively. Now we prove the following lemma which is a consequence of Bohr-Landau's theorem [3]:

If g(z) is regular in |z| < 1 and $g(z) \neq 0$, 1 there, then

$$\max_{|z|=r} |g(z)| \le \exp\left(\frac{A \log(|g(0)|+2)}{1-r}\right) \quad \text{for all } r < 1,$$

where A is a positive constant (a precise form of Schottky's theorem).

Lemma 2. Let R be an annulus a < |z| < b in the z-plane and let c and d be positive numbers such that

$$a < c < d < b$$
 and $\log \frac{c}{a}$, $\log \frac{b}{d} \ge \sigma(\sigma > 0)$.

Then there is a positive constant δ with the following properties:

1) the spherical closed discs C_i (i = 1, 2, ..., n) with the centers at w_i and with the spherical radius δ are mutually disjoint and

$$C_i \subset (T_{i,j}^m)^{-1}(U)^{\gamma}$$
 $(i \neq j, m \text{ and } j \neq m),$

where U is the unit disc $|\zeta| < 1$,

2) if, for all r ($c \le r \le d$), a single-valued meromorphic function f(z) in R omitting the values w_1, w_2, \ldots, w_n takes on |z| = r a value contained in $(T_{j,m}^i)^{-1}(U)$, then f(z) takes no value in C_i in the annulus c < |z| < d.

Here δ depends only on σ and does not depend on R and f(z).

Proof. From Bohr-Landau's theorem we can see easily that if g(z) is a regular function in R such that

$$g(z) \neq 0$$
, 1 and $\min_{|z|=r} |g(z)| < 1$ for all $r: c \leq r \leq d$,

then there is a positive constant K depending only on σ and satisfying

$$|g(z)| \le K$$
 for every $z : c \le |z| \le d$.

Therefore, if $T_{i,m}^i(f(z))$ has the same properties as g(z), it holds that

$$|T_{i,m}^i(f(z))| \le K$$
 for every $z: c \le |z| \le d$.

Hence the image of the outside V of $|\zeta| \leq K$ by $(T^i_{j,m})^{-1}$ is an open disc which contains w_i and has the following property: If, for all r $(c \leq r \leq d)$, f(z) takes on |z| = r a value contained in $(T^i_{j,m})^{-1}(U)$, f(z) takes no value in $(T^i_{j,m})^{-1}(V)$ in the annulus c < |z| < d. Set

$$U(w_i) = \bigcap_{\substack{j \neq m \\ j, m \neq i}} ((T_{j,m}^i)^{-1}(V) \cap (T_{i,j}^m)^{-1}(U)).$$

Since $(T_{i,m}^i)^{-1}(V)$ and $(T_{i,j}^m)^{-1}(U)$ are open discs containing w_i , each term in the right side is a non-empty open set containing w_i and hence $U(w_i)$ is also a non-empty open set containing w_i . Therefore

$$0 < \delta_i = \min_{w \in \partial U(w_i)} \frac{|w - w_i|}{\sqrt{(1 + |w|^2)(1 + |w_i|^2)}},$$

and hence

$$\delta' = \min_{1 \le i \le n} \delta_i > 0.$$

If we choose a positive number $\delta \leq \delta'$ so that the spherical closed disc C_i with

Note that $T_{i,j}^m = T_{j,m}^i$; that is, $T_{i,j}^m$ transforms w_i , w_j and w_m to the origin, the point w=1 and the point at infinity respectively and $T_{j,m}^i$ transforms w_i , w_j and w_m to the point at infinity, the origin and the point w=1 respectively.

the centers at w_i and with the spherical radius δ are mutually disjoint, then discs C_i satisfy all conditions of the lemma.

5. Proof of the theorem. In the case where $\rho_0 = 1$, E consists of just one point and hence our assertion is true from Picard's theorem.

Let ρ_0 be greater than 1. Contrary to our assertion, let us suppose that there exists a function f(z) which is single-valued and meromorphic in Ω , has an essential singularity at each point of E and has more than $\rho_0 + 1$ exceptional values at a singularity $\zeta \in E$. We denote by $U(\zeta)$ a neighborhood of ζ where f(z) does not take distinct $\rho_0 + 2$ values $w_1, w_2, \ldots, w_{\rho_0 + 2}$. Then we can find an n and a k such that the domain $R_{n,k}$ is contained in $U(\zeta)$ and separates the boundary of $U(\zeta)$ from ζ . Consider the component Ω' , containing ζ , of the complement of Ω_{n-1} with respect to the extended z-plane. The complement of the closed set $E \cap \Omega'$ with respect to the extended z-plane is a domain and if we take $\mathscr{C}\Omega$, as the first domain of an exhaustion $\{\Omega'_m\}$ of $\mathscr{C}(E\cap\Omega')$ and $\mathscr{C} \Omega' \cup (\Omega' \cap \Omega_{n+p-1})$ as the (p+1)-th $(p \ge 1)$, the graph associated with this exhaustion satisfies our conditions too. In the below we shall use the notation Ω instead of $\mathscr{C}(E \cap \Omega')$ and the notation $\{\Omega_n\}$ instead of $\{\Omega'_m\}$. We consider the graph associated with this exhaustion and denote by u(z) + iv(z) the function which maps one-to-one conformally $\Omega - \Omega_0$ with at most a countable number of suitable slits onto our graph.

First we shall show that there exist a positive number τ and an r_0 such that for all $r \ge r_0$, the spherical length of the image of the niveau curve γ_r : u(z) = r is not less than τ , i.e., for all $r \ge r_0$,

$$L(r) = \int_{\tau_r} \frac{|f'(z)|}{1 + |f(z)|^2} |dz| \ge \tau > 0.$$

Applying Lemma 2 to the set of points $w_1, w_2, \ldots, w_{\rho_0+2}$, we can find a positive constant δ such that the spherical closed discs C_i ($i = 1, 2, \ldots, \rho_0 + 2$) with the centers at w_i and with the spherical radius δ satisfy the conditions of the lemma.

Let $\{A_{i,j}\}$ $(i \neq j)$ be the class of rectifiable curves in the extended w-plane which lie outside C_i and C_j except for their end points and join C_i and C_j . From Lemma 1 we can find a positive constant $\tau_{i,j}$ such that

$$\mu'_{i,j} = 2 \pi \sup_{c \in C_{\tau_{i,j}}} \lambda \{\Lambda'_{i,j}\}_c < + \infty,$$

where the definition of $C_{\tau_{i,j}}$ was given just before Lemma 1.

Set

$$\tau' = \min_{i \neq j} \tau_{i,j}, \qquad \tau = \min\left\{\frac{\tau'}{2}, \frac{\delta}{2}\right\}$$

and

$$\mu = \max_{i \neq j} \, \mu'_{i,j}.$$

Suppose that there is an increasing sequence of positive numbers $\{r_n\}$ such that

$$r_1 < r_2 < \cdots < r_n < \cdots \rightarrow + \infty$$

and for each n,

$$L(r_n) < \tau$$
.

We may assume from the assumption of our theorem that

$$\mu(r) > \mu + 2 \sigma$$

for all $r \ge r_1$, where σ is a positive constant. Further we may assume that f(z) takes in a component $\mathcal{Q}(r_1, r_2)$ of the open set $r_1 < u(z) < r_2$ two values w'_0 and w''_0 such that they lie outside $\bigcup_{i=1}^{p_0+2} C_i$ and the spherical distance between them is greater than 2τ , because E is of capacity zero and hence f(z) takes all values w infinitely often with possible exception of a set of capacity zero in any neighborhood of each point of E. Let n and p be positive integers with the property that

$$\sum_{j=1}^{n-p-1} \sigma_j \leq r_1 < \sum_{j=1}^{n-p} \sigma_j \text{ and } \sum_{j=1}^{n-1} \sigma_j \leq r_2 < \sum_{j=1}^{n} \sigma_j.$$

The boundary $\partial \mathcal{Q}(\mathbf{r}_1, \mathbf{r}_2)$ of $\mathcal{Q}(\mathbf{r}_1, \mathbf{r}_2)$ consists of one of $\{\gamma_{r_1, k}\}_{k=1, 2, \dots, n(r_1)}$, say $\gamma_{r_1, 1}$, and some of $\{\gamma_{r_2, k}\}_{k=1, 2, \dots, n(r_2)}$, say $\{\gamma_{r_2, k}\}_{k=1, 2, \dots, m}$ $(m \leq n(r_2))$. We shall say that $\gamma_{r_2, i}$ and $\gamma_{r_2, j}$ are of ν -th kin if a component $R(\gamma_{r_2, i}, \gamma_{r_2, j})$ of $\Omega_n - \Omega_{n-\nu-1}$ is the smallest R-chain which contains $\gamma_{r_2, i} \cup \gamma_{r_2, j}$. Since

$$d(f(\gamma_{r_1,1})) \leq \frac{L(\gamma_1)}{2} < \frac{\tau}{2}$$
 and $\sum_{k=1}^m d(f(\gamma_{r_2,k})) \leq \frac{L(\gamma_2)}{2} < \frac{\tau}{2}$,

we can cover $\bigcup_{k=1}^{m} f(\gamma_{r_2,k})$ by a finite number of mutually disjoint spherical closed discs S_q $(q=1, 2, \ldots, m'; m' \leq m)$ with the property that

$$\sum_{q=1}^{m'} d(S_q) < \tau,$$

and $\bigcup_{k=1}^{m} f(\gamma_{r_2,k}) \cup f(\gamma_{r_1,1})$ by a finite number of mutually disjoint spherical closed discs S'_q $(q=1, 2, \ldots, m''; m'' \leq m'+1)$ satisfying that

$$\bigcup_{q=1}^{m'} S_q \subset \bigcup_{q=1}^{m''} S_q'$$
 and $\sum_{q=1}^{m''} d(S_q') < 2 \tau$.

Let z_0' and z_0'' be the points of $\Omega(r_1, r_2)$ satisfying that $f(z_0') = w_0'$ and $f(z_0'')$ $= w_0''$ and let γ be an arbitrary curve in $\Omega(r_1, r_2)$ joining z_0' and z_0'' . Since the image $f(\gamma)$ of γ joins w_0' and w_0'' and the spherical distance between w_0' and w_0'' is greater than 2τ , we can find a point $w_0 \in f(\gamma)$ such that for all i there are curves A_i which join w_0 and \widetilde{C}_i and do not touch $\bigcup_{q=1}^{m''} S_q'$. Here we denote by \widetilde{C}_i the concentric spherical closed disc of C_i with the spherical diameter δ . Let $z_0 \in \gamma$ be a point satisfying that $f(z_0) = w_0$. Since f(z) does not take values $\{w_i\}_{i=1,2,\ldots,p_0+2}$ on $\Omega(r_1,r_2)$, all curves in \widetilde{C}_i joining the end point of A_i on \widetilde{C}_i and w_i intersect the image of $\partial \Omega(r_1, r_2)$. In fact, if there is a curve \widetilde{A} not intersecting this image, the element $e(w; z_0)$ of the inverse function f^{-1} corresponding to z_0 can be continued analytically in the wider sense along $A_i \cup \widetilde{A}$ up to a point arbitrarily near w_i so that the path corresponding to this continuation is contained in $\Omega(r_1, r_2)$. This is a contradiction. Observing that

$$d(f(\gamma_{r_2,k})) \leq \frac{L(r_2)}{2} \leq \frac{\tau}{2} \leq \frac{\delta}{4} \qquad (k=1, 2, \ldots, m),$$

we see that the inside of each C_i contains the image of at least one $\gamma_{r_2,k} \subset \partial \Omega(r_1,r_2)$ possibly except for one C_i which may contain the image of $\gamma_{r_1,1}$. Let $(\gamma_{r_2,h}, \gamma_{r_2,h'})$ be one of the nearest of kin among all pairs $(\gamma_{r_2,k}, \gamma_{r_2,k'})$ whose images are contained in distinct discs, let C_i and $C_{i'}$ $(i \neq i')$ be the discs containing their images respectively, let them be of ν -th kin and let $R_{n-\nu,t}$ be the domain which determines their kinship. Since our exhaustion branches off at most ρ_0 -times everywhere, we can find at least two discs, say C_j and $C_{j'}$ $(j \neq j')$, which do not contain the image of any $\gamma_{r_2,k}$ of ν -th or nearer than ν -th kin to $\gamma_{r_2,h}$ or $\gamma_{r_2,h'}$.

Let R be the longest doubly-connected R-chain containing $R_{n-\nu,t}$. Then from our assumption the harmonic modulus of R is greater than $\mu + 2\sigma$. Further $R \neq R(\gamma_{r_1,1})$ and hence $R \subset \Omega(r_1, r_2)$, for if $R = R(\gamma_{r_1,1})$ all $\gamma_{r_2,k}$ $(k = 1, 2, \ldots, m)$

are of ν -th or nearer than ν -th kin to $\gamma_{r_2,h}$ or $\gamma_{r_2,h'}$ and C_j and $C_{j'}$ can not contain the image of any $\gamma_{r_2,k}$ $(k=1,2,\ldots,m)$. We may consider R as an annulus a<|z|< b (log $b/a>\mu+2\sigma$) and denote ae^{σ} and $be^{-\sigma}$ by c and d respectively. We observe that for each s (a< s< b) the image of the circle $K_s\colon |z|=s$ by f(z) intersects $(T^i_{i',j'})^{-1}(U)$ and $(T^j_{i',j'})^{-1}(U)$. In fact, we know that $C_{i'}\subset (T^i_{i',j'})^{-1}(U)\cap (T^j_{i',j'})^{-1}(U)$. Suppose that $f(K_s)\cap C_{i'}=\phi$ and denote by $\gamma(h')$ a curve in $\Omega(\gamma_1,\gamma_2)$ joining γ_2 0 and a point of $\gamma_{r_2,h'}$. The images of $\gamma_{r_2,h'}$ of $\gamma_{r_2,h'}$ or nearer than γ_2 1 the kin to γ_2 2 the or γ_2 3 are covered by some of γ_2 4 and γ_3 5 and γ_3 6 and γ_3 7 are covered by some of γ_3 8 and γ_3 9 and γ_3 9. Since

$$\sum_{q=1}^{m_0'} d(S_q) < \tau \le \frac{\delta}{2}$$

and since $(T_{I',j'}^i)^{-1}(U)$ is spherical disc containing $C_{i'}$, there are point $w' \in f(\gamma(h')) \cap C_{i'}$ outside $\bigcup_{q=1}^{m_0'} S_q$ and a curve Λ in $(T_{i',j'}^i)^{-1}(U)$ which joins w' and $w_{j'}$ and does not touch $\bigcup_{q=1}^{m_0'} S_q$. Let z' be the point of $\gamma(h')$ such that f(z') = w' and let e(w; z') be the element of f^{-1} corresponding to z'. Continue e(w; z') along Λ . If Λ does not intersect $f(K_s)$, f(z) must take the value $w_{j'}$ in $\Omega(r_1, r_2)$; this is a contradiction. By the same reasoning we see that $f(K_s) \cap (T_{i',j'}^j)^{-1}(U) \neq \emptyset$. It now follows by Lemma 2 that f(z) does not take any value of $C_i \cap C_j$ in c < |z| < d. Consequently if we consider the class of all rectifiable curves $\{\Lambda_{i,j}\}$ which lie outside $C_i \cup C_j$ except for their end points, join C_i and C_j and do not intersect $\bigcup_{q=1}^{m''} S_q'$, then by the same reasoning as above, we can see easily that each $\Lambda_{i,j}$ contains a curve which is the image of a curve Γ' in the annulus c < |z| < d joining its two boundary circles. Let $\{\Gamma'\}$ be the class of all rectifiable curves in c < |z| < d joining its two boundary circles and let $\{\Gamma'\}$ be the subclass of $\{\Gamma'\}$ such that for each Γ' there is a $\Lambda_{i,j}$ containing its image $f(\Gamma')$. Then we have that

$$\lambda \{ \Gamma \} \leq \lambda \{ \Gamma' \} \leq \lambda \{ f(\Gamma') \} \leq \lambda \{ \Lambda_{i,j} \}^{6}$$

Since

$$\sum_{q=1}^{m''} d(S_q') < 2 \tau \le \tau',$$

we see from the definitions of τ' and μ that

$$2 \pi \lambda \{ \Lambda_{i,j} \} \leq \mu$$

and hence

$$2 \pi \lambda \langle \Gamma \rangle \leq \mu$$
.

But on the other hand we have

$$2\pi\lambda\langle \Gamma\rangle = \text{mod (the annulus } c < |z| < d) > \mu^{8)6}$$
.

Thus we are led to a contradiction and we can conclude that there is an r_0 such that

$$L(r) \ge \tau$$

for all $r \ge r_0$.

Let Ω_r denote the subdomain of Ω bounded by the niveau curve γ_r : u(z) = r, let θ_r denote the Riemannian image of Ω_r and let A(r) denote the spherical area of θ_r . Then

$$A(r) = \int_0^r \int_0^{2\pi} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} |\varphi'(u+iv)|^2 dv du,$$

where we denote by φ the invease function of u(z) + iv(z). Set

$$S(r) = \frac{A(r)}{\pi}$$
 and $\xi = \overline{\lim_{r \to \infty}} \frac{n(r)}{S(r)}$.

Then the following holds:

If ξ is finite, then f(z) takes every value in the extended w-plane infinitely often with possible $2 + \lfloor \xi \rfloor$ exceptions, where $\lfloor \xi \rfloor$ denotes the greatest integer not exceeding ξ (Hällström [4], Tsuji [12], [13]).

Hence our theorem is obtained immediately. In fact, we showed in the above that for all $r \ge r_0$

$$au \leq L(r) = \int_0^{2\pi} rac{|f'(z)|}{1+|f(z)|^2} |\varphi'(u+iv)| dv.$$

By the Schwarz inequality, we have

$$\tau^2 \leq 2 \pi \int_0^{2\pi} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} |\varphi'(u+iv)|^2 dv,$$

and hence

$$\frac{\tau^2}{2\pi}(r-r_0) \leq \int_0^r \int_0^{2\pi} \frac{|f'(z)|^2}{(1+|f(z)|^2)^2} |\varphi'(u+iv)|^2 dv du = A(r).$$

⁸⁾ We denote by mod R the harmonic modulus of a doubly-connected domain R.

From our condition, it follows that

$$0 \leq \overline{\lim_{r \to \infty}} \frac{n(r)}{S(r)} \leq \frac{2 \pi^2}{\tau^2} \lim_{r \to \infty} \frac{n(r)}{(r - r_0)} = \frac{2 \pi^2}{\tau^2} \lim_{r \to \infty} \frac{n(r)}{r} = 0.$$

This contradicts the assumption that f(z) has more than two exceptional values.

By the same arguments, we can see that f(z) has at most a finite number of exceptional values if

$$\overline{\lim}_{r\to\infty}\frac{n(r)}{r}<+\infty.$$

Thus our theorem is established.

Remark. Let D be a domain containing E completely. From our proof we can see that every function, which is single-valued and meromorphic in the domain D-E and has an essential singularity at each point of E, has at most $\rho_0 + 1$ exceptional values at each singularity.

6. Let E be the boundary of a domain D in the z-plane and let ζ be a point of E. If ζ has a neighborhood $U(\zeta)$ whose boundary consists of one closed analytic curve not touching E, $Q_{\zeta} = D \cap U(\zeta)$ is a domain. An exhaustion of Q_{ζ} whose first domain is $\mathscr{C}\overline{U(\zeta)}$ is called a local exhaustion of D at ζ and the graph associated with this is called a local graph at ζ .

Theorem 2. Let E be the boundary of a domain D in the z-plane and let ζ be a point of E. If there is a local exhaustion at ζ which satisfies the conditions 1°), 2°), 3°) and 4°) stated in § 2, branches off at most ρ_0 -times everywhere and has the local graph with infinite length satisfying the conditions that

$$\lim_{r\to\infty}\mu(r)=+\infty\quad and\quad \lim_{r\to\infty}\frac{n(r)}{r}=0,$$

or if there exists a sequence of points $\{\zeta_n\}$ of E converging to ζ , at each point of which the local exhaustion with the same properties as above is found, then every function, which is single-valued and meromorphic in D and has an essential singularity at each point of E, has at most $\rho_0 + 1$ exceptional values at ζ .

If at each ζ_n , the local exhaustion branches off at most ρ_n -times everywhere and has the local graph with infinite length satisfying the conditions that

$$\lim_{r\to\infty}\mu(r)=+\infty\quad and\quad \lim_{r\to\infty}\frac{n(r)}{r}<+\infty,$$

then the functions have at most a countable number of exceptional values at ζ . (We remark that integers ρ_n depend on n and need not be bounded.)

For in the case where there is a local exhaustion at ζ satisfying our conditions, the assertion is true obviously from Theorem 1. If ζ is the limiting point of $\{\zeta_n\}$, each neighborhood contains points of $\{\zeta_n\}$ and hence f(z) has at most $\rho_0 + 1$ exceptional values at ζ .

If we replace the condition $\lim_{r\to\infty} n(r)/r = 0$ by $\lim_{r\to\infty} n(r)/r < +\infty$ and if f(z) has non-countable number of exceptional values, then we can find a neighborhood where f(z) does not take an infinite number of values; this contradicts the fact that this neighborhood contains points of $\{\zeta_n\}$ where f(z) has at most a finite number of exceptional values.

7. In this section we shall show the existence of general Cantor sets in whose complement the functions have a finite number of exceptional values.

First we state the definition of general Cantor sets. Let k_1, k_2, \ldots be integers greater than 1 and let p_1, p_2, \ldots be finite numbers also greater than 1. We set $h_q = 1/(k_q p_q)$. Let I be a closed interval with the length d > 0. We delete $(k_q - 1)$ intervals of equal length from I so that there remain k_q intervals of equal length $h_q d$. We call this operation the q-operation applied to I. We begin by applying the 1-operation to [0, 1], next apply the 2-operation to each of the remaining intervals $I_{1\nu}(1 \le \nu \le k_1)$, further apply the 3-operation to each of the remaining intervals $I_{2\nu}(1 \le \nu \le k_1 k_2)$ and so on. We call the limiting set of the union of $I_{n\nu}$'s $(1 \le \nu \le \prod_{q=1}^n k_q)$ a general Cantor set and denote by $F(k_q, p_q)$.

Now we prove the following

THEOREM 3. If

$$k_q \leq \rho_0(q \geq 1)$$
 and $\lim_{q \to \infty} p_q = + \infty$,

and if

$$\overline{\lim_{n \to \infty} \frac{\prod_{q=1}^{n-1} k_q}{\sum_{j=1}^{n-1} \frac{1}{\prod_{q=1}^{j-1} k_q} \log \frac{1 + \frac{\rho_0}{\rho_0 - 1} (P_{j-1} - 1)}{2}} = 0 \qquad (< + \infty, resp.),$$

⁹⁾ See Ohtsuka [10].

then every function, which is single-valued and meromorpic in the complementary domain Ω of $F(k_q, p_q)^{10}$ and has an essential singularity at each point of $F(k_q, p_q)$, has at most $\rho_0 + 1$ (a finite number of resp.) exceptional values at each singularity.

Proof. It is sufficient for us to prove that under the conditions of the theorem, $F(k_q, p_q)$ has the complement satisfying the conditions of Theorem 1.

Since $p_q \to \infty$ as $q \to \infty$ and since it suffices to prove locally, we may assume that $p_q \ge 2$ for all q. We define an exhaustion $\{Q_n\}$ of Q as follows: First we take the outside of the disc $|z - \frac{1}{2}| \le 1$ as the first domain Q_0 . Let $C_{1\nu}(1 \le \nu \le k_1)$ be the circles with the centers at the middle points of $I_{1\nu}(1 \le \nu \le k_1)$ and with the same radius

$$\frac{1}{2}\left(h_1+\frac{1}{k_1-1}\left(1-\frac{1}{p_1}\right)\right).$$

Then for each $\nu(1 \le \nu < k_1)$ $C_{1\nu}$ touches $C_{1(\nu+1)}$. The domain bounded by all of $C_{1\nu}$ is taken the second domain Ω_1 . $\Omega_1 - \overline{\Omega}_0$ is a doubly-connected domain with the harmonic modulus

$$\mu_{1,1} = \sigma_1 > \log \frac{2}{1 + \frac{1}{k_1 - 1} \left(1 - \frac{1}{p_1}\right)} > 0,$$

because it contains the annulus $1>|z-\frac{1}{2}|>\frac{1}{2}\left(1+\frac{1}{k_1-1}\left(1-\frac{1}{p_1}\right)\right)$. Next we draw the circles $C_{2\nu}$ $(1\leq \nu\leq k_1k_2)$ with the centers at the middle points of $I_{2\nu}$ $(1\leq \nu\leq k_1k_2)$ and with the equal radius

$$-\frac{1}{2} h_1 \left(h_2 + \frac{1}{k_2 - 1} \left(1 - \frac{1}{p_2} \right) \right).$$

Then for each ν $((m-1)k_2+1 \leq \nu < mk_2; m=1,2,\ldots,k_1)$ $C_{2\nu}$ touches $C_{2(\nu+1)}$. We take as the third domain Ω_2 the domain bounded by all of $C_{2\nu}$ and see that the open set $\Omega_2 - \overline{\Omega}_1$ consists of k_1 doubly-connected domains $R_{2,1}$, $R_{2,2}$, ..., R_{2,k_1} which are congruent and hence have the equal harmonic modulus

$$\mu_{2,k} = k_1 \sigma_2 > \log \frac{h_1 + \frac{1}{k_1 - 1} \left(1 - \frac{1}{p_1}\right)}{h_1 \left(1 + \frac{1}{k_2 - 1} \left(1 - \frac{1}{p_2}\right)\right)} \ge \log \frac{1 + \frac{\rho_0}{\rho_0 - 1} (p_1 - 1)}{2} > 0$$

$$(k = 1, 2, \ldots, k_1),$$

¹⁰⁾ See the remark of Theorem 1.

because they contain the annulus bounded by the concentric circles with radii $\frac{1}{2}\left(h_1+\frac{1}{k_1-1}\left(1-\frac{1}{p_1}\right)\right)$ and $\frac{1}{2}h_1\left(1+\frac{1}{k_2-1}\left(1-\frac{1}{p_2}\right)\right)$. Generally, let $C_{n\nu}$ $(1 \le \nu \le \prod_{q=1}^n k_q)$ be the circles with the centers at the middle points of $I_{n\nu}(1 \le \nu \le \prod_{q=1}^n k_q)$ and with the equal radius

$$\frac{1}{2} \prod_{q=1}^{n-1} h_q \left(h_n + \frac{1}{k_n - 1} \left(1 - \frac{1}{p_n} \right) \right).$$

Take the domain bounded by these circles as the (n+1)-th domain Ω_n . Then, since for each ν $((m-1)k_n+1 \le \nu < mk_n; m=1, 2, \ldots, \prod_{q=1}^{n-1} k_q)$ $C_{n\nu}$ touches $C_{n(\nu+1)}$, the open set $\Omega_n - \overline{\Omega}_{n-1}$ consists of $\prod_{q=1}^{n-1} k_q$ congruent doubly-connected domains $R_{n,k}$ $(1 \le k \le \prod_{q=1}^{n-1} k_q)$ with the equal harmonic modulus

$$\mu_{n,k} = \left(\prod_{q=1}^{n-1} k_q\right) \sigma_n > \log \frac{h_{n-1} + \frac{1}{k_{n-1} - 1} \left(1 - \frac{1}{p_{n-1}}\right)}{h_{n-1} \left(1 + \frac{1}{k_n - 1} \left(1 - \frac{1}{p_n}\right)\right)} \ge \log \frac{1 + \frac{\rho_0}{\rho_0 - 1} (p_{n-1} - 1)}{2} > 0$$

$$(1 \le k \le \prod_{q=1}^{n-1} k_q).$$

For they contain the annulus bounded by the concentric circles with radii $\frac{1}{2} \binom{n-2}{q-1} h_q \binom{n-1}{q-1} \binom{n-1}{k_{n-1}-1} \binom{1-\frac{1}{p_{n-1}}}{1-\frac{1}{p_{n-1}}}$ and $\frac{1}{2} \binom{n-1}{q-1} h_q \binom{1+\frac{1}{k_n-1}}{1-\frac{1}{p_n}} \binom{1-\frac{1}{p_n}}{1-\frac{1}{p_n}}$. The domains Ω_n form obviously an exhaustion of Ω which satisfies 1°), 2°), 3°) and 4°) in §2 and branches off at most ρ_0 -times everywhere.

Now we consider the graph associated with this exhaustion. The open sets $\Omega_n - \Omega_{n-1}$ $(n \ge 1)$ have harmonic moduli σ_n such that

$$\sigma_1 > 0$$
 and $\sigma_n = \frac{\mu_{n,k}}{\frac{1}{n-1}} > \frac{1}{\frac{1}{n-1}} \log \frac{1 + \frac{\rho_0}{\rho_0 - 1}(p_{n-1} - 1)}{2}$ $(n \ge 2)$

and hence we see from our assumption that

$$R = \sum_{n=1}^{\infty} \sigma_n > \sum_{n=2}^{\infty} \frac{1}{n-1} \log \frac{1 + \frac{\rho_0}{\rho_0 - 1} (p_{n-1} - 1)}{2} = + \infty,$$

that is, the length of the graph is infinite. We shall show that

$$\lim_{r\to\infty}\mu(r)=+\infty\quad\text{and}\quad\lim_{r\to\infty}\frac{n(r)}{r}=0\qquad (<+\infty,\text{ resp.}).$$

Since

$$\mu(r) = \mu_{n,k} > \log \frac{1 + \frac{\rho_0}{\rho_0 - 1}(p_{n-1} - 1)}{2} \qquad (\sum_{j=1}^{n-1} \sigma_j \le r < \sum_{j=1}^n \sigma_j)$$

and since $p_{n} \to +\infty$ as $n \to \infty$, the first relation holds. From our condition and from the facts that

$$n(r) = \prod_{q=1}^{n-1} k_q \left(\sum_{j=1}^{n-1} \sigma_j \le r < \sum_{j=1}^{n} \sigma_j \right) \text{ and } \sum_{j=1}^{n-1} \sigma_j > \sum_{j=1}^{n-1} \frac{1}{\prod_{q=1}^{n-1} k_q} \log \frac{1 + \frac{\rho_0}{\rho_0 - 1} (p_{n-1} - 1)}{2},$$

we have

$$\lim_{r \to \infty} \frac{n(r)}{r} \le \lim_{n \to \infty} \frac{\prod_{q=1}^{n-1} k_q}{\sum_{q=1}^{n-1} \frac{1}{j-1} \log \frac{1 + \frac{\rho_0}{\rho_0 - 1}(p_{j-1} - 1)}{2}} = 0$$

$$(< + \infty, \text{ resp.}).$$

Thus we see that all conditions of Theorem 1 are satisfied. The proof is now complete.

For instance, the general Cantor set $F(k_q, p_q)$ such that

$$k_a = \rho_0(a \ge 1)$$
 and $p_a = 2 \exp \rho_0^{\alpha q}$ $(\alpha > 2)$

satisfies the conditions of Theorem 3. In fact, we have that

$$\lim_{n\to\infty} \frac{\rho_0^{n-1}}{\sum_{j=2}^{n-1} \frac{1}{\rho_0^{j-1}} \log \frac{1+\frac{\rho_0}{\rho_0-1}(2e^{\rho_0^{\alpha(j-1)}}-1)}{2}} \leq \lim_{n\to\infty} \frac{\rho_0^{n-1}}{\sum_{j=2}^{n-1} \rho_0^{(\alpha-1)(j-1)}} = 0.$$

8. In this last section, we shall show by an example that the conditions of Theorem 1 for $\rho_0 = 2$ are not sufficient in order that the number of exceptional values is not greater than two, that is, there exist a perfect set E satisfying the conditions of Theorem 1 for $\rho_0 = 2$ and a function f(z) which is single valued and meromorphic in the complement of E, has an essential singularity at each point of E and has three exceptional values at each singularity.

Example. We delete from the w-plane the origin and the point w=1 and denote by R the resulting domain. By induction we shall construct convering surfaces \hat{R}^n of the w-plane and define an exhaustion $\{\hat{R}_k\}_{k=0,1,2,...}$ of their limiting surface \hat{R} in the below.

Let A, B, C, \ldots denote simple closed analytic curves in R. Consider three points: the point at infinity, the origin and the point w=1. We shall denote by $\{A, B; C, D, E\}_{\infty}(\{A, B; C, D, E\}_0, \{A, B; C, D, E\}_1, \text{ resp.})$ a set of five curves such that A and B separate the point at infinity (the origin, the point w=1, resp.) from the other two points and touch each other, such that C separates A from the point at infinity (the origin, the point w=1, resp.) and such that D and E surround the origin and the point w=1 respectively (the point w=1 and the point at infinity respectively, the point at infinity and the origin respectively, resp.), touch each other and form with B the boundary of a doubly-connected domain $(B, D \cup E)^{(1)}$. Further we shall denote by $\{F, G; H, I\}_{\infty}(\{F, G; H, I\}_0, \{F, G; H, I\}_1, \text{ resp.})$ a set of four curves such that F separates the point at infinity (the origin, the point w=1, resp.) from the others, G is homotopic to zero with respect to F and they touch each other and that F and F separate F and F or respectively, from the point at infinity (the origin, the point F and F or F and F or F and F or F and F or F or F and F or F and F or F or F or F and F or F or

First we take a replica \hat{R}^1 of R. We can determine there $\{\alpha_{1,1}, \alpha_{1,2}; \alpha_{2,1}, \alpha_{2,2}, \alpha_{2,3}\}_{\infty}$ so that the harmonic moduli of doubly connected domains $(\alpha_{1,1}, \alpha_{2,1})$ and $(\alpha_{1,2}, \alpha_{2,2} \cup \alpha_{2,3})$ are not less than 8. In fact, first we determine curves $\alpha_{2,2}$ and $\alpha_{2,3}$, next determine $\alpha_{1,2}$ so that

$$\mod(\alpha_{1,2}, \alpha_{2,2} \cup \alpha_{2,3}) \geq 8$$

and last determine $\alpha_{1,1}$ and $\alpha_{2,1}$ so that

$$mod(\alpha_{1,1}, \alpha_{2,1}) \ge 8.$$

The domain bounded by $\alpha_{1,1} \cup \alpha_{1,2}$ is taken as \hat{R}_1 and the domain bounded by $\alpha_{2,1} \cup \alpha_{2,2} \cup \alpha_{2,3}$ is taken as \hat{R}_2 . We determine \hat{R}_0 so that $\overline{\hat{R}}_0 \subset \hat{R}_1$ and $\hat{R}_1 - \overline{\hat{R}}_0$ is a doubly-connected domain with the harmonic modulus not less than 2. Denoting by σ_j the harmonic moduli of the open sets $\hat{R}_j - \overline{\hat{R}}_{j-1}$, we observe that

$$\sigma_1 \ge 2$$
, $\sigma_2 \ge 4$ and $n(r) \le 2$ for all $r: 0 \le r < \sigma_1 + \sigma_2$.

 $^{^{11)}}$ We denote by $(C_1,\ C_2)$ a doubly-connected domain, if C_1 is one of its boundary components and C_2 is the other.

Next we take three replicas $\{R_i\}_{i=1,2,3}$ of R. We draw $\{\alpha_{2,1},\alpha_{3,2};\alpha_{4,1},\alpha_{5,1}\}_{\infty}$ in \hat{R}^1 and $\{\alpha_{4,2},\alpha_{4,2};\alpha_{5,2},\alpha_{5,3},\alpha_{5,4}\}_{\infty}$ in R_1 as follows: First we determine $\alpha_{4,3},\alpha_{5,3}$ and $\alpha_{5,4}$ in R_1 so that

$$\mod(\alpha_{4,3}, \alpha_{5,3} \cup \alpha_{5,4}) \geq 9 \cdot 2^5,$$

and next determine $\{\alpha_{3,1}, \alpha_{3,2}; \alpha_{4,1}, \alpha_{5,1}\}_{\infty}$ in \hat{R}^1 so that $\alpha_{3,1} \cup \alpha_{3,2}$ is contained in the end part of \hat{R}^1 bounded by $\alpha_{2,1}$ and does not intersect the same curve as $\alpha_{4,3}$ drawn in \hat{R}^1 , and that

$$\mod(\alpha_{2,1}, \alpha_{3,1} \cup \alpha_{3,2}) \ge 3 \cdot 2^3, \mod(\alpha_{3,1}, \alpha_{4,1}) \ge 6 \cdot 2^4 \text{ and } \mod(\alpha_{4,1}, \alpha_{5,1}) \ge 9 \cdot 2^5.$$

Last we determine $\alpha_{4,2}$ and $\alpha_{5,2}$ so that the domain bounded by $\alpha_{4,2}$ and $\alpha_{4,3}$ contains the same curve as $\alpha_{3,2}$ drawn in R_1 and

$$\mod(\alpha_{4,2}, \alpha_{5,2}) \ge 9 \cdot 2^5$$
.

We connect R_1 with \hat{R}^1 crosswise across a slit in the domain bounded by $\alpha_{3,2}$. If we choose this slit sufficiently small, we have

$$\mod(\alpha_{3,2}, \alpha_{4,2} \cup \alpha_{4,3}) \ge 6 \cdot 2^4$$
.

In the similar manner, we draw $\{\alpha_{3,3}, \alpha_{3,4}; \alpha_{4,4}, \alpha_{5,5}\}_{\mathbb{C}}$ and $\{\alpha_{3,5}, \alpha_{3,6}; \alpha_{4,7}, \alpha_{5,9}\}_{\mathbb{C}}$ in \hat{R}^1 , $\{\alpha_{4,5}, \alpha_{4,6}; \alpha_{5,6}, \alpha_{5,7}, \alpha_{5,8}\}_{\mathbb{C}}$ in R_2 and $\{\alpha_{4,8}, \alpha_{4,9}; \alpha_{5,10}, \alpha_{5,11}, \alpha_{5,12}\}_{\mathbb{C}}$ in R_3 and connect R_2 and R_3 with \hat{R}^1 across suitable slits in domains bounded by $\alpha_{3,4}$ and $\alpha_{3,6}$. The resulting surface is denoted by \hat{R}^2 . We take as \hat{R}_3 the domain of \hat{R}^2 bounded by $\bigcup_{i=1}^6 \alpha_{3,i}$, as \hat{R}_4 one bounded by $\bigcup_{i=1}^9 \alpha_{4,i}$ and as \hat{R}_5 one bounded by $\bigcup_{i=1}^{12} \alpha_{5,i}$. Then we see that

$$\sigma_j \ge 2^j$$
 $(1 \le j \le 5)$ and $n(r) \le 9$ for all $r: \sum_{j=1}^2 \sigma_j \le r < \sum_{j=1}^5 \sigma_j$.

Suppose that \hat{R}^n and \hat{R}_k $(0 \le k \le 3n-1)$ are obtained so that \hat{R}^n has 4^{n-1} sheets and $\partial \hat{R}_{3n-1}$ consists of $3 \cdot 4^{n-1}$ simple closed analytic curves $\alpha_{3n-1,i}$ $(1 \le i \le 3 \cdot 4^{n-1})$, each of which separates one of the three points from the other two, and that

$$\sigma_j \ge 2^j (1 \le j \le 3n - 1)$$
 and $n(r) \le 9 \cdot 4^{p-2}$ for all $r: \sum_{j=1}^{3p-4} \sigma_j \le r < \sum_{j=1}^{3p-1} \sigma_j$ $(2 \le p \le n).$

Then we take $3\cdot 4^{n-1}$ replicas R_i $(1 \le i \le 3\cdot 4^{n-1})$ of R and connect each R_i with \hat{R}^n crosswise across a suitable slit in the end part of \hat{R}^n divided by $\alpha_{3n-1,i}$ as

follows: We consider only the case where $\alpha_{3n-1,i}$ surrounds the point at infinity. (In the other cases, it is sufficient for us to replace ∞ by 0 or 1 in the below.) In a similar way as above we determine $\{\alpha_{3n,2i-1}, \alpha_{3n,2i}; \alpha_{3n+1,3i-2}, \alpha_{3n+2,4i-3}\}_{\infty}$ in the end part of \hat{R}^n divided by $\alpha_{3n-1,i}$ and $\{\alpha_{3n+1,3i-1}, \alpha_{3n+1,3i}; \alpha_{3n+2,4i-2}, \alpha_{3n+2,4i-1}, \alpha_{3n+2,4i-1}\}_{\infty}$ in R_i so that the harmonic moduli of the doubly-connected domains $(\alpha_{3n+1,3i-2}, \alpha_{3n+2,4i-3})$, $(\alpha_{3n+1,3i-1}, \alpha_{3n+2,4i-2})$ and $(\alpha_{3n+1,3i}, \alpha_{3n+2,4i-1})$ $\alpha_{3n+2,4i}$ are not less than 2^{3n+2} , and that

$$\mod(\alpha_{3n,2i-1}, \alpha_{3n+1,3i-2}) \ge 2^{3n+1}$$
 and $\mod(\alpha_{3n-1,i}, \alpha_{3n,2i-1}) \ge 2^{3n}$.

Then we connect R_i with \hat{R}^n crosswise across a slit in the domain bounded by $\alpha_{3n,2i}$, where we choose it so small that

$$\mod(\alpha_{3n,2i}, \alpha_{3n+1,3i-1} \cup \alpha_{3n+1,3i}) \ge 2^{3n+1}$$
.

In the surface \hat{R}^{n+1} thus obtained we determine \hat{R}_{3n} , \hat{R}_{3n+1} and \hat{R}_{3n+2} as the domains bounded by $\bigcup_i \alpha_{3n,i}$, $\bigcup_i \alpha_{3n+1,i}$ and $\bigcup_i \alpha_{3n+2,i}$ respectively. It is easily seen that \hat{R}^{n+1} and \hat{R}_k $(0 \le k \le 3n+2)$ satisfy the all conditions added on \hat{R}^n and \hat{R}_k $(0 \le k \le 3n-1)$ for n+1. The limiting surface \hat{R} is a covering surface of the w-plane, has a null boundery and is of planar character.

We map \hat{R} one-to-one conformally onto a domain Ω in the z-plane which is the complement of a compact set E of capacity zero and denote this mapping function by \hat{f} . By the same arguments used in [7] we see that $f(z) = \varphi \circ \hat{f}^{-1}(z)$ is single-valued and meromorphic in Ω , has an essential singularity at each point of E and has at each singularity three exceptional values: values 0, 1 and infinity, where we denote by φ the projection of \hat{R} into the w-plane. But E satisfies the conditions of Theorem 1. In fact, if we take as an exhaustion of Ω $\{\Omega_k = \hat{f}^{-1}(\hat{R}_k)\}_{k=0,1,2,\ldots}$, it satisfies obviously the conditions 1°), 2°), 3°) and 4°) in §2 and branches off at most 2-times everywhere. Furthermore since the harmonic moduli of the open sets $\Omega_k - \Omega_{k-1}$ $(k \ge 1)$ are equal to $\sigma_k \ge 2^k$ and since

$$n(r) \le 9 \cdot 4^{p-2}$$
 for all $r: \sum_{j=1}^{3p-4} \sigma_j \le r < \sum_{j=1}^{3p-1} \sigma_j$ $(p \ge 2)$,

we have that

$$\lim_{r \to \infty} \mu(r) \ge \lim_{k \to \infty} 2^k = + \infty \text{ and } \lim_{r \to \infty} \frac{n(r)}{r} \le \lim_{\nu \to \infty} \frac{9 \cdot 4^{p-1}}{\sum_{j=1}^{3p-1} 2^j} = \frac{9}{4} \lim_{\nu \to \infty} \frac{1}{2^p (1 - 2^{-3p})} = 0.$$

Remark. It is still open whether there is a perfect set E for which every function has at most two exceptional values at each singularity.

REFERENCES

- [1] L. V. Ahlfors and A. Beurling: Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), pp. 101-129.
- [2] L. V. Ahlfors and L. Sario: Riemann surfaces, Princeton Univ. Press (1960).
- [3] H. Bohr and E. Landau: Über das Verhalten von $\zeta(s)$ und $\zeta_k(s)$ in der Nähe der Geraden $\sigma=1$, Göttinger Nachr., (1910).
- [4] G. af Hällström: Über meromorphe Funktionen mit mehrfach zusammenhängenden Existenzgebieten, Acta Acad. Aboensis, Math. et Phys., 12 (1939), pp. 1-100.
- [5] J. Hersch: Longueurs extrémales et théorie des fonctions, Comment. Math. Helv., 29 (1955), pp. 301-337.
- [6] T. Kuroda: On analytic functions on some Riemann surfaces, Nagoya Math. Journ., 10 (1956), pp. 27-50.
- [7] K. Matsumoto: Exceptional values of meromorphic functions in a neighborhood of the set of singularities, Journ. Sci. Hiroshima Univ., A. 24 (1960), pp. 143-153.
- [8] K. Noshiro: Open Riemann surface with null boundary, Nagoya Math. Journ., 3 (1951), pp. 73-79.
- [9] M. Ohtsuka: Selected topics in function theory, Kyôritsu, Tokyo (1957), 132 pp., (Japanese).
- [10] M. Ohtsuka: Capacité d'ensembles de Cantor généralisés, Nagoya Math. Journ., 11 (1957), pp. 151–160.
- [11] L. Sario: Modular criterion on Riemann surfaces, Duke Math. Journ., 20 (1953), pp. 279-286.
- [12] M. Tsuji: On the behaviour of a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc. Imp. Acad., 18 (1942), pp. 213-219.
- [13] M. Tsuji: Theory of meromorphic functions in a neighbourhood of a closed set of capacity zero, Jap. Journ. Math., 19 (1944), pp. 139-154.

Department of Mathematics Hiroshima University

Added in proofs: During the proofs of this paper, the author found that Carleson gave an important theorem, which is closely related to ours, in his recent paper: A remark on Picard's theorem, Bull. Amer. Math. Soc. 67 (1961), pp. 142-144.