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Abstract

When two trains travel along the same track in the same direction, it is a common
safety requirement that the trains must be separated by at least two signals. This means
that there will always be at least one clear section of track between the two trains. If
the safe-separation condition is violated, then the driver of the following train must
adopt a revised strategy that will enable the train to stop at the next signal if necessary.
One simple way to ensure safe separation is to define a prescribed set of latest allowed
section exit times for the leading train and a corresponding prescribed set of earliest
allowed section entry times for the following train. We will find strategies that minimize
the total tractive energy required for both trains to complete their respective journeys
within the overall allowed journey times and subject to the additional prescribed section
clearance times. We assume that the drivers use a discrete control mechanism and show
that the optimal driving strategy for each train is defined by a sequence of approximate
speedholding phases at a uniquely defined optimal driving speed on each section and
that the sequence of optimal driving speeds is a decreasing sequence for the leading train
and an increasing sequence for the following train. We illustrate our results by finding
optimal strategies and associated speed profiles for both trains in some elementary but
realistic examples.

2010 Mathematics subject classification: primary 49K15; secondary 26A48, 26A51.

Keywords and phrases: train control, safe separation, optimal driving strategies, discrete
control, constrained optimization.

1. Introduction

Suppose that a single train travels along a level track from one station to the next
and is required to complete the journey within a given time. In order to minimize
tractive energy consumption, it is well known [1, 5] that the optimal driving strategy
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with continuous control is maximum acceleration, speedhold at the optimal driving
speed, coast and maximum brake. For discrete control the optimal driving strategy
is similar [15, 29, 32], but the speedhold phase is replaced by a collective phase of
approximate speedhold at the optimal driving speed consisting of a succession of
alternate short phases of coast and maximum acceleration. When two trains travel
along the same track in the same direction, they must be safely separated at all
times. In such circumstances, it may not be possible for both trains to use the
individually optimal strategies. What are the optimal strategies for each train in this
case? Intuitively, one might expect that in order to maintain safe separation, the leading
train might have to go faster in the early part of the journey and that the following train
might have to go slower. This is indeed the case. We will refer to this problem as the
two-train separation problem.

The two-train separation problem with specified intermediate clearance times was
solved recently on level track using continuous control [3, 4, 7] and this solution was
subsequently extended to nonlevel track [8] using more general mathematical methods.
Although the basic structure of the optimal strategies is now well understood, there
are currently no satisfactory numerical algorithms that can be used to compute the
optimal strategies. In this paper, we will solve the two-train separation problem on
level track with prescribed intermediate section clearance times using discrete control
and propose a potentially viable numerical computation routine.

1.1. Motivation Although modern technology now enables all trains to be in
constant contact with a central control room, it is nevertheless true that safety is
primarily controlled by the track signalling system which is activated by and responds
to the actual positions of the trains. If the signals are located at fixed locations along
the track, then they divide the track into separate sections. The traditional signalling
system is a three-phase system. If a signal is green then the driver knows that the
next two sections are clear and that the train can continue following the planned speed
profile. If the signal is yellow then the next section is clear but the section after that
is still occupied. In this case, the next signal will be red and the driver must follow a
modified strategy that will enable the train to stop at the next signal if it remains red.
The driver must not allow the train to pass a red signal. In summary, this means that
the drivers can continue to follow the planned speed profiles only if the two trains are
separated at all times by at least two signals. This implies that there will be at least one
clear section between the trains at all times.

In recent times, train operators have become very interested in finding ways to
reduce energy consumption. The cost of fuel is a major component of the annual
operating budget and a reduction in energy consumption by only a few percentage
points is likely to yield millions of dollars in savings. The initial interest in studying
optimal driving strategies using discrete control was prompted by the previous
generation of diesel–electric locomotives which had a finite number of discrete throttle
settings with each setting determining a constant rate of fuel supply to the diesel motor.
Thus, the practical problem of optimal train control was originally a discrete control
problem. While this is no longer true—the current generation of both electric and
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diesel–electric locomotives normally allows continuous control—the idea of discrete
control is still relevant in the following way.

The optimal driving strategy for a single train on nonlevel track with continuous
control and no intermediate time constraints [5, 6, 27, 37, 41] is much more
complex than the optimal strategy on level track but still uses only four control
modes. The regular modes of optimal control—maximum acceleration, coast and
maximum brake—are all discrete control modes. Although the singular optimal control
mode—speedhold at the optimal driving speed—could theoretically be implemented
directly with continuous control, it is often easier for drivers to maintain an
approximate speedhold phase using alternate short phases of maximum acceleration
and coast. Thus, in practice, the speedhold phase could be seen as a de facto
manifestation of discrete control. We note in passing that the optimal driving strategies
on nonlevel track using discrete control [26, 30] converge to the optimal continuous
control strategies as the number of coast and maximum acceleration pairs tends to
infinity.

In this paper our aim is to find a precise solution to the two-train separation problem
on level track with prescribed intermediate section clearance times using discrete
control.

1.2. Previous work We will not attempt a comprehensive review of the well-
established and clearly defined theoretical work on optimal control of a single train.
For details of the underlying theory we refer readers to the frequently cited papers on
discrete control [15, 26, 29, 31, 33] and the key references on continuous control [1, 2,
5, 6, 11, 27, 28, 34, 37, 41, 48]. The early papers on continuous control [9, 25, 35, 38,
44, 46] contain some important insights but are not directly related to this paper. Other
significant studies in the Russian literature [10, 18–21, 36] may be difficult to obtain
and the relevant results can usually be extracted from more recent papers. This whole
body of work relies on classical methods of constrained optimization—the Euler–
Lagrange equations [43, pp. 179–190], the Pontryagin maximum principle [23] and
the Karush–Kuhn–Tucker conditions [43, pp. 247–254]. It is important to emphasize
that these classical strategies have been implemented in real time on very fast trains
[6, 47] and that updated strategies can be recalculated on-board in a matter of a few
seconds [6].

The existing work on train separation is less clearly defined. Much of the work
is embedded in more broadly based work on the development of efficient timetables.
Consequently, the objectives also include improved efficiencies obtained by adjusting
allowed journey times [22, 39, 40, 42], cost savings by choosing the best ordering of
scheduled services and selection of best meeting points [12–14, 16, 24], passenger
comfort [49], schedule recovery from disruption [50] and improved service to
customers [51]. It is also true that most of this work is purely numerical and does not
attempt to develop a theory of optimal driving subject to safe-separation constraints.
For this reason, the only directly relevant work on train separation is the work
by the Scheduling and Control Group at the University of South Australia on the
corresponding problem with continuous control [3, 4, 7, 8].
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A comprehensive review covering all aspects of optimal train control can be found
in the recent article by Scheepmaker et al. [45].

1.3. Relationship to previous work The results in this paper are new but not
entirely unexpected. Nevertheless, the details are interesting. The corresponding
problem on level track using continuous control was solved recently in [3, 4, 7]
and the solutions obtained here for a fixed number of alternate coast and maximum
acceleration control pairs in each section are the best possible approximations to the
solutions obtained for the problem with continuous control. This result is in line with
earlier known results [32, pp. 25–29] that the speed profile and cost for any strategy of
continuous control can be approximated to any prescribed accuracy by a strategy with
alternate phases of coast and maximum acceleration and a final phase of maximum
brake. More specifically, the results obtained here establish the precise form of the
optimal strategies and show that the necessary conditions for an optimal strategy
are closely related to the necessary conditions that determine optimal strategies for
the classical single train control problem using discrete control [15, 29]. Another
new development is the application of a convergent Newton iteration to determine
the optimal strategies for each train. We conjecture that a corresponding convergent
iteration should also be possible on level track using continuous control, but this
conjecture has not yet been tested.

The two-train separation problem with prescribed intermediate section clearance
times has also been solved recently for continuous control on nonlevel track [8]
using more complicated mathematical methods. The complications arise because it
is not possible to obtain explicit expressions for distance travelled and elapsed journey
times as functions of speed. There is currently no satisfactory convergent algorithm to
determine the optimal strategies for the two-train separation problem on nonlevel track.
The corresponding two-train separation problem with discrete control on nonlevel
track must have a solution which approximates the solution obtained using continuous
control, but the precise form of this solution is not known.

1.4. Organization of the paper In Section 2 we preview the notation and some
basic terminology. In Section 3 the basic model for the train control problem is given
and in Section 4 we review the known theory for control of a single train and recall
the associated key formulæ that define an optimal strategy with discrete control. The
two-train separation problem with prescribed intermediate section clearance times is
presented in Section 5 where the structural framework is described and where we argue
that this formulation of the two-train separation problem can itself be separated into
two independent problems—one for the leading train and one for the following train.
In Section 6 we solve the leading train problem and in Section 7 we solve the following
train problem. The two solutions are interpreted and the characteristic properties of the
strategies of optimal type for each train are summarized in Section 8. In Section 9 we
discuss various possible formulations of the constraints and use these to understand
the properties of the key parameters that determine construction of feasible strategies.
Consideration is also given to alternative formulations of the constraints and to the

https://doi.org/10.1017/S1446181118000214 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181118000214


[5] The two-train separation problem on level track with discrete control 141

role of active and inactive constraints in both theory and practice. We present two
realistic examples in Section 10 and hence show that the optimal solution depends on
the prescribed section clearance times. We summarize our results and discuss future
work in Section 11 and conclude by acknowledging the support received from various
individuals and organizations.

2. Notation and terminology

Although we consider a specialist problem of optimal train control, both the
problem statement and the solution should be accessible to mathematicians and
engineers who have no prior familiarity with this topic. Nevertheless, the solution
involves the derivation and manipulation of complex mathematical formulæ. For this
reason, we begin with a summary of our notation. We also introduce some basic
terminology that has been used in the literature to encapsulate certain key ideas.

2.1. Notation

• We consider a rail track with position x ∈ [0, X] and signal locations {xi}
n
i=0 such

that 0 = x0 < · · · < xn = X.
• Track gradient acceleration is normally tabulated by track operators as a

piecewise-constant function g(x) on the interval [0, X]. The function g(x) may
also include resistive acceleration due to track curvature. In this paper we assume
that the track is level and that there is no resistance due to track curvature. Thus,
g(x) = 0 for all x ∈ [0, X].
• At position x the applied acceleration is denoted by u = uc(x), where c = c(x)

is the level of control. The applied acceleration is controlled by the driver.
We assume discrete control with only three different levels; c = 1 is maximum
acceleration, c = 0 is coast and c = −1 is maximum brake.
• At position x the speed of the train is denoted by v = v(x) and the elapsed journey

time is denoted by t = t(x). On undulating track these functions must be found
by numerical solution of the differential equations of motion.
• For each interval of constant control c(x) = c on level track the distance travelled

and elapsed journey time can be expressed as explicit functions of speed. Hence,
we can write x = x(v), t = t(v) and u = uc(v).
• The resistive acceleration due to friction depends only on the speed and is

denoted by r(v). We make repeated use of the auxiliary functions ϕ(v) = vr(v)
and ψ(v) = v2r ′(v). For v > 0 we assume that ϕ(v) is positive and strictly convex
and hence deduce that ψ(v) is positive and strictly increasing. See [5, 30]
for more details. These properties capture the essential characteristics of the
traditional quadratic resistance function r(v) = r0 + r1v + r2v2 used by the rail
industry.
• For each µ > 0 we define a pseudo-convex function

Eµ(v) =
µ

v
+ r(v)
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for v > 0. This function has a unique minimum at the point v = Z defined
by ψ(Z) = µ with the minimum value equal to ϕ ′(Z). For each λ > ϕ ′(Z) the
equation Eµ(v) = λ has precisely two solutions V = V(λ, µ) and W = W(λ, µ)
with 0 < V < Z < W. The equation Eµ(v) = λ can be rewritten as λv − µ = ϕ(v)
and hence visualized as the intersection between a straight line and a convex
curve.
• The cost of a journey J = J(u) is the total energy consumed by the driving control

when c = 1 and u = u1(v) = H(v) > 0. There is no cost for the coast control when
c = 0 and u = u0(v) = 0 and no cost for the braking control when c = −1 and
u = u−1(v) = −K(v) < 0.
• The trains travel from x0 = 0 to xn = X.
• For the leading train the driving strategy is defined by a control sequence

S2s+1(ζ) = {1, {0, 1}r0−1, 0, 1, {0, 1}r1−1, 0, . . . , 1, {0, 1}rn−1, 0,−1},

where s = r0 + · · · + rn and ri − 1 is the number of coast–maximum power control
pairs prescribed for the section (xi, xi+1) and where the associated switching
points 0 = ζ0 < ζ1 < · · · < ζ2s < ζ2s+1 = X satisfy ζ2(r0+···+ri)−1 < xi < ζ2(r0+···+ri) for
each i = 1, . . . , n.
• For the following train the driving strategy is defined by a control sequence

S2s+1(ζ) = {1, 0, {1, 0}r0−1, 1, 0, {1, 0}r1−1, . . . , 1, 0, {1, 0}rn−1,−1},

where s = r0 + · · · + rn and ri − 1 is the number of maximum power–coast control
pairs prescribed for the section (xi, xi+1) and where the associated switching
points 0 = ζ0 < ζ1 < · · · < ζn < ζn+1 = X satisfy ζ2(r0+···+ri) < xi < ζ2(r0+···+ri)+1 for
each i = 1, . . . , n.
• We write t`,i and t f ,i for the times at which the leading train and the following

train reach the signal point xi. We define a strictly increasing sequence of
prescribed clearance times {hk}

n
k=1 and insist that the leading train must leave the

section (xk, xk+1) before the prescribed clearance time hk and that the following
train must enter the section (xk−1, xk) after the prescribed clearance time hk. Thus,
we require t`,k+1 ≤ hk and t f ,k−1 ≤ hk for each k = 1, . . . , n. For the separated
problems we use the equivalent notation t`,i ≤ si = hi−1 for each i = 2, . . . , n + 1
and t f ,i ≥ ti = hi+1 for each i = 0, . . . , n − 1.
• In the derivations of the necessary conditions for optimality for both trains we

write v j = v(ζ j) for the speed at the switching point ζ j for j = 1, . . . , 2s − 1 and
v = (v1, . . . , v2s−1) for the corresponding vector and we write ui = v(xi) for the
speed at the signal points xi for each i = 1, . . . , n with un+1 = v(ζ2s) for the speed
at which braking begins and u = (u1, . . . , un+1) for the corresponding vector.
• In the derivations of the necessary conditions for optimality for both trains we

write J = J(v) for the cost and write ξi = ξi(u, v) and τi = τi(u, v) for the projected
distance travelled and time taken by the proposed strategy on the section (x,xi+1)
for each i = 0, . . . , n.
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[7] The two-train separation problem on level track with discrete control 143

• In the derivations of the necessary conditions for optimality the Lagrange
multipliers for the cumulative distance and time constraints are denoted by ρm

and σm for each m = 0, . . . , n. We define associated multipliers for the sectional
distance and time constraints given by λi =

∑n
m=i ρm and µi =

∑n
m=i σm for each

i = 0, . . . , n for the leading train and by λi = ρ −
∑n−1

m=i ρm and µi = σ −
∑n−1

m=i σm

for each i = 0, . . . , n − 1 for the following train, where λn = ρ and µn = σ are
multipliers for the overall distance and time constraints.
• The derivations of the necessary conditions for optimality for the leading and

following trains are completely separate and consequently we can use essentially
the same notation in each case. Where we need to distinguish between the two
trains we add an appropriate subscript. Thus, for instance, we write {Z`,i}ni=0 for
the leading train and {Z f ,i}

n
i=0 for the following train.

2.2. Terminology

• The term section clearance times is an inclusive term for the latest allowed
section exit times and the earliest allowed section entry times.
• For the leading train the intermediate time constraint t`(xi+1) ≤ h`,i is active

if t`(xi+1) = h`,i and inactive if t`(xi+1) < h`,i. For the following train the
intermediate time constraint t f (xi−1) ≥ h f ,i is active if t f (xi−1) = h f ,i and inactive
if t f (xi−1) > h f ,i.
• For each train an actively timed segment is the union of consecutive sections

(xp, xp+1), . . . , (xq, xq+1) where the time constraints at xp and xq+1 are active
but the time constraints at all intermediate signal locations xi for p < i ≤ q are
inactive. The actively timed segments for the leading train are not necessarily
the same as the actively timed segments for the following train.
• A sequence {Vi}

n−1
i=0 is decreasing if V0 ≥ · · · ≥ Vn−1 and strictly decreasing

if V0 > · · · > Vn−1. The sequence is increasing if V0 ≤ · · · ≤ Vn−1 and strictly
increasing if V0 < · · · < Vn−1.
• A strategy of optimal type satisfies the necessary conditions for optimality but

does not necessarily satisfy the imposed distance and time constraints. A strategy
of optimal type for the leading train is defined by two decreasing sequences
{V`,i}

n
i=0 and {W`,i}

n
i=0 where V`,i < W`,i and where V`,i is the speed at which the

control switches from coast to maximum acceleration and W`,i is the speed at
which the control switches from maximum acceleration to coast on the section
(xi, xi+1). There is a corresponding sequence {Z`,i}ni=0 of optimal driving speeds
where Z`,i is determined by the switching speeds and satisfies V`,i < Z`,i < W`,i

for each i = 0, . . . , n. A strategy of optimal type for the following train is defined
by increasing sequences of switching speeds {V f ,i}

n
i=0 and {W f ,i}

n
i=0 where V f ,i

and W f ,i denote the corresponding switching speeds on the section (xi, xi+1).
There is a corresponding sequence {Z f ,i}

n
i=0 of optimal driving speeds where Z f ,i

is determined by the switching speeds and satisfies V f ,i < Z f ,i < W f ,i for each
i = 0, . . . , n.
• A feasible strategy satisfies the imposed distance and time constraints.
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3. The basic train control model with discrete control

The classical train control problem is to drive a train from x = 0 to x = X within
some prescribed time T in such a way that energy consumption is minimized. In
general, it is convenient to formulate the model with position x ∈ [0, X] as the
independent variable [32, 37, 41] and with time t = t(x) ∈ [0, T ] and speed v = v(x)
∈ [0,∞) as the dependent state variables. The equations of motion are written in
the form

t ′ = 1/v,
v ′ = [u − r + g]/v,

where (t, v) = (t(x), v(x)) for x ∈ [0, X] is the state and where u = u(x) ∈ (−∞,∞) is the
known measurable control—the acceleration or force per unit mass. The function r =

r(v) is the frictional resistance per unit mass. The frictional resistance is conventionally
defined as a quadratic function r(v) = r0 + r1v + r2v2, but we use a more general form
that will be described in Section 3.2 below. The function g = g(x) is the track gradient
acceleration. In this paper we will assume that g(x) = 0 for all x ∈ [0, X]. We have
written t ′ = dt/dx and v ′ = dv/dx. We assume that v(0) = v(X) = 0, v = v(x) > 0 for
all x ∈ (0, X) and that u = u(x) is bounded by two functions H(v) and K(v) with the
following properties. We have −K[v(x)] ≤ u(x) ≤ H[v(x)] for each x ∈ (0, X). The
functions H = H(v), K = K(v) ∈ (0,∞) for v ∈ (0,∞) are monotone functions with
H(v), K(v) ↓ 0 as v ↑ ∞. We suppose too that, for each ε > 0, there exists some
constant Uε > 0 such that |H(v) − H(w)| ≤ Uε |v − w| and |K(v) − K(w)| ≤ Uε |v − w|
for all v,w ≥ ε. The functions H and K define bounds for the maximum driving and
braking forces per unit mass in a form that includes—as special cases—the specified
bounds for a wide range of railway traction systems. For a more detailed discussion of
train control models readers are referred to the recent papers [5, 6] and some earlier
influential works [27, 32, 37, 41].

3.1. Discrete control We restrict our attention to discrete control strategies with
only three permissible levels of control. The problem and solution are not substantially
changed if more levels of control are allowed. The control variable will be denoted by
c = c(x) ∈ {1, 0,−1}. The corresponding acceleration is given by

uc(v) =


H(v) for c = 1,

0 for c = 0,
−K(v) for c = −1,

where v = v(x) is the speed. Notice that when g(x) = 0 and c = c(x) is constant over
an interval x ∈ [a, b], the equations of motion can be solved by separation of variables
with the distance and time differentials given by

dx =
v dv

uc(v) − r(v)
and dt =

dv
uc(v) − r(v)

.
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For the classical single-train problem we assume that s ∈ N + 1 is fixed a priori and
that all trains use a control strategy with 2s + 1 phases in the form

S2s+1(ζ) = {1, {0, 1}s−1, 0,−1}

with an initial phase of maximum acceleration, followed by s − 1 phase pairs of
coast and maximum acceleration, a semi-final phase of coast and a final phase of
maximum brake. The switching points are 0 = ζ0 < ζ1 < · · · < ζ2s < ζ2s+1 = X. We
write ζ = (ζ0, . . . , ζ2s+1) for convenience. The switching points must be determined in
such a way that the distance and time constraints are satisfied—so that the strategy
is feasible—and energy consumption is minimized—in which case the strategy is
optimal.

3.2. The properties of the resistance function The function r(v) for v ≥ 0 with
r(0) > 0 is a general resistance per unit mass. No specific formula is assumed but we
do impose certain characteristic properties. These properties are described using two
auxiliary functions ϕ(v) = vr(v) and ψ(v) = v2r ′(v) which are both defined for v ≥ 0. We
assume that ϕ(v) is strictly convex with ϕ(v) ≥ 0 and r(v) = ϕ(v)/v→∞ as v→∞. For
h > 0 the strict convexity of ϕ ensures that r(v + h) = ϕ(v + h)/(v + h) > ϕ(v)/v = r(v)
and so r(v) is strictly increasing. From [30, Appendix A.3, Lemma 1] it follows that
ψ(v) is nonnegative and strictly increasing for v ≥ 0 and that for all µ > 0 the pseudo-
convex function Eµ(v) = µ/v + r(v) defined for v > 0 has a unique global minimum
at the point v = Z given by the solution to the equation µ = ψ(v). Equivalently, we
may say that if λ = ϕ ′(Z) and µ = ψ(Z), then the straight line y = λv − µ is tangent
to the convex curve y = ϕ(v) at the point v = Z. If λ > ϕ ′(Z) and µ = ψ(Z), then the
line y = λv − µ intersects the curve y = ϕ(v) at precisely two points v = V and v = W
with 0 < V < Z < W. The strict convexity of the function ϕ(v) captures the behavioural
characteristics of the traditional quadratic resistance formula—the so-called Davis
formula [17]—that has been used in practice by the rail industry for many years.

3.3. The cost functional The cost of a control strategy is the net mechanical energy
per unit mass required to move the train, given by

J =

∫ X

0
u+(x) dx,

where u+ = (u + |u|)/2 is the positive part of the acceleration. For the discrete control
discussed here we have u1,+(x) = u1(x) because u1(x) > 0, u0,+(x) = 0 because u0(x) = 0
and u−1,+(x) = 0 because u−1(x) < 0. We do not consider energy recovered from
regenerative braking.

4. Strategies of optimal type for a single train

A strategy S2s+1(ζ) = {1, {0, 1}s−1, 0, −1} with an initial phase of maximum
acceleration, s − 1 phase pairs of coast–maximum acceleration, a semi-final phase
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of coast and a final phase of maximum brake and with switching points 0 = ζ0 < ζ1 <
· · · < ζ2s < ζ2s+1 = X is called a strategy of optimal type if there exist real constants
λ > 0 and µ > 0 such that

λv j − µ = ϕ(v j) (4.1)

for each j = 1, 2, . . . , 2s − 1 and

λv2s − µ = 0, (4.2)

where v j = v(ζ j) is the speed at the switching point x = ζ j for each j = 1, 2, . . . , 2s.
The equations (4.1) and (4.2) are the necessary Karush–Kuhn–Tucker conditions for
a strategy that minimizes consumption of mechanical energy on level track subject to
imposed journey distance and journey time. The real constants λ > 0 and µ > 0 are
the Lagrange multipliers for the distance and time constraints in the Lagrangian cost
function. The equations are derived and fully explained in [15, 29]. We argued earlier
in Section 3.2 that for suitable values of the parameters λ > 0 and µ > 0, the equation
(4.1) has precisely two solutions v j = V and v j = W, where 0 < V < W. It follows from
(4.1) and (4.2) that

λ =
ϕ(W) − ϕ(V)

W − V
and µ =

Vϕ(W) −Wϕ(V)
W − V

. (4.3)

As stated above, it was shown in [15, 29] that for any journey distance and journey time
pair (X, T ) a strategy which minimizes energy consumption is necessarily a strategy
of optimal type. For a fixed value of s ∈ N, each different (V,W) pair with 0 < V < W
defines precisely one strategy of optimal type satisfying (4.1) and (4.2). For a given
pair (X, T ), it is necessary firstly to nominate plausible values for V and W to define a
strategy of optimal type and secondly to calculate the corresponding journey distance
x = x(V,W) and journey time t = t(V,W) using the explicit formulæ given in [15, 29].
If the distance and time constraints x(V,W) = X and t(V,W) = T are not satisfied, then
the values of V and W must be modified and the process repeated until the distance
and time constraints are satisfied to an acceptable accuracy. Thus, for each journey,
we consider an ensemble of strategies of optimal type from which it is necessary to
extract the unique feasible strategy that satisfies the journey distance and journey time
constraints. This is the optimal strategy.

Since the speed increases during phases of maximum acceleration and decreases
during phases of coast, we deduce that S2s+1 will be a strategy of optimal type only
if v2k−1 = V for each k = 1, . . . , s and v2k = W for each k = 1, 2, . . . , s − 1. In this case
equations (4.2) and (4.3) show that the speed v2s = U at which braking begins will be
given by

U =
Vϕ(W) −Wϕ(V)
ϕ(W) − ϕ(V)

.

It was shown in [29] that for each feasible strategy and for each fixed value of s ∈ N + 1
the optimal strategy is uniquely determined by the necessary conditions (4.1) and (4.2).
Finally, we note that the switching points ζ j for a strategy of optimal type are uniquely
determined by the switching speeds V and W and the equations v j = v(ζ j) for each
j = 1, . . . , 2s.
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5. The two-train separation problem

Let n ∈ N and suppose that the track is defined on the interval [0, X] by fixed signal
points 0 = x0 < x1 < · · · < xn < xn+1 = X. Now suppose that two trains need to travel
from x = 0 to x = X in time T . We suppose that the leading train starts at time t = 0 and
must finish at or before time t = T , while the following train starts at time t = ∆T > 0
and must finish at or before time t = T + ∆T .

A very simple way to ensure that the leading train and following train are safely
separated is to specify a sequence of signal clearance times {hk}

n
k=1 with ∆T = h1 <

· · · < hn = T , and to insist that the leading train must pass the point x = xk+1 at time
t`,k+1 ≤ hk for each k = 1, . . . ,n and that the following train must pass the point x = xk−1

at time t f ,k−1 ≥ hk for each k = 1, . . . , n. This means that for each k = 1, . . . , n, the
following train cannot enter section (xk−1, xk) until the leading train has left section
(xk, xk+1). The specified clearance times must be feasible.

Although this separation condition is very simple, it is also absolutely critical to
the subsequent solution of the two-train separation problem, because the optimal
driving strategy for the leading train can now be computed without any knowledge
of the optimal driving strategy for the following train—and vice versa. This means
that a single problem with two trains and two unknown optimal driving strategies has
been converted into two completely separate single-train problems. To see this more
explicitly consider the following argument. Define two strictly increasing sequences
{si}

n
i=1 and {ti}ni=1 of section clearance times and formulate two completely independent

problems.

Problem 5.1 (The leading train problem). Let r0, . . . , rn ∈ N + 1 and define s = r0

+ · · · + rn. Find a driving strategy

S2s+1(ζ) = {1, {0, 1}r0−1, 0, 1, {0, 1}r1−1, 0, . . . , 1, {0, 1}rn−1, 0,−1},

where the associated switching points 0 = ζ0 < ζ1 < · · · < ζ2s < ζ2s+1 = X satisfy
ζ2(r0+···+ri)−1 < xi < ζ2(r0+···+ri) for each i = 1, . . . ,n and where the starting time is t`,0 = 0,
the time t`,i when the train reaches the signal point xi satisfies t`,i ≤ si for each
i = 1, . . . , n, the time when the train reaches the final point xn+1 = X satisfies t`,n+1 ≤ T
and energy consumption is minimized. �

Problem 5.2 (The following train problem). Let r0, . . . , rn ∈ N + 1 and define s =

r0 + · · · + rn. Find a driving strategy

S2s+1(ζ) = {1, 0, {1, 0}r0−1, 1, 0, {1, 0}r1−1, . . . , 1, 0, {1, 0}rn−1,−1},

where the associated switching points 0 = ζ0 < ζ1 < · · · < ζn < ζn+1 = X satisfy
ζ2(r0+···+ri) < xi < ζ2(r0+···+ri)+1 for each i = 1, . . . , n and where the starting time is
t f ,0 = ∆T , the time t f ,i when the train reaches the signal point xi satisfies t f ,i ≥ ti for
each i = 1, . . . , n, the time when the train reaches the final point xn+1 = X satisfies
t f ,n+1 ≤ T + ∆T and energy consumption is minimized. �
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It is quite clear that each one of these problems can be solved without
any knowledge of the solution to the other problem. Despite the mathematical
independence of the problems, the desired safe separation will be achieved if the
section clearance times are chosen a priori using the common set of signal clearance
times {hk}

n
k=1 by setting sk+1 = hk = tk−1 for each k = 1, . . . , n.

In our subsequent calculations we must distinguish between actual times and
elapsed journey times for the following train. For the leading train the elapsed time
t`,i − t`,0 to reach point xi is the same as the actual time t`,i, because t`,0 = 0. For the
following train the elapsed time to reach the point xi is given by t f ,i − t f ,0 = t f ,i − ∆T ,
where t f ,i is the actual time the following train reaches the point xi and t f ,0 = ∆T is the
actual starting time. The optimal strategy for each train depends on the elapsed times.

Some further comment on the formulation of Problems 5.1 and 5.2 is appropriate.
We are influenced by two factors—our intuition that the leading train must travel faster
in the early part of the journey and that the following train must travel slower, and by
our knowledge of the solutions [3, 4, 7] to the corresponding problem with continuous
control.

5.1. Formulation of suitable control strategies If all intermediate time
constraints are active, we know [3, 4, 7] that the optimal strategy for the leading
train on level track with continuous control is defined by an optimal driving speed
on each timed section and that the optimal driving speeds decrease as the journey
progresses. We also know that with continuous control the leading train uses a phase
of coast to transition from the optimal driving speed on any particular timed section to
a lower optimal driving speed on the next timed section. Consequently, for a strategy of
optimal type on level track with discrete control, we expect that the relevant sequence
of coast–maximum acceleration phase pairs on any given timed section will define a
strategy of approximate speedhold at the optimal driving speed for that section and
that this will be followed by a phase of coast to transition to a strategy of approximate
speedhold at a lower optimal driving speed on the next timed section. Thus, in
formulating the discrete control problem, we assume that the leading train will enter
each intermediate timed section during a coast phase, will traverse the section using
a fixed number of coast–maximum acceleration control pairs and will then exit the
section during a coast phase.

Similar comments apply to the following train. If all intermediate time constraints
are active, we know [3, 4, 7] that the optimal strategy for the following train on level
track with continuous control is defined by an optimal driving speed on each timed
section and that the optimal driving speeds increase as the journey progresses. We
also know that the following train uses a phase of maximum acceleration to transition
from the optimal driving speed on any particular timed section to a higher optimal
driving speed on the next timed section. Consequently, for a strategy of optimal type
on level track with discrete control, we expect that the relevant sequence of maximum
acceleration–coast phase pairs on any given timed section will define a strategy of
approximate speedhold at the optimal driving speed for that section and that this
will be followed by a phase of maximum acceleration to transition to a strategy of
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approximate speedhold at a higher optimal driving speed on the next timed section.
Thus, in formulating the discrete control problem, we assume that the following train
will enter each intermediate timed section during a maximum acceleration phase, will
traverse the section using a fixed number of maximum acceleration–coast control pairs
and will exit the section during a maximum acceleration phase.

5.2. Separation into two single-train problems The realization that the two-
train separation problem could itself be separated into two independent mathematical
problems by specifying a set of intermediate section clearance times was a major
breakthrough in the search for a viable solution procedure. The downside is that if the
specified clearance times are changed, then the optimal strategies for each train—the
solutions to each of the separated problems—will also change. This means that there is
now a secondary problem to solve. How do we find the optimal intermediate clearance
times? Although general necessary conditions on the optimal intermediate clearance
times are known for the two-train separation problem on level track with continuous
control [3, 4, 7], and although these conditions have been used in particular case
studies to verify the optimality of a set of proposed intermediate clearance times,
there is currently no satisfactory numerical algorithm that could be widely applied
to find these optimal times. For the discrete control problem, we believe that similar
necessary conditions on the optimal prescribed section clearance times can be found
using essentially the same arguments as those used for the continuous control problem.
We will not discuss the problem of finding the optimal specified section clearance
times in this paper.

6. The leading train problem

In this section we will solve Problem 5.1. We wish to minimize the mechanical
energy consumed by the leading train, subject to satisfying the intermediate signal
time constraints and the overall journey time constraint. The problem is formulated as
a standard constrained optimization problem with both distance and time constraints.
The necessary conditions for optimality are found by applying the Karush–Kuhn–
Tucker conditions which will be reduced to two sets of elementary key equations. The
key equations show that the optimal strategy must be a strategy of optimal type and
that the strategy is determined by the values of the Lagrange multipliers. We will see
later that a separate iterative calculation is needed to find the values of the Lagrange
multipliers that satisfy the required constraints and determine the optimal strategy.

Let n ∈ N and r0, . . . , rn ∈ N + 1, and define s = r0 + · · · + rn. The fixed signal points
are denoted by 0 = x0 < x1 < · · · < xn < xn+1 = X and the specified section clearance
times are given by 0 = s0 < s1 < · · · < sn < sn+1 = T . We assume a strategy of the form

S2s+1(ζ) = {1, {0, 1}r0−1, 0, 1, {0, 1}r1−1, 0, . . . , 1, {0, 1}rn−1, 0,−1}

with switching points 0 = ζ0 < ζ1 < · · · < ζ2s < ζ2s+1 = X which satisfy ζ2(r0+···+ri)−1 <
xi < ζ2(r0+···+ri) for each i = 1, . . . , n. The switching speeds are denoted by v j = v(ζ j)
for each j = 1, . . . , 2s − 1 and the speeds at the intermediate signal points are denoted
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by ui = v(xi) for each i = 1, . . . , n. The speed at which braking begins is denoted by
un+1 = v2s = v(ζ2s). We assume that v(0) = v(X) = 0. The leading train must pass the
signal point xi before time si.

The cost function for the entire journey is the sum of the costs of all the acceleration
phases and depends only on the switching speeds. We write J = J(v). For each
i = 0, . . . , n, the distance travelled and time taken for the section (xi, xi+1) depend on
the speeds at the signal points xi and xi+1 and on the switching speeds within the
interval. We write ξi = ξi(u, v) for the distance functional and τi = τi(u, v) for the time
functional. Each of these key functionals can be expressed as a sum of elementary
integrals. The explicit expressions are given in Appendix A.

Since we defined xn+1 = X and sn+1 = T , the distance and time constraints can be
written as

m∑
i=0

ξi(u, v) ≥ xm+1 and
m∑

i=0

τi(u, v) ≤ sm+1

for each m = 0, 1, . . . , n. We wish to minimize J(v) subject to the relevant distance and
time constraints. Thus, we define the Lagrangian function

J(u, v) = J(v) +

n∑
m=0

ρm

(
xm+1 −

m∑
i=0

ξi(u, v)
)

+

n∑
m=0

σm

( m∑
i=0

τi(u, v) − sm+1

)
= J(v) +

n∑
m=0

ρm

m∑
i=0

(∆xi − ξi(u, v)) +

n∑
m=0

σm

m∑
i=0

(τi(u, v) − ∆si)

= J(v) +

n∑
i=0

λi(∆xi − ξi(u, v)) +

n∑
i=0

µi(τi(u, v) − ∆si),

where ρm ≥ 0 and σm ≥ 0 are Lagrange multipliers for each m = 0, . . . , n, and where
we define ∆xi = xi+1 − xi, ∆si = si+1 − si, λi =

∑n
m=i ρm and µi =

∑n
m=i σm for each

i = 0, . . . , n. Note that λ0 ≥ λ1 ≥ · · · ≥ λn = ρn ≥ 0 and µ0 ≥ µ1 ≥ · · · ≥ µn = σn ≥ 0.
For each fixed i ∈ {0, . . . , n} it follows from the integral formulæ in Appendix A that

∂J

∂v j
= (−1) j−1

[ H(v j)v j

H(v j) − r(v j)
−

λiH(v j)v j

r(v j)[H(v j) − r(v j)]
−

µiH(v j)
r(v j)[H(v j) − r(v j)]

]
for each j = 2(r0 + · · · + ri−1), 2(r0 + · · · + ri−1) + 1, . . . , 2(r0 + · · · + ri) − 1. For each j
only five terms contribute to this derivative—one from J(v) and two each from ξi(u, v)
and τi(u, v). We can also use the integral formulæ in Appendix A to see that

∂J

∂ui
=

(λi−1 − λi)ui

r(ui)
−

(µi−1 − µi)
r(ui)

for each i ∈ {1, . . . ,n}. For each i only four terms contribute to this differentiation—one
each from ξi−1(u, v) and τi−1(u, v) and one each from ξi(u, v) and τi(u, v). Finally, we
use the integral formulæ in Appendix A to see that

∂J

∂un+1
=

λnK(un+1)un+1

r(un+1)[K(un+1) + r(un+1)]
−

µnK(un+1)
r(un+1)[K(un+1) + r(un+1)]

.
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Once again, only four terms contribute to this derivative. A little algebra now shows
that if i ∈ {0, . . . , n}, then

∂J

∂v j
= 0 ⇐⇒ λiv j − µi = ϕ(v j) (6.1)

for each j = 2(r0 + · · · + ri−1), 2(r0 + · · · + ri−1) + 1, . . . , 2(r0 + · · · + ri) − 1 and, if
i ∈ {1, . . . , n + 1}, then

∂J

∂ui
= 0 ⇐⇒ ρi−1ui − σi−1 = 0. (6.2)

The equation λv − µ = ϕ(v) represents the intersection of the straight line y = λv − µ
and the strictly convex curve y = ϕ(v). This means that for appropriate values of the
parameters λ > 0 and µ > 0, there will be two solutions. We assume that ρm > 0 and
σm > 0 for all m = 0, . . . , n. Now the complementary slackness conditions

ρm

[ m∑
i=0

ξi(u, v) − xm+1

]
= 0 and σm

[ m∑
i=0

τi(u, v) − sm+1

]
= 0

mean that
∑m

i=0 ξi(u, v) = xm+1 and
∑m

i=0 τi(u, v) = sm+1 for all m = 0, . . . , n. The
assumption that all the Lagrange multipliers are positive means that all distance and
time constraints are active. In essence, this simply means we have omitted all inactive
constraints from the formulation. The assumption that ρm > 0 and σm > 0 for all
m = 0, . . . , n also means that λ0 > · · · > λn > 0 and µ0 > · · · > µn > 0. In addition, we
note that ξi(u, v) = ∆xi and τi(u, v) = ∆si for each i = 0, . . . , n.

For each i = 0, . . . , n, we will denote the two solutions to (6.1) by Vi and Wi,
where 0 < Vi < Wi. This means that for r0 + · · · + ri−1 ≤ k < r0 + · · · + ri, the optimal
switching speeds are v2k = Vi and v2k+1 = Wi. Therefore,

λi =
ϕ(Wi) − ϕ(Vi)

Wi − Vi

and
µi =

Viϕ(Wi) −Wiϕ(Vi)
Wi − Vi

= (−1)
θ(1/Vi) − θ(1/Wi)

1/Vi − 1/Wi
,

where we have defined θ(1/v) = r(v). Some elementary calculus shows that θ ′(1/v) =

−v2r ′(v) = −ψ(v) and θ ′′(1/v) = v3ϕ ′′(v) > 0. Hence, θ(1/v) is convex in 1/v. Since
we already know that ϕ(v) is convex in v, it follows that there are unique values
Xi,Yi ∈ (Vi,Wi) such that

λi = ϕ ′(Xi) and µi = (−1)θ ′(1/Yi) = ψ(Yi)

for each i = 0, . . . , n. Now we can deduce that

ρi−1 = ϕ ′(Xi−1) − ϕ ′(Xi) and σi−1 = ψ(Yi−1) − ψ(Yi)

for each i = 1, . . . , n. Therefore, the solution to (6.2) is given by

ui =
σi−1

ρi−1
=

ψ(Yi−1) − ψ(Yi)
ϕ ′(Xi−1) − ϕ ′(Xi)

= Ui
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for each i = 1, . . . , n. This means that the speed at the signal point xi is given by
v(xi) = Ui for each i = 1, . . . , n. Since λn = ρn and µn = σn, the solution to (6.2) when
i = n + 1 is given by

un+1 =
µn

λn
=

Vnϕ(Wn) −Wnϕ(Vn)
ϕ(Wn) − ϕ(Vn)

=
ψ(Yn)
ϕ ′(Xn)

= Un+1.

Thus, the speed at which braking begins is v2s = Un+1. We have established the
structure of the optimal strategy, but the values of the key parameters that satisfy the
journey constraints must be calculated separately.

7. The following train problem

In this section we will solve Problem 5.2. We wish to minimize the mechanical
energy consumed by the following train, subject to satisfying the intermediate signal
time constraints and the overall journey time constraint. The problem is formulated as
a standard constrained optimization problem with both distance and time constraints.
The solution procedure is similar to the solution procedure for Problem 5.1.

Let n ∈ N and r0, . . . , rn ∈ N + 1, and define s = r0 + · · · + rn. The fixed signal points
are denoted by 0 = x0 < x1 < · · · < xn < xn+1 = X and the specified section clearance
times are given by 0 = t0 < t1 < · · · < tn < tn+1 = T . We assume a strategy of the form

S2s+1(ζ) = {1, 0, {1, 0}r0−1, 1, 0, {1, 0}r1−1, . . . , 1, 0, {1, 0}rn−1,−1},

where the associated switching points 0 = ζ0 < ζ1 < · · · < ζ2s < ζ2s+1 = X satisfy
ζ2(r0+···+ri−1) < xi < ζ2(r0+···+ri−1)+1 for each i = 1, . . . , n. The switching speeds are denoted
by v j = v(ζ j) for each j = 1, . . . , 2s and the speeds at the signal points are denoted
by ui = v(xi) for each i = 1, . . . , n. The speed at which braking begins is denoted by
un+1 = v2s = v(ζ2s). We assume that v(0) = v(X) = 0.

We write J = J(v) for the cost functional for the entire journey and, for each
i = 0, . . . ,n, we write ξi = ξi(u, v) and τi = τi(u, v) for the distance and time functionals,
respectively, on the section (xi, xi+1). Each of these key functionals can be expressed
as a sum of elementary integrals. The explicit expressions are given in Appendix B.

Since we define xn+1 = X and tn+1 = T + ∆T , the intermediate distance and time
constraints can be written as

m∑
i=0

ξi(u, v) ≤ xm+1 and
m∑

i=0

τi(u, v) ≥ tm+1 − ∆T

for each m = 0, 1, . . . , n − 1 and the overall distance and time constraints are

n∑
i=0

ξi(u, v) ≥ xn+1 and
m∑

i=0

τi(u, v) ≤ tn+1 − ∆T.
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We wish to minimize J(v) subject to the given constraints. Thus, we define the
Lagrangian function

J(u, v) = J(v) +

n−1∑
m=0

ρm

( m∑
i=0

ξi(u, v) − xm+1

)
+ ρ

(
xn+1 −

n∑
i=0

ξi(u, v)
)

+

n−1∑
m=0

σm

(
tm+1 − ∆T −

m∑
i=0

τi(u, v)
)

+ σ
( n∑

i=0

τi(u, v) − tn+1 + ∆T
)

= J(v) +

n−1∑
m=0

ρm

m∑
i=0

(ξi(u, v) − ∆xi) + ρ

n∑
i=0

(∆xi − ξi(u, v))

+

n−1∑
m=0

σm

m∑
i=0

(∆ti − τi(u, v)) + σ

n∑
i=0

(τi(u, v) − ∆ti)

= J(v) −
n∑

i=0

λi(ξi(u, v) − ∆xi) +

n∑
i=0

µi(τi(u, v) − ∆ti),

where ρ, σ ≥ 0 and ρm, σm ≥ 0 for each m = 0, . . . , n − 1 are Lagrange multipliers
and where we have defined ∆xi = xi+1 − xi and ∆ti = ti+1 − ti for each i = 0, . . . , n
with t0 = ∆T , λi = ρ −

∑n−1
m=i ρm for each i = 0, . . . , n − 1 with λn = ρ ≥ 0 and µi =

σ −
∑n−1

m=iσm for each i = 0, . . . ,n − 1 with µn = σ ≥ 0. Note that λ0 ≤ λ1 ≤ · · · ≤ λn = ρ
and µ0 ≤ µ1 ≤ · · · ≤ µn = σ. Choose a fixed value i ∈ {0, 1, . . . , n}. It follows from the
integral formulæ in Appendix B that

∂J

∂v j
= (−1) j−1

[ H(v j)v j

H(v j) − r(v j)
−

λiH(v j)v j

r(v j)[H(v j) − r(v j)]
−

µiH(v j)
r(v j)[H(v j) − r(v j)]

]
for each j = 2(r0 + · · · + ri−1) + 1, 2(r0 + · · · + ri−1) + 2, . . . , 2(r0 + · · · + ri). We can
also use the integral formulæ in Appendix B to see that

∂J

∂ui
=
−(λi−1 − λi)ui

H(ui) − r(ui)
+

(µi−1 − µi)
H(ui) − r(ui)

for each i ∈ {1, . . . , n}. Finally, we use the integral formulæ in Appendix B to see that

∂J

∂un+1
=

λnK(un+1)un+1

r(un+1)[K(un+1) + r(un+1)]
−

µnK(un+1)
r(un+1)[K(un+1) + r(un+1)]

.

A little algebra now shows that if i ∈ {0, . . . , n}, then

∂J

∂v j
= 0 ⇐⇒ λiv j − µi = ϕ(v j)

for each j = 2(r0 + · · · + ri−1) + 1, 2(r0 + · · · + ri−1) + 2, . . . , 2(r0 + · · · + ri) and, if
i ∈ {1, . . . , n + 1}, then

∂J

∂ui
= 0 ⇐⇒ ρi−1ui − σi−1 = 0.
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We will assume that ρm > 0 and σm > 0 for all m = 0, . . . , n − 1 and also that
ρ >

∑n−1
m=0 ρm and σ >

∑n−1
m=0 σm. Thus, the distance and time constraints are all active

and the necessary conditions for optimality are formally the same as they were for the
leading train. Therefore, the switching speeds Vi and Wi on the interval (xi, xi+1) for
each i = 0, . . . ,n and the speed Ui at the point xi for each i = 1, . . . ,n can be represented
in precisely the same way using exactly the same formulæ. The speed Un+1 at which
braking begins can also be represented in the same way using the same formula. Thus,
for each i = 0, . . . ,n and each r0 + · · · + ri−1 ≤ k ≤ r0 + · · · + ri − 1, the switching speeds
are v2k+1 = Wi and v2k+2 = Vi and, for each i = 1, . . . , n, the speed at the signal point xi

is ui = Ui. The speed at which braking begins is un+1 = Un+1.
Despite the similarities in the necessary conditions, there are important differences

between the optimal strategies for the following train and the optimal strategies for
the leading train. For a start {λi}

n
i=0 and {µi}

n
i=0 are strictly increasing sequences for the

following train problem whereas both are strictly decreasing sequences for the leading
train problem. We also note that the optimal strategy for the following train uses a
phase of maximum acceleration when it passes through a signal point, whereas the
leading train uses a phase of coast.

8. The strategies of optimal type

In this section we investigate the basic structure of the strategies of optimal type
for both the leading train and the following train. We emphasize once again that the
Karush–Kuhn–Tucker conditions show that the optimal strategies have a specific form
defined by the key Lagrange multipliers. Such strategies are called strategies of optimal
type. However, the Lagrangian analysis does not yield the values of the key multipliers.

If we assume that λi > 0 and µi > 0 on each interval (xi, xi+1) for the leading train,
then we must have

∑m
i=0 ξi(u, v) = xm+1 and

∑m
i=0 τi(u, v) = sm+1 for each m = 0, . . . , n,

and ξi(u, v) = ∆xi and τi(u, v) = ∆si for each i = 0, . . . , n − 1. We say that each interval
(xi, xi+1) is actively timed. Similar remarks apply to the following train with the time
constraints replaced by

∑m
i=0 τi(u, v) = tm+1 for each m = 0, . . . , n and τi(u, v) = ∆ti for

each i = 0, . . . , n − 1. For each µi > 0 the value v = Zi which minimizes the pseudo-
convex function

Eµi (v) =
µi

v
+ r(v)

in the region v > 0 is the unique solution to the equation ψ(v) = µi. Thus, ψ(Zi) = µi.
The speed v = Zi is the optimal driving speed on (xi, xi+1). Note that Zi depends only
on µi. There are precisely two solutions v = Vi and v = Wi with Vi < Zi < Wi to the
equation

λi =
µi

v
+ r(v) ⇐⇒ λiv − µi = ϕ(v)

if and only if λi > ϕ
′(Zi). In this case, the switching speeds v(ζ2k) = Vi and v(ζ2k+1)

= Wi are well defined on the interval (xi, xi+1) for each i = 0, . . . , n. The speeds
v(xi) = Ui at the signal point xi for each i = 1, . . . , n and the speed v(ζ2s) = Un+1 at
which braking begins are also uniquely defined. Thus, the strategy of optimal type
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is uniquely defined by the Lagrange multipliers. Although the switching speeds are
defined explicitly in terms of the Lagrange multipliers, the Lagrangian analysis does
not yield the numerical values that satisfy the relevant distance and time constraints.
Similar comments apply to the classical single-train problem with discrete control.
Readers are referred to the original papers on optimal control of a single train using
discrete control [15, 29–33] for more information about strategies of optimal type and
the associated definitive formulæ.

We have used the same notation for both the leading train problem and the following
train problem in our above analysis, but we emphasize once again that the solutions
are completely independent. Thus, for a given set of prescribed section clearance
times {hk}

n
k=1 the optimal values of the key parameters λ`,i and µ`,i and the associated

switching speeds V`,i and W`,i for the leading train are not the same as the optimal
values of the key parameters λ f ,i and µ f ,i and the associated switching speeds V f ,i and
W f ,i for the following train. Consequently, the positions of the optimal switching points
ζ`, j and ζ f , j for each j = 1, . . . , 2s are not the same either. In general, the active time
constraints t`,i` = hi`−1 and t f ,i f = ti f−1 also occur at different signal points.

8.1. Strategies of optimal type for the leading train If all constraints are active
for the leading train, then each interval (xi, xi+1) is an actively timed interval with
λi > λi+1 > 0 and µi > µi+1 > 0 for all i = 0, . . . , n − 1. Since ψ(v) is strictly increasing
in v and since ψ(Zi) = µi > µi+1 = ψ(Zi+1), this means that Zi > Zi+1. Thus, the optimal
driving speed Zi decreases on each successive actively timed interval. In summary, this
means that a strategy of optimal type for the leading train has the following structure.

• On [x0, x1], there is an initial phase of maximum acceleration from v(x0) = 0 to
v = W0; a succession of r0 − 1 consecutive phase pairs of coast from v = W0

to v = V0 and maximum acceleration from v = V0 to v = W0, which may be
visualized as a single phase of approximate speedhold at the optimal driving
speed Z0; and a coast phase from v = W0 to v(x1) = U1.
• On (xi, xi+1) for each i = 1, . . . , n − 1, there is a phase of coast from v(xi) = Ui

to v = Vi; a phase of maximum acceleration from v = Vi to v = Wi; a succession
of ri − 1 consecutive phase pairs of coast from v = Wi to v = Vi and maximum
acceleration from v = Vi to v = Wi, which may be visualized as a single phase of
approximate speedhold at the optimal driving speed Zi; and a coast phase from
v = Wi to v(xi+1) = Ui+1.
• On (xn, xn+1), there is a phase of coast from v(xn) = Un to v = Vn; a phase of

maximum acceleration from v = Vn to v = Wn; a succession of rn − 1 consecutive
phase pairs of coast from v = Wn to v = Vn and maximum acceleration from
v = Vn to v = Wn, which may be visualized as a single phase of approximate
speedhold at the optimal driving speed Zn; a coast phase from v = Wn to
v = Un+1; and a final phase of maximum brake from v = Un+1 to v(xn+1) = 0.

8.2. Strategies of optimal type for the following train If all constraints are active
for the following train, then each interval (xi, xi+1) is an actively timed interval with
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0 < λi < λi+1 and 0 < µi < µi+1 for all i = 0, . . . , n − 1. Since ψ(v) is strictly increasing
in v and since ψ(Zi) = µi < µi+1 = ψ(Zi+1), this means that Zi < Zi+1. Thus, the optimal
driving speed Zi increases on each successive actively timed interval.

Thus, the strategy of optimal type for the following train has a similar structural
form to the strategy of optimal type for the leading train, except that the approximate
holding speed increases as the journey progresses, and the following train uses a phase
of maximum acceleration to transition from speed Vi−1 at the point ζ2(r0+···+ri−1) in the
interval (xi−1, xi) to speed Wi at point ζ2(r0+···+ri−1)+1 in the interval (xi, xi+1) for each
i ∈ {1, . . . , n}.

9. Formulation of the constraints and feasibility

In this section we will study the more subtle mathematical implications of the
problem formulation. In particular, we investigate the difference between a cumulative
formulation of the intermediate distance and time constraints and a section by section
formulation.

9.1. Formulating the distance and time constraints In general the weakest
formulation of the constraints will generate the strongest conditions on the Lagrange
multipliers. Consider the leading train problem. For each m = 0, . . . , n we have
formulated the distance and time constraints with corresponding Lagrange multipliers
ρm ≥ 0 and σm ≥ 0 in the weak form

m∑
i=0

ξi(u, v) ≥ xm+1 and
m∑

i=0

τi(u, v) ≤ sm+1,

which we interpret as saying that the leading train must pass the point x = xm+1

at or before time t = sm+1. Alternatively, we could formulate the constraints with
corresponding Lagrange multipliers λi ≥ 0 and µi ≥ 0 in the strong form

ξi(u, v) ≥ ∆xi and τi(u, v) ≤ ∆si,

which means that the train must traverse the section (xi, xi+1) in less time than the
difference between the prescribed times for xi+1 and xi for each i = 0, . . . , n. We
can see that the strong form of the conditions implies the weak form but not vice
versa. On the other hand, the correspondence λi =

∑n
m=i ρm and µi =

∑n
m=i σm for each

i = 0, . . . ,m, which we established earlier between the two sets of Lagrange multipliers,
means that the conditions ρm ≥ 0 and σm ≥ 0 for all m = 0, . . . , n give λi−1 ≥ λi ≥ 0
and µi−1 ≥ µi ≥ 0. Thus, the weak formulation shows that {λi}

n
i=0 and {µi}

n
i=0 are both

decreasing sequences—a fact that we could not deduce from the strong formulation. If
the constraints are all active, then the formulations are equivalent. Similar remarks
apply to the formulation of distance and time constraints for the following train
problem.
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9.2. Necessary conditions for a strategy of optimal type If the constraints are all
active, then for the leading train problem we must have λi−1 > λi and µi−1 > µi for each
i = 0, . . . , n and for the following train we must have λi−1 < λi and µi−1 < µi for each
i = 0, . . . , n. We would like to fully understand why these conditions are necessary.

Consider the leading train problem. For each optimal driving speed Zi > 0, there is a
unique corresponding value µi = ψ(Zi) > 0. From our earlier arguments, it is clear that
we must have λi > ϕ

′(Zi) > 0 to generate switching speeds Vi < Zi < Wi. The condition
ψ(Zi−1) = µi−1 > µi = ψ(Zi) simply means that the optimal driving speed Zi decreases
as the journey progresses. The speed at signal point xi is given by

Ui =
µi−1 − µi

λi−1 − λi
> 0

for each i = 1, . . . , n. If we use the formulæ

λi =
ϕ(Wi) − ϕ(Vi)

Wi − Vi
and µi =

Viϕ(Wi) −Wiϕ(Vi)
Wi − Vi

and some tedious algebra, then we can show that

Ui − Vi = [ϕ(Wi−1)(Vi−1 − Vi) + ϕ(Vi−1)(Vi −Wi−1) + ϕ(Vi)(Wi−1 − Vi−1)]/αi,

where αi = (λi−1 − λi)(Wi−1 − Vi−1) > 0. If we define

βi = ϕ(Wi−1)(Vi−1 − Vi) + ϕ(Vi−1)(Vi −Wi−1) + ϕ(Vi)(Wi−1 − Vi−1),

then
∂βi

∂Vi
= −ϕ(Wi−1) + ϕ(Vi−1) + ϕ ′(Vi)(Wi−1 − Vi−1).

The strict convexity of ϕ means that there is a unique value V∗i ∈ (Vi−1,Wi−1) such that
∂βi/∂Vi = 0. For Vi < V∗i we have ∂βi/∂Vi < 0 and, for Vi > V∗i , we have ∂βi/∂Vi > 0.
Since βi = 0 when Vi = Vi−1 and when Vi = Wi−1, it follows that Ui > Vi if and only if
Vi < (Vi−1,Wi−1). A similar argument can be used to show that Ui < Wi−1 if and only
if Wi−1 < (Vi,Wi). Since Wi−1 > Zi−1 > Zi > Vi, it follows that Vi−1 > Vi and Wi−1 > Wi.
We have the following important result.

Lemma 9.1. A strategy of optimal type for the leading train with switching speeds
V = (V0, . . . ,Vn) and W = (W0, . . . ,Wn) is well defined only if Vi−1 > Vi and Wi−1 > Wi

for all i = 0, . . . , n. If these conditions are satisfied and we write U = (U1, . . . ,Un)
to denote the speeds at the signal points (x1, . . . , xn), then Wi−1 > Ui > Vi for all
i = 0, . . . , n.

An analogous result holds for the following train, where the strategy of optimal
type is well defined only if Vi−1 < Vi and Wi−1 < Wi for each i = 0, . . . , n, in which case
Vi−1 < Ui < Wi for each i = 0, . . . , n.
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9.3. Necessary conditions for a feasible strategy of optimal type Although
Lemma 9.1 provides sufficient conditions for the existence of a strategy of optimal type
for the leading train and the analogous result does the same for the following train, we
have still not established sufficient conditions for the existence of a feasible strategy.
We will not discuss this problem in depth, but rather state suitable sufficient conditions
for each train. A simple test for the existence of feasible strategies of optimal type
is for the leading train to do a minimum-time journey starting at time t = 0 and for
the following train to do a minimum-time journey finishing at time t = T + ∆T . Thus,
the leading train finishes as early as possible and the following train starts as late as
possible. The minimum-time journey is a degenerate strategy of optimal type with
only two phases. The first phase is maximum acceleration and the second phase is
maximum brake. The switching point is chosen so that the train travels the correct
distance. If these two strategies satisfy the required section clearance time constraints,
then optimal strategies will exist for each train.

9.4. The state constraints in theory and in practice In our theoretical application
of the Karush–Kuhn–Tucker conditions, it was convenient to assume that all
constraints were active. Thus, we omitted inactive constraints from the analysis. In
practice, it may be more convenient in terms of the notation to retain the inactive
constraints. If so, then the sequences of optimal driving speeds are decreasing for the
leading train and increasing for the following train—rather than strictly decreasing and
strictly increasing. If the subsequence of signal locations corresponding to the active
time constraints for the leading train is denoted by {xi(`,r)}

p
r=1 and the subsequence for

the following train is denoted by {xi( f ,r)}
q
r=0, and if Zi(`,r) and Zi( f ,r) denote the respective

optimal driving speeds on (xi(`,r), xi(`,r+1)) and (xi( f ,r), xi( f ,r+1)), then we know from our
earlier theoretical analysis that the subsequence {Zi(`,r)}

p−1
r=0 is strictly decreasing and

that the subsequence {Zi( f ,r)}
q−1
r=0 is strictly increasing. More specifically, we have the

following characterizations.

• If Zi(`,r)−1 > Zi(`,r) and Zi(`,r+1)−1 > Zi(`,r+1) and t`,i < si for each i = i(`, r) +

1, . . . , i(`, r + 1) − 1, then (xi(`,r), xi(`,r+1)) is an actively timed segment for
the leading train. We must have active constraints t`,i(`,r) = si(`,r) = hi(`,r)−1 and
t`,i(`,r+1) = si(`,r+1) = hi(`,r+1)−1 at each end point and within the segment the
optimal driving speeds must be equal with Zi(`,r) = Zi(`,r)+1 = · · · = Zi(`,r+1)−1.
• If Zi( f ,r)−1 < Zi( f ,r) and Zi( f ,r+1)−1 < Zi( f ,r+1) and t f ,i > ti for each i = i( f , r) +

1, . . . , i( f , r + 1) − 1, then (xi( f ,r), xi( f ,r+1)) is an actively timed segment for the
following train. We must have active constraints t f ,i( f ,r) = ti( f ,r) = hi( f ,r)+1 and
t f ,i( f ,r+1) = ti( f ,r+1) = hi( f ,r+1)+1 at each end point and within the segment the
optimal driving speeds must be equal with Zi( f ,r)+1 = · · · = Zi( f ,r+1)−1.

The locations of the active constraints for the leading train problem do not necessarily
coincide with the locations of the active constraints for the following train problem.

Each sequence {Z`, i}ni=0 of optimal driving speeds with Z`,i ≥ Z`,i+1 > 0 generates
a corresponding sequence of parameters {µ`,i}ni=0 = {ψ(Z`,i)}ni=0 with µ`,i ≥ µ`,i+1 > 0
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and, in conjunction with each decreasing sequence of parameters {λ`,i}ni=0 satisfying
λ`,i > ϕ

′(Z`,i), defines a unique control strategy for the leading train with corresponding
unique optimal speed and time profiles (v`, t`) = (v`(x), t`(x)) for each x ∈ [0,X(λ`,µ`)],
where X(λ`,µ`) is chosen so that v`(x) > 0 for 0 < x < X(λ`,µ`) and v`[X(λ`,µ`)] = 0.

Likewise, each sequence {Z f , i}
n
i=0 of optimal driving speeds with 0 < Z f ,i ≤ Z f ,i+1

generates a corresponding sequence of parameters {µ f ,i}
n
i=0 = {ψ(Z f ,i)}ni=0 with 0 <

µ f ,i ≤ µ f ,i+1 and, in conjunction with each increasing sequence of parameters {λ f ,i}
n
i=0

satisfying λ f ,i > ϕ
′(Z f ,i), defines a unique control strategy for the following train with

corresponding unique optimal speed and time profiles (v f , t f ) = (v f (x), t f (x)) for each
x ∈ [0, X(λ f ,µ f )], where X(λ f ,µ f ) is chosen so that v(x) > 0 for 0 < x < X(λ f ,µ f ) and
v[X(λ f ,µ f )] = 0.

By considering different sequences of the key parameters λ and µ, it is possible
to adjust the speed and time profiles in order to satisfy the overall distance and time
constraints and any feasible set of prescribed intermediate section clearance times.

10. Examples

We present some specific examples using realistic parameter values to illustrate
our theoretical results. Distance is measured in metres (m) and time is measured in
seconds (s). We consider a level track [0, X] where X = 80 000 with signal positions
0 = x0 < x1 < · · · < x7 < x8 = X given by

x = (0, 8000, 16 000, 26 000, 40 000, 54 000, 64 000, 72 000, 80 000).

We assume that t ′ = 1/v and v ′ = [3c/v − r(v)]/v where c ∈ {1, 0, −1} and r(v) =

r0 + r2v2 where r0 = 6.75 × 10−3 m−1 and r2 = 5 × 10−5 m−3 s2. The total time allowed
for the journey is T = 3600.

As a basis for comparison, we consider the strategy of optimal type for a single
train defined by the above parameters in the form

S = {1, {0, 1}15, 0,−1}

with an initial phase of maximum acceleration, followed by a collective phase of
approximate speedhold at the optimal driving speed using 15 coast and maximum
acceleration pairs, a coast phase and a maximum brake phase. The optimal driving
speed is Z ≈ 23.0303, the switching speeds are V ≈ 20.6673 and W ≈ 25.5670 and the
speed at which braking begins is given by U ≈ 14.0065. The cost of the journey is
J ≈ 2701.3 J kg−1 (m2 s−2). The speed profile is shown on the left in Figure 1. If we
use an optimal strategy

S = {1, {0, 1}49, 0,−1}

with a much higher number of coast and maximum acceleration pairs, then the optimal
driving speed is Z ≈ 23.0652, the switching speeds are V ≈ 22.3008 and W ≈ 23.8469
and the speed at which braking begins is given by U ≈ 14.1629. The cost of the journey
is J ≈ 2682.0 J kg−1 (m2 s−2). The speed profile is shown on the right in Figure 1.
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Figure 1. Speed profiles for an optimal single-train strategy with 15 coast and maximum acceleration pairs
(left) and 49 coast and maximum acceleration pairs (right). Distance on the horizontal axis is measured
in metres and speed on the vertical axis is measured in m s−1.

No significant further reduction of cost is achieved with an increase in the number of
coast and maximum acceleration pairs.

Suppose that we wish to run two successive identical trains defined by the above
parameters along the given track, with the leading train starting at t = 0 and finishing
at T = 3600 and the following train starting at t = ∆T = 720 and finishing at t =

T + ∆T = 4320. If the trains both use the optimal single-train strategy with 15 coast
and maximum acceleration pairs, then the times that they pass the signals are given by

t` ≈ (0, 431, 724, 1155, 1762, 2369, 2802, 3150, 3600)

for the leading train and

t f = t` + 720 × 1 ≈ (720, 1151, 1444, 1875, 2482, 3089, 3522, 3870, 4320)

for the following train. Safety considerations mean that the two trains must always
be separated by at least two signals. This means that we must have t f , j ≥ t`, j+2 for all
j = 0, . . . , 6 and this is clearly not the case. Indeed, it can be seen that ∆T = 1214 is
the smallest possible value for ∆T that will satisfy the safe-separation condition when
both trains use the optimal single-train strategy. We will now show that it is possible to
set ∆T = 720 and satisfy the safe-separation condition if the leading train goes faster
at the beginning of the journey and the following train goes slower.

Example 10.1. Let T = 3600 and ∆T = 720 and define the common set of prescribed
section clearance times

h = (720, 1080, 1600, 2340, 2760, 3120, 3600)

with h1 = ∆T and h7 = 3600. The leading train must pass the point x j before time
s j = h j−1 for each j = 2, . . . , 8 and the following train must pass the point x j after
time h j+1 for each j = 0, . . . , 6. Therefore, we may define a full set of latest allowed
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section exit times for the leading train and earliest allowed section entry times for the
following train by setting

s = (s0, . . . , s8) = (0, 720∗, 720, 1080, 1600, 2340, 2760, 3120, 3600)

and

t = (t0, . . . , t8) = (720, 1080, 1600, 2340, 2760, 3120, 3600, 3600∗, 4320).

The asterisked times are to a certain extent optional. We begin by outlining the optimal
strategies for each train.

Consider the leading train problem. The signal points are

x = (0, 8000, 16 000, 26 000, 40 000, 54 000, 64 000, 72 000, 80 000)

and so the progressive minimum allowed average speeds v`, j = x j/s j for the leading
train on the intervals [0, x j] for each j = 1, . . . , 8 are given by

v` ≈ (11.11∗, 22.22, 24.07, 25, 23.08, 23.19, 23.08, 22.22).

The most demanding signal point constraint is defined by s4 = 1600 and x4 = 40 000
with v`,4 = 25. Thus, we look for a strategy

S` = {1, {0, 1}7, 0, 1, {0, 1}7, 0,−1}

with phases of approximate speedhold on the intervals [x0, x4] and [x4, x8] and with a
single active intermediate time constraint t`(x4) = s4. It turns out that there is a uniquely
defined strategy of optimal type in this form with t`(x4) = s4 and with t`(x j) ≤ s j for
j , 4. The speed profile for this strategy is depicted on the left in Figure 2.

Now consider the following train problem. The signal points are

x = (0, 8000, 16 000, 26 000, 40 000, 54 000, 64 000, 72 000, 80 000)

and the elapsed times are

t − t0 × 1 = (0, 360, 880, 1620, 2040, 2400, 2880, 2880∗, 3600),

so the progressive maximum allowed average speeds v f , j = x j/(t j − t0) for the
following train on the intervals [0, x j] for each j = 1, . . . , 8 are given by

v f ≈ (22.22, 18.18, 16.05, 19.61, 22.5, 22.22, 25.00∗, 22.22).

The most demanding signal point constraint is defined by t3 − t0 = 1620 and x3 =

26 000 with v f ,3 ≈ 16.05. Thus, we look for a strategy

S f = {1, 0, {1, 0}7, 1, 0, {1, 0}6, 1, 0,−1}

with phases of approximate speedhold on the intervals [x0, x3] and [x3, x8] and with a
single active intermediate time constraint t f (x3) = t3. It turns out that there is a uniquely
defined strategy of optimal type in this form with t f (x3) = t3 and with t f (x j) ≥ t j for
j , 3. The speed profile for this strategy is depicted on the right in Figure 2.
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Figure 2. Optimal speed profiles for the leading train (left) and the following train (right) in Example 10.1.
Distance on the horizontal axis is measured in metres and speed on the vertical axis is measured in m s−1.

Now consider the detailed calculations. For the leading train, define distance
functions

ξ0(V,W) =

∫ W0

0

v dv
3/v − r(v)

+ 7
∫ W0

V0

3 dv
r(v)[3/v − r(v)]

+

∫ W0

U1

v dv
r(v)

,

ξ1(V,W) =

∫ U1

V1

v dv
r(v)

+ 7
∫ W1

V1

3 dv
r(v)[3/v − r(v)]

+

∫ W1

U2

v dv
r(v)

+

∫ U2

0

3 dv
3/v + r(v)

and time functions

τ0(V,W) =

∫ W0

0

v dv
3/v − r(v)

+ 7
∫ W0

V0

(3/v) dv
r(v)[3/v − r(v)]

+

∫ W0

U1

v dv
r(v)

,

τ1(V,W) =

∫ U1

V1

dv
r(v)

+ 7
∫ W1

V1

(3/v) dv
r(v)[3/v − r(v)]

+

∫ W1

U2

dv
r(v)

+

∫ U2

0

(3/v) dv
3/v + r(v)

,

where U1(V, W) = (µ0 − µ1)/(λ0 − λ1) is the speed at the signal point x4 and
U2(V1,W1) = µ1/λ1 is the speed at which braking begins and where

λi(Vi,Wi) =
ϕ(Wi) − ϕ(Vi)

Wi − Vi
and µi(Vi,Wi) =

Viϕ(Wi) −Wiϕ(V1)
Wi − Vi

for each i = 0, 1. Now we solved the equations

ξ(V,W) − ∆x = 0 ⇐⇒
[
ξ0(V,W) − (x4 − x0)
ξ1(V,W) − (x8 − x4)

]
= 0

and

τ(V,W) − ∆s = 0 ⇐⇒
[
τ0(V,W) − (s4 − s0)
τ1(V,W) − (s8 − s4)

]
= 0
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for (V,W) using a Newton iteration in the form


V (n+1)

0
W (n+1)

0
V (n+1)

1
W (n+1)

1

 =


V (n)

0
W (n)

0
V (n)

1
W (n)

1

 −



∂ξ(n)
0

∂V0

∂ξ(n)
0

∂W0

∂ξ(n)
0

∂V1

∂ξ(n)
0

∂W1

∂ξ(n)
1

∂V0

∂ξ(n)
1

∂W0

∂ξ(n)
1

∂V1

∂ξ(n)
1

∂W1

∂τ(n)
0

∂V0

∂τ(n)
0

∂W0

∂τ(n)
0

∂V1

∂τ(n)
0

∂W1

∂τ(n)
1

∂V0

∂τ(n)
1

∂W0

∂τ(n)
1

∂V1

∂τ(n)
1

∂W1



†


ξ(n)

0 − (x4 − x0)
ξ(n)

1 − (x8 − x4)
τ(n)

0 − (s4 − s0)
τ(n)

1 − (s8 − s4)

 ,

where † denotes the Moore–Penrose inverse. All calculations were performed in
Matlab. We used the initial values (V0,W0) = (26, 29) and (V1,W1) = (21, 25) and,
after six iterations, obtained

(V0,W0) ≈ (23.7305, 27.5899) and (V1,W1) ≈ (19.4040, 22.8417).

The speed at x4 was U1 ≈ 23.3326 and the speed at which braking begins was
U2 ≈ 12.6816. The optimal driving speeds were Z0 ≈ 25.6118 and Z1 ≈ 21.0761. The
calculations showed that the active distance and time constraints were satisfied with
ξ0 ≈ 40 000, ξ2 ≈ 40 000, τ0 ≈ 1600 and τ1 ≈ 2000. We used an ad hoc mid-point
algorithm to calculate the times at the signal points and obtained

t` ≈ (0, 349, 661, 1052, 1600, 2260, 2735, 3116, 3600) ≤ s.

This confirms that the proposed journey is feasible. The cost of the strategy

J` =

∫ W0

0

3 dv
3/v − r(v)

+ 7
∫ W0

V0

3 dv
3/v − r(v)

+ 7
∫ W1

V1

3 dv
3/v − r(v)

was calculated as J` ≈ 2752.6.
The detailed calculations for the following train are similar. We define distance

functions

ξ0(V,W) =

∫ W0

0

v dv
3/v − r(v)

+

∫ W0

V0

v dv
r(v)

+ 7
∫ W0

V0

3 dv
r(v)[3/v − r(v)]

+

∫ U1

V0

v dv
3/v − r(v)

,

ξ1(V,W) =

∫ W1

U1

v dv
3/v − r(v)

+

∫ W1

V1

v dv
r(v)

+ 6
∫ W1

V1

3 dv
r(v)[3/v − r(v)]

+

∫ W1

V1

v dv
3/v − r(v)

+

∫ W1

U2

v dv
r(v)

+

∫ U2

0

v dv
3/v + r(v)
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and time functions

τ0(V,W) =

∫ W0

0

dv
3/v − r(v)

+

∫ W0

V0

dv
r(v)

+ 7
∫ W0

V0

(3/v) dv
r(v)[3/v − r(v)]

+

∫ U1

V0

dv
3/v − r(v)

,

τ1(V,W) =

∫ W1

U1

dv
3/v − r(v)

+

∫ W1

V1

dv
r(v)

+ 6
∫ W1

V1

(3/v) dv
r(v)[3/v − r(v)]

+

∫ W1

V1

dv
3/v − r(v)

+

∫ W1

U2

dv
r(v)

+

∫ U2

0

dv
3/v + r(v)

,

where U1,U2, λ1, λ2, µ1, µ2 are defined as before. Now we solved the equations

ξ(V,W) − ∆x = 0 ⇐⇒
[
ξ0(V,W) − (x3 − x0)
ξ1(V,W) − (x8 − x3)

]
= 0

and

τ(V,W) − ∆t = 0 ⇐⇒
[
τ0(V,W) − (t3 − t0)
τ1(V,W) − (t8 − t3)

]
= 0

for (V,W) using a Newton iteration similar to the one used for the leading train. All
calculations were performed in Matlab. We used the initial values (V0,W0) = (12, 17)
and (V1,W1) = (18, 24) and, after six iterations, obtained

(V0,W0) ≈ (14.7747, 17.4514) and (V1,W1) ≈ (26.6630, 30.7871).

The speed at x3 was U1 ≈ 22.8672 and the speed at which braking begins was
U2 ≈ 18.0367. The optimal driving speeds were Z0 ≈ 16.0759 and Z1 ≈ 28.6756. The
calculations showed that the active distance and elapsed time constraints were satisfied
with ξ0 ≈ 26 000, ξ1 ≈ 54 000, τ0 ≈ 1620 and τ1 ≈ 1980. We used an ad hoc mid-point
algorithm to calculate the elapsed times at the signal points and obtained

t f − t0 × 1 ≈ (0, 512, 1007, 1620, 2111, 2598, 2947, 3224, 3600) ≥ t − t0 × 1.

This confirms that the proposed journey is feasible. The cost of the strategy

J f =

∫ W0

0

3 dv
3/v − r(v)

+ 7
∫ W0

V0

3 dv
3/v − r(v)

+

∫ W1

V0

3 dv
3/v − r(v)

+ 7
∫ W1

V1

3 dv
3/v − r(v)

was calculated as J f ≈ 3147.8.
The total cost is J = J` + J f ≈ 5900.4. This is the optimal strategy for the given

clearance times. �

The optimal strategy depends on the prescribed intermediate clearance times. In
Example 10.2, we show that the optimal strategy can be improved by changing the
clearance times. There is currently no practical algorithm that can systematically
determine the optimal prescribed section clearance times. In the absence of such an
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algorithm, the determination of an improved set of prescribed section clearance times
is very much an ad hoc procedure. Because high speeds mean that excessive energy is
used to overcome frictional resistance—the frictional resistance is generally assumed
to increase in proportion to the square of the speed—any changes in the prescribed
times should be designed to allow more time on sections where the holding speeds are
highest. There is an intrinsic dilemma involved here, because the intuitive premise for
safe separation is that the leading train should go faster during the initial stages of the
journey and slower during the final stages, whilst the opposite should be the case for
the following train. The optimal balance is achieved either by reducing the speed of
the leading train during the initial stages and forcing a corresponding increase in the
speed of the following train during the final stages, or else by increasing the speed of
the leading train during the initial stages and thereby allowing a decrease in the speed
of the following train during the final stages. In Example 10.2, we force the leading
train to go faster in the early stages and allow the following train to go slower in the
final stages.

Example 10.2. Let T = 3600 and ∆T = 720. We use the same trains that were used in
Example 10.1. Suppose that the prescribed intermediate clearance times are

h = (h1, . . . , h7) = (720, 1040, 1550, 2280, 2760, 3150, 3600)

and that the respective latest allowed exit times for the leading train and earliest
allowed entry times for the following train are

s = (s0, . . . , s8) = (0, 720∗, 720, 1040, 1550, 2280, 2760, 3150, 3600)

and

t = (t0, . . . , t8) = (720, 1040, 1550, 2280, 2760, 3150, 3600, 3600∗, 4320).

The optimal strategies take the same basic form as the optimal strategies in
Example 10.1. The active constraints occur at the same points.

For the leading train, the most demanding constraint is defined by s4 = 1550 and
x4 = 40 000. Thus, we look for a strategy

S` = {1, {0, 1}7, 0, 1, {0, 1}7, 0,−1}

with phases of approximate speedhold on the intervals [x0, x4] and [x4, x8] and with a
single active intermediate time constraint t`(x4) = s4. It turns out that there is a uniquely
defined strategy of optimal type in this form with t`(x4) = s4 and with t`(x j) ≤ s j for
j , 4. The speed profile for this strategy is depicted on the left in Figure 3.

For the following train, the most demanding constraint is defined by t3 − 720 = 1560
and x3 = 26 000. Thus, we look for a strategy

S f = {1, 0, {1, 0}7, 1, 0, {1, 0}6, 1, 0,−1}

with phases of approximate speedhold on the intervals [x0, x3] and [x3, x8] and with a
single active intermediate time constraint t f (x3) = t3. It turns out that there is a uniquely
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Figure 3. Optimal speed profiles for the leading train (left) and the following train (right) in Example 10.2.
Distance on the horizontal axis is measured in metres and speed on the vertical axis is measured in m s−1.

defined strategy of optimal type in this form with t f (x3) = t3 and with t f (x j) ≥ t j for
j , 3. The speed profile for this strategy is depicted on the right in Figure 3.

We used a Newton iteration to find the optimal switching speeds in precisely the
same way as we did in Example 10.1. All calculations were performed in Matlab.

For the leading train, we used the initial values (V0,W0) = (26, 29) and (V1,W1) =

(21, 25) and, after six iterations, obtained

(V0,W0) ≈ (24.7581, 28.4293) and (V1,W1) ≈ (18.8660, 22.2562).

The speed at x4 was U1 = 23.6208 and the speed at which braking begins was
U2 ≈ 12.2794. The optimal driving speeds were Z0 ≈ 26.5514 and Z1 ≈ 20.5144. The
calculations showed that the active distance and time constraints were satisfied with
ξ0 ≈ 40 000, ξ2 ≈ 40 000, τ0 ≈ 1550 and τ1 ≈ 2050. We used an ad hoc mid-point
algorithm to calculate the times at the signal points and obtained

t` ≈ (0, 342, 643, 1020, 1550, 2226, 2712, 3104, 3600) ≤ s.

This confirms that the proposed journey is feasible. The cost of the strategy was
calculated as J` ≈ 2796.3.

For the following train, we used the initial values (V0,W0) = (12, 17) and (V1,W1) =

(18, 24) and, after six iterations, obtained

(V0,W0) ≈ (15.4398, 18.1280) and (V1,W1) ≈ (25.6445, 30.0107).

The speed at x3 was U1 ≈ 22.5778 and the speed at which braking begins was
U2 ≈ 17.3913. The optimal driving speeds were Z0 ≈ 16.7479 and Z1 ≈ 27.7704. The
calculations showed that the active distance and elapsed time constraints were satisfied
with ξ0 ≈ 26 000, ξ1 ≈ 54 000, τ0 ≈ 1560 and τ1 ≈ 2040. We used an ad hoc mid-point
algorithm to calculate the elapsed times at the signal points and obtained

t f − t0 × 1 ≈ (0, 494, 970, 1560, 2066, 2568, 2905, 3215, 3600) ≥ t − t0 × 1.
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Figure 4. Train graphs for the optimal strategies in Example 10.1 (left) and Example 10.2 (right). Position
on the vertical axis is measured in metres and time on the horizontal axis is measured in seconds. The
top graph is the leading train and the bottom graph is the following train. The double staircases and the
associated shaded regions show the required separation. The inactive intermediate constraints are shown
as open circles on the upper and lower staircases. The only active intermediate constraints are (h3, x4) for
the leading train and (h4, x3) for the following train.

This confirms that the proposed journey is feasible. The cost of the strategy was
calculated as J f ≈ 3039.5.

The total cost is J = J` + J f ≈ 5835.8. This is the optimal strategy for the given
clearance times. We note that the total cost is lower than the total cost of the strategies
in Example 10.1. �

In practice, railway timetables are depicted as train graphs which plot position
against time. Figure 4 compares the train graphs for Examples 10.1 and 10.2. The
double staircases and associated shaded regions show that the required separation is
maintained at all times.

11. Summary and future work

We have solved the two-train separation problem on level track with discrete control
and specified intermediate clearance times by finding characteristic forms for the
strategies of optimal type for both the leading train and the following train. The
imposition of specified section clearance times allowed us to formulate and solve
separate and essentially independent problems for each train. The explicit formulæ
found for the key parameters have enabled development of a Matlab algorithm using
a rapidly convergent Newton iteration to calculate the optimal switching speeds in the
case where there is one active intermediate time constraint for each train. A similar
algorithm could also be used for the analogous problem with continuous control. For
problems with more than one active time constraint, it seems likely that the proposed
Newton iteration will remain viable. We support this intuition by noting that the
Jacobian matrix for the larger problem is essentially tridiagonal in that the distance
travelled and time taken on each section depend only on the switching speeds for the
designated section and the switching speeds on the previous and subsequent sections.
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The first priority for future research by the Scheduling and Control Group (SCG)
at the University of South Australia on the two-train separation problem with
specified intermediate times is to develop Matlab algorithms using convergent Newton
iterations to calculate optimal strategies for each train in the two-train separation
problem on level track with both continuous and discrete control when there is
more than one active intermediate constraint for each train. The results in this paper
suggest that this task may be relatively straightforward despite the potential algebraic
complexity. The second priority for the SCG is to develop more general algorithms
to calculate optimal strategies for the two-train separation problem with specified
intermediate times on nonlevel track. Although it has already been shown by Albrecht
et al. [8] that the optimal strategies are defined by strictly monotone sequences of
optimal driving speeds, there are no explicit formulæ for the distance travelled and
time taken as functions of speed, and the presence of steep grades will mean that the
optimal driving speeds may be unattainable on some segments of the track. Thus, the
development of suitable algorithms is much more difficult.

We have remarked earlier in Section 5.2 that solution of the two-train separation
problem with specified intermediate clearance times is the first stage of a two-
stage process. We have already noted that the total energy consumption for the
optimal solution depends on the specified times. The second stage of the process
is to find a set of optimal intermediate clearance times. This problem has already
been solved theoretically for continuous control on level track [3, 4, 7] by finding
necessary conditions for the optimal intermediate clearance times. These conditions
have been used by Albrecht et al. [4] to check the optimality of intermediate
clearance times obtained by ad hoc calculations in specific examples. However, there is
currently no known convergent algorithm that can be used to systematically determine
these optimal times. The convergence of the Newton iterations proposed in this
paper provides some grounds for optimism that a similar Newton iteration could
be constructed to determine optimal intermediate clearance times for the two-train
separation problem on level track with continuous control. This will also be a priority
for future research by the SCG. More broadly, it seems completely plausible from
a theoretical viewpoint that the argument used by Albrecht et al. [3, 4, 7] to find
necessary conditions for the optimal intermediate clearance times on level track could
also be applied in much the same way on nonlevel track. Investigation of this problem
is also on the SCG list of priority research.

We also wish to consider more general train separation problems. Once again,
there is a significant gap between our theoretical understanding of these problems
and our ability to find numerical solutions. We have already shown [8] that the three-
train separation problem with specified intermediate times can be solved in much the
same way. The solution is a strategy of optimal type for each train with a decreasing
sequence of holding speeds for the first (leading) train, an increasing sequence of
holding speeds for the third (following) train and a sequence of holding speeds for the
second (middle) train that may increase on some parts of the journey and decrease on
other parts of the journey. The middle train behaves like a following train on sections
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where the active constraint involves separation from the leading train and behaves like
a leading train on sections where the active constraint involves separation from the
following train. It was shown by Albrecht et al. [8] that it is not possible for both
separation constraints to be active on the same section. Once again, the real difficulty
with this problem seems to be the development of suitable numerical algorithms to
find optimal strategies in specific problems. The SCG is currently also pondering these
problems.

Finally, we comment on our use of Matlab to make the relevant numerical
calculations. From a mathematical point of view, our knowledge of the theoretical
structure of the solutions means that we can use relatively simple problem specific
programming structures in concert with standard Matlab subroutines for quadrature
or solution of differential equations to obtain efficient and accurate solutions in
very short time on standard laptop computers. Since Matlab is widely available,
this means that our methods can be applied easily by other mathematicians and
engineers. In summary, Matlab provides a convenient computational framework for
our work in much the same way that packages such as CPLEX and GAMS provide a
convenient framework for mathematical programming. For commercial applications,
the SCG has written prototype problem specific numerical algorithms in the functional
programming language Haskell. These programs have normally been converted
into the programming language C++ for the actual practical implementation. The
Energymiser R© system developed by the SCG for Sydney company TTG Transportation
Technology [47] to find optimal speed profiles on the TGV trains in France has been
implemented using C++ as a tablet app for SNCF drivers.
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Appendix A. The key functionals for the leading train

The cost functional for the entire journey and the distance and time functionals for
each timed section can be expressed as functions of the switching speeds and the
speeds at the signal points. We write J = J(v) for the cost functional and ξi = ξi(u, v)
and τi = τi(u, v) for the distance and time functionals, respectively, on section (xi, xi+1)
for each i = 0, . . . , n. The equations of motion show that for a phase of maximum
acceleration,

dx =
v dv

H(v) − r(v)
and dt =

dv
H(v) − r(v)

,
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for a phase of coast

dx = (−1)
v dv
r(v)

and dt = (−1)
dv

r(v)

and for a phase of maximum brake

dx = (−1)
v dv

K(v) + r(v)
and dt = (−1)

dv
K(v) + r(v)

.

The cost function for the entire journey is the sum of the costs of the acceleration
phases and depends only on the switching speeds. Since u+ = H(v) for an acceleration
phase and dJ = u+dx,

J(v) =

∫ v1

0

H(v)v dv
H(v) − r(v)

+

n−1∑
k=1

∫ v2k+1

v2k

H(v)v dv
H(v) − r(v)

.

The distance functions for each timed section are

ξ0(u, v) =

∫ v1

0

v dv
H(v) − r(v)

+

r0−1∑
k=1

[ ∫ v2k−1

v2k

v dv
r(v)

+

∫ v2k+1

v2k

v dv
H(v) − r(v)

]
+

∫ v2r0−1

u1

v dv
r(v)

,

ξi(u, v) =

∫ ui

v2(r0+···+ri−1)

v dv
r(v)

+

∫ v2(r0+···+ri−1)+1

v2(r0+···+ri−1)

v dv
H(v) − r(v)

+

r0+···+ri−1∑
k=r0+···+ri−1+1

[ ∫ v2k−1

v2k

v dv
r(v)

+

∫ v2k+1

v2k

v dv
H(v) − r(v)

]
+

∫ v2(r0+···+ri)−1

ui+1

v dv
r(v)

for each i = 1, . . . , n − 1 and

ξn(u, v) =

∫ un

v2(r0+···+rn−1)

v dv
r(v)

+

∫ v2(r0+···+rn−1)+1

v2(r0+···+rn−1)

v dv
H(v) − r(v)

+

r0+···+rn−1∑
k=r0+···+rn−1+1

[ ∫ v2k−1

v2k

v dv
r(v)

+

∫ v2k+1

v2k

v dv
H(v) − r(v)

]
+

∫ v2(r0+···+rn)−1

un+1

v dv
r(v)

+

∫ un+1

0

v dv
K(v) + r(v)

.

The elapsed time functions for each timed section are

τ0(u, v) =

∫ v1

0

dv
H(v) − r(v)

+

r0−1∑
k=1

[ ∫ v2k−1

v2k

dv
r(v)

+

∫ v2k+1

v2k

dv
H(v) − r(v)

]
+

∫ v2r0−1

u1

dv
r(v)

,

τi(u, v) =

∫ ui

v2(r0+···+ri−1)

dv
r(v)

+

∫ v2(r0+···+ri−1)+1

v2(r0+···+ri−1)

dv
H(v) − r(v)

+

r0+···+ri−1∑
k=r0+···+ri−1+1

[ ∫ v2k−1

v2k

dv
r(v)

+

∫ v2k+1

v2k

dv
H(v) − r(v)

]
+

∫ v2(r0+···+ri)−1

ui+1

dv
r(v)
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for each i = 1, . . . , n − 1 and

τn(u, v) =

∫ un

v2(r0+···+rn−1)

dv
r(v)

+

∫ v2(r0+···+rn−1)+1

v2(r0+···+rn−1)

dv
H(v) − r(v)

+

r0+···+rn−1∑
k=r0+···+rn−1+1

[ ∫ v2k−1

v2k

dv
r(v)

+

∫ v2k+1

v2k

dv
H(v) − r(v)

]
+

∫ v2(r0+···+rn)−1

un+1

dv
r(v)

+

∫ un+1

0

dv
K(v) + r(v)

.

Although we have written ξi = ξi(u, v) and τi = τi(u, v) for each i = 0, . . . , n, we
see that for a typical value of i, these quantities depend only on the speeds ui and
ui+1 at the end points of the interval (xi, xi+1) and on the switching speeds v j for
2(r0 + · · · + ri−1) ≤ j ≤ 2(r0 + · · · + ri) − 1 within the interval (xi, xi+1). Calculation of
the individual partial derivatives is straightforward and is left to the reader.

Appendix B. The key functionals for the following train
The basic methods are similar to those used for the leading train and similar remarks
apply, but the detailed formulæ are slightly different. The key differentials are the same.
The cost function for the entire journey is

J(v) =

∫ v1

0

H(v)v dv
H(v) − r(v)

+

n−1∑
k=1

∫ v2k+1

v2k

H(v)v dv
H(v) − r(v)

.

The distance functions are

ξ0(u, v) =

∫ v1

0

v dv
H(v) − r(v)

+

∫ v1

v2

v dv
r(v)

+

r0−1∑
k=1

[ ∫ v2k+1

v2k

v dv
H(v) − r(v)

+

∫ v2k+1

v2k+2

v dv
r(v)

]
+

∫ u1

v2r0

v dv
H(v) − r(v)

,

ξi(u, v) =

∫ v2(r0+···+ri−1)+1

ui

v dv
H(v) − r(v)

+

∫ v2(r0+···+ri−1)+1

v2(r0+···+ri−1)+2

v dv
r(v)

+

r0+···+ri−1∑
k=r0+···+ri−1+1

[ ∫ v2k+1

v2k

v dv
H(v) − r(v)

+

∫ v2k+1

v2k+2

v dv
r(v)

]
+

∫ ui+1

v2(r0+···+ri)

v dv
H(v) − r(v)

for each i = 1, . . . , n − 1 and

ξn(u, v) =

∫ v2(r0+···+rn−1)+1

un

v dv
H(v) − r(v)

+

∫ v2(r0+···+rn−1)+1

v2(r0+···+rn−1)+2

v dv
r(v)

+

r0+···+rn−2∑
k=r0+···+rn−1+1

[ ∫ v2k+1

v2k

v dv
H(v) − r(v)

+

∫ v2k+1

v2k+2

v dv
r(v)

]
+

∫ v2(r0+···+rn)−1

v2(r0+···+rn)−2

v dv
H(v) − r(v)

+

∫ v2(r0+···+rn)−1

un+1

v dv
r(v)

+

∫ un+1

0

v dv
K(v) + r(v)

.
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The elapsed time functions are

τ0(u, v) =

∫ v1

0

dv
H(v) − r(v)

+

∫ v1

v2

dv
r(v)

+

r0−1∑
k=1

[ ∫ v2k+1

v2k

dv
H(v) − r(v)

+

∫ v2k+1

v2k+2

dv
r(v)

]
+

∫ u1

v2r0

dv
H(v) − r(v)

,

τi(u, v) =

∫ v2(r0+···+ri−1)+1

ui

dv
H(v) − r(v)

+

∫ v2(r0+···+ri−1)+1

v2(r0+···+ri−1)+2

dv
r(v)

+

r0+···+ri−1∑
k=r0+···+ri−1+1

[ ∫ v2k+1

v2k

dv
H(v) − r(v)

+

∫ v2k+1

v2k+2

dv
r(v)

]
+

∫ ui+1

v2(r0+···+ri)

dv
H(v) − r(v)

for each i = 1, . . . , n − 1 and

τn(u, v) =

∫ v2(r0+···+rn−1)+1

un

dv
H(v) − r(v)

+

∫ v2(r0+···+rn−1)+1

v2(r0+···+rn−1)+2

dv
r(v)

+

r0+···+rn−2∑
k=r0+···+rn−1+1

[ ∫ v2k+1

v2k

dv
H(v) − r(v)

+

∫ v2k+1

v2k+2

dv
r(v)

]
+

∫ v2(r0+···+rn)−1

v2(r0+···+rn)−2

dv
H(v) − r(v)

+

∫ v2(r0+···+rn)−1

un+1

dv
r(v)

+

∫ un+1

0

dv
K(v) + r(v)

.
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