
London Mathematical Society ISSN 1461–1570

ON TENSOR-FACTORISATION PROBLEMS, I:
THE COMBINATORIAL PROBLEM

PETER M. NEUMANN and CHERYL E. PRAEGER

Abstract

A k-multiset is an unordered k-tuple, perhaps with repetitions. If x is
an r-multiset {x1, . . . , xr} and y is an s-multiset {y1, . . . , ys} with
elements from an abelian group A the tensor product x ⊗y is defined
as the rs-multiset {xiyj | 1 � i � r, 1 � j � s}. The main focus
of this paper is a polynomial-time algorithm to discover whether a
given rs-multiset from A can be factorised. The algorithm is not
guaranteed to succeed, but there is an acceptably small upper bound
for the probability of failure. The paper also contains a description
of the context of this factorisation problem, and the beginnings of
an attack on the division-problem: is a given rs-multiset divisible
by a given r-multiset, and if so, how can division be achieved in
polynomially bounded time?

1. Introduction

There is a wide range of factorisation problems that arise from constructions related to the
tensor product. Although our interest in questions of this type originated in computational
group theory, it quickly spread to other contexts. In this paper we formulate four such
problems, and treat the most general of them in some detail.

Combinatorial tensor factorisation. The most comprehensive context for tensor-factorisa-
tion problems is combinatorial. Let k be a natural number. By a k-multiset from a set A, or
a multiset of size k, we mean an unordered k-tuple of members of A. Thus the set A[k] of all
k-multisets is the quotient set Ak/ Sym(k), where Ak is the cartesian product of k copies
of A and the symmetric group Sym(k) of degree k acts in the natural way, permuting the
factors. It is natural to write a = {a1, . . . , ak} for the multiset whose members, in some
order and perhaps with repetitions, are a1, . . . , ak , and to define |a| := k. Now suppose that
A is an abelian group (written multiplicatively because in the most important applications,
it will be the multiplicative group of a field). Let n, r and s be natural numbers such that
n = rs. If x ∈ A[r] and y ∈ A[s], then we define

x ⊗ y := {xiyj | 1 � i � r, 1 � j � s} ∈ A[n].
It is convenient (and not very misleading) to refer to ⊗ as a tensor product of multisets.
Associated with it, there is an algorithmic factorisation problem. We refer to an expression
a = b ⊗ c, where b ∈ A[r] and c ∈ A[s], as a tensor (r, s)-factorisation, or simply an
(r, s)-factorisation of a.

Combinatorial tensor-factorisation problem. Given an abelian group A and positive
integers n, r and s such that n = rs, design and analyse efficient algorithms that will accept

Received 24 November 2003, revised 27 January 2004; published 26 April 2004.
2000 Mathematics Subject Classification 05-04, 20-04
© 2004, Peter M. Neumann and Cheryl E. Praeger

LMS J. Comput. Math. 7 (2004) 73–100https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/7
https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

as input a multiset a ∈ A[n] and give as output either an (r, s)-factorisation a = b ⊗ c or
the information that no (r, s)-factorisation exists.

Our formulation of the problem allows the design of the algorithm to depend on the
abelian group A, and on the size of the input. There is good reason for this. Although we
hope and expect to have algorithms that work in much the same way for all abelian groups
and all values of n, r and s, we must be alive to the possibility that significantly better-
performing procedures might be available in certain important special cases. Some cases
that we have in mind are that A is cyclic, or that r is small.

The combinatorial tensor-factorisation problem makes sense if A is replaced by a com-
mutative semigroup. In full generality, there is little that we wish to say about this problem.
But the case where A is replaced by (the multiplicative semigroup of) a field K is applicable
to other factorisation problems, and this special case can be reduced to the one that we have
already formulated. All that is needed is, in fact, an integral domain.

Observation 1.1. Let R be an integral domain, let n, r and s be natural numbers such
that n = rs, and let a be an n-multiset from R. Define a0 to be a with all elements equal to
0 removed, and let n0 := |a0|. Then there is a tensor factorisation a = b ⊗ c with b ∈ R[r]
and c ∈ R[s] if and only if there exist r0 � r , s0 � s, b0 ∈ R[r0] and c0 ∈ R[s0] such that
n0 = r0s0 and a0 = b0 ⊗ c0.

Proof. Given a tensor factorisation a = b ⊗ c with b ∈ R[r] and c ∈ R[s], we define b0
and c0 to be what results from removing all zeros from b and c, respectively. If r0 := |b0|
and s0 := |c0|, then we obtain a tensor factorisation a0 = b0 ⊗ c0 with b0 ∈ R[r0] and
c0 ∈ R[s0]. Moreover, this multiset a0 is what is obtained by removing all zeros from a.
The converse follows similarly from the fact that if a = b ⊗ c, then any zero in a will have
arisen from a zero either in b or in c.

Polynomial tensor factorisation. The second context for tensor-factorisation problems is
that of polynomials. Let F be a field, let x and y be (monic) polynomials of degrees r and s

respectively in F [t], and let ξ1, . . . , ξr and η1, . . . , ηs be the roots of x and y respectively in
some algebraic closure of F . Using a harmless but suggestive extension of the notation ⊗,
we write

(x ⊗ y)(t) :=
∏

1�i�r
1�j�s

(t − ξiηj) ∈ F [t],

so that (x ⊗ y) is a monic polynomial over F of degree rs.

Polynomial tensor-factorisation problem. Given a field F and positive integers n,
r and s such that n = rs, design and analyse efficient algorithms that will accept as input
a monic polynomial f (t) of degree n in F [t] and give as output either a factorisation
f = x ⊗ y, where x and y are monic polynomials of degrees r and s respectively over F ,
or the information that no such factorisation exists.

Matrix tensor factorisation. Let X and Y be r × r and s × s matrices (xi,j) and (yk,l)

respectively over a field F . The Kronecker product X ⊗ Y is defined to be that rs × rs

matrix that, when it is partitioned as an r × r array of s × s blocks, has xi,j Y as its (i, j)th
block. Thus its ((i − 1)s + k, (j − 1)s + l) entry is xi,j yk,l (see, for example, [7, vol. II,
Chapter VII, Section 5]).

74https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Matrix tensor-factorisation problem. Given a field F and positive integers n, r

and s such that n = rs, design and analyse efficient algorithms that will accept as input
an n×n matrix A over F , and give as output either an invertible n×n matrix P over F and
a factorisation P −1AP = X ⊗ Y , where X and Y are r × r and s × s matrices respectively
over F , or the information that no such factorisation exists.

In more abstract terms, this problem may be re-cast as the following. Given a linear
transformation α : V −→ V , where V is an n-dimensional vector space over F , discover
whether there exist tensor factorisations V ∼= U ⊗ W and α = ξ ⊗ η, where U and W are
r- and s-dimensional vector spaces over F , and ξ and η are linear transformations U −→ U

and W −→ W , respectively.

Group-theoretic problems. As we indicated in the opening paragraph above, the original
context of our questions was computational group theory. We wanted usable algorithms to
decide whether or not a given matrix representation could be expressed as a tensor product
of representations of smaller degree.

Module tensor-factorisation problem. Given a field F and positive integers n, r and s

such that n = rs, design and analyse efficient algorithms that will accept as input a group G

and an FG-module M of dimension n over F , and will give as output either a factorisation
M ∼= X ⊗ Y , where X and Y are FG-modules of dimensions r and s respectively, or the
information that no such tensor factorisation exists.

We defer a detailed explanation and discussion of this representation-theoretic problem
to a later paper. Here it must suffice to repeat that it provided our starting point. The matrix,
polynomial, and combinatorial tensor-factorisation problems emerged, in the reverse order
to that listed here, not merely as natural generalisations, but also as usable components in
an analysis of the group-theoretic problem.

Analysis and efficiency. Our statements of the problems contain the words ‘design and
analyse efficient algorithms’. In the first place, we want practical methods that can be
implemented and used for a fair range of values of n, say n � 1000. In the second place,
we want algorithms whose theoretical efficiency is measured asymptotically by complexity
estimates that are polynomial in n, and, if possible, independent of the abelian group A

or the field F . In these estimates, it will be assumed that comparison of two elements of
A or of F takes one unit of time; likewise, that performing one algebraic operation xy or
xy−1 in A, or one algebraic operation x + y, xy, x − y or x/y in F , takes one unit of
time. Depending on the group A or the field F , each of these time units will cost c(k) bit
operations, where k is some measure of the number of bits required to describe the input
multiset a, and c is an appropriate cost function that depends on A or F and the way that
their elements are described.

For comparison with a more familiar problem, recall that an n-bit integer has size less
than 2n. Factorisation by testing all numbers up to its square root, using long division,
has time complexity of the order of 2n/2 log2 n, and although somewhat more efficient
methods are known, no polynomial-time algorithm is known (or expected to be discovered
in the foreseeable future). Our combinatorial tensor-factorisation problem has a similarly
inefficient answer. Consider the element a1 of a. If a is factorisable as b ⊗ c, then a1 will
be of the form bicj for some i and j , and without loss of generality we may suppose that
a1 = b1c1. Let b′ := bc1 = {b1c1, b2c1, . . . , brc1} and c′ := b1c = {b1c1, b1c2, . . . , b1cs}.
If a = b ⊗ c, then b′ and c′ are sub-multisets of a containing a1, and a = (a−1

1)b′ ⊗ c′.
Therefore, the following simple procedure will find an (r, s)-factorisation if there is one.

75https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Algorithm 1.2. Input: a multiset a ∈ A[n] and a factorisation n = rs.

Output: a tensor factorisation a = b ⊗ c with b ∈ A[r], c ∈ A[s], or false if no such
factorisation exists.

Cost: O(nr+s) time units.

Begin:
for each pair (I, J) of disjoint subsets of {2, . . . , n} with |I | = r − 1, |J | = s − 1 do

define b′ := {aν | ν = 1 or ν ∈ I }; c′ := {aν | ν = 1 or ν ∈ J };
define b := a−1

1 b′ and c := c′;
if a = b ⊗ c then exit and return (b, c);

endfor;
return false;

end.

The for-loop is traversed at most
(
n−1
r−1

)(
n−1
s−1

)
times, which is smaller than nr+s−2. Testing

whether a = b ⊗ c can obviously be done at a cost of n2 + n multiplications and
n2 comparisons in A, so the cost of this procedure is at most O(nr+s) time units. Note,
however, that nr+s � n2

√
n and, although decisive, this strategy is too slow to be acceptable.

The main theorem. We do not know whether there is a polynomial-time deterministic
solution to the combinatorial tensor-factorisation problem. It seems unlikely, but we have no
real evidence. Therefore we curb our ambitions and seek a method that will succeed almost
always in polynomial time. Our strategy will be to consider pairs (b, c) ∈ A[r] × A[s] that
have a certain useful property that we call recognisability (see Definition 5.1 below). That
property is chosen to meet two conditions: first, it should be possible to design an efficient
algorithm to detect factorisations a = b ⊗ c where the pair (b, c) is recognisable; secondly,
it should be possible to prove that almost all pairs (b, c) have the property. The main results
of this paper are to be found in Sections 5 and 6, and may be summarised as the following
theorems.

Theorem A. There is an algorithm which will accept as input an n-multiset a from an
abelian group A, where n = rs and 2 � r � s, and which yields as output either a pair
(b, c) ∈ A[r]×A[s] such that a = b⊗c, or the information that no such tensor factorisation,
in which the pair (b, c) is recognisable, exists. The computation costs O(rn3 log n) time
units.

The algorithm referred to here is Algorithm 5.8. A much simplified version, which is
appropriate only if A has no involutions, but which should work approximately eight times
faster, is described in Section 4. In his 2003 Oxford MSc dissertation [6], Jia Lun Huang has
produced an implementation of this algorithm in the gap language. His tests, which involved
factorising multisets of size n for various values of n up to 600 in various cyclic groups
and elementary abelian 2-groups, confirm that it is practicable. Details will be published
elsewhere.

Theorem B. Amongst all pairs (b, c) ∈ A[r]×A[s], the proportion that are not recognisable
is less than 2n2|A|−1, where n = rs.

If the abelian group A is small, then Theorem B is weak. In practice, however, A will
be very large compared with n2, so that the algorithm should succeed in factorising almost

76https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

all factorisable multisets. What we mean is this: in practice, we have in mind to use our
algorithms for finding tensor factorisations of polynomials f of degree n over the finite field
Fq that do not have 0 as a root (often, but not exclusively, the characteristic polynomials
of invertible n × n matrices over Fq). Then the abelian group A is naturally taken to be the
multiplicative group K× of a splitting field of f . The expected degree of K is approximately
n(1/2) log n (see, [9, 2]); indeed, one can prove quite easily that, for large enough n, with
probability greater than 1 − e−√

n/2 the splitting field degree is greater than
√

n. In this
situation, therefore, |A| > q

√
n with very high probability. And of course q

√
n is very much

larger than 2n2.
The comparison with factorisation of integers can be extended: the integer-factorisation

algorithm which accepts as input an n-bit integer x, and which tests for divisibility by
integers less than n costs O(n2 log n) bit-operations; but it fails with probability O(1/ log n)

in the sense that the proportion of natural numbers x < 2n that have no factor less than n

is O(1/ log n).
As has been mentioned above, our combinatorial tensor-factorisation algorithm is ul-

timately intended to be used as a component in an algorithm for tensor factorisation of
modules. In this context, it will be used on the multisets of eigenvalues of matrices X.
Using it repeatedly with different input matrices X then gives a Monte Carlo algorithm for
the module tensor-factorisation problem.

Other results. It is natural to ask for a method to divide one multiset by another. Given
a ∈ A[n] and b ∈ A[r] where, as usual, n = rs, how can we discover whether b tensor
divides a, and if so, find c such that a = b⊗c? In general, this seems a difficult question, and
we can say little about it. Recently, however, Jia Lun Huang has devised a very interesting
algorithm, which succeeds with high probability (see [6]). For the special case where r = 2,
we have an efficient deterministic method.

Theorem C. There is an algorithm which will accept as input an n-multiset a and a 2-
multiset b from an abelian group A, where n = 2s, and which yields as output either a
multiset c ∈ A[s] such that a = b ⊗ c, or the information that no such tensor factorisation
exists. The computation costs O(n log n) time units.

This will be proved in Section 4. In Section 7 we turn to the question of uniqueness
of tensor factorisations and show that if the pair (b, c) satisfies a strengthened version of
the recognisability condition, then b ⊗ c will have no tensor factorisations other than those
obtained by reversing the factors or multiplying them suitably by ‘scalars’.

Organisation of this paper. As has already been indicated, we concentrate here on the
combinatorial tensor-factorisation problem. We plan a sequel devoted to the polynomial,
matrix and module problems. Section 2 is devoted to notation and terminology, Section 3
to elementary considerations (namely to testing for factorisability, and to the special case
of tensor factorisations in an abelian group of odd order), Section 4 to an algorithm for
the (2, s)-tensor-factorisation problem based on an algorithm to compute whether a given
2s-multiset a can be divided by a given 2-multiset b, Section 5 to our tensor-factorisation
algorithm, Section 6 to complexity analysis, and Section 7 to probability estimates.

We hope that by giving a full explanation of the combinatorial tensor-factorisation prob-
lem, we may have anticipated many of the difficulties that might arise in other, similar
problems. That this hope is not unrealistic is illustrated by the work of Catherine Greenhill

77https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

who, in [3] (now published in [4] and [5]), deals with analogous ‘exterior square root’ prob-
lems. She uses adaptations, albeit original and non-trivial ones, of the methods developed
in the first draft (1995) of the present paper.

2. Notation, terminology, and other preliminaries

Throughout the paper, A will denote an abelian group, n, r and s will denote positive
integers such that n = rs, and it will be assumed, obviously without loss of generality,
that 2 � r � s. The symbols a, b and c will be reserved for multisets of sizes n, r and s

respectively. Recall that A[N] denotes the set of all N -multisets from A.

• For g ∈ A and x ∈ A[N], the multiplicity of g as an element of x is denoted by
mult(g; x).

• For x ∈ A[N], define |x| := N . Thus |x| = ∑
g∈x mult(g; x).

• A multiset will be said to be multiplicity-free if its elements are distinct or, equivalently,
if all its multiplicities are 1; that is, if it is a true set.

• For multisets x and y, the multiset x+y is defined to be the union of x and y, counting
multiplicities; that is, mult(g; x + y) = mult(g; x) + mult(g; y) for all g ∈ A.

• For multisets x and y, the multiset x ∩ y is defined to be the intersection of x and y,
counting multiplicities; that is, mult(g; x ∩ y) = min{mult(g; x), mult(g; y)} for all
g ∈ A.

• Let x be a multiset of members of A, and let g ∈ A. Define gx := {gxi | xi ∈ x} and
xg := {xig | xi ∈ x}. Note that since A is abelian, gx = xg, and that gx is in fact {g} ⊗ x.

• Clearly, if a = b ⊗ c, then also a = bg ⊗ g−1c for any g ∈ A. Tensor factorisations
related in this way will be said to be equivalent.

• If x = {x1, . . . , xN } ∈ A[N], define

xx−1 := {xαx−1
β | 1 � α � N , 1 � β � N , α �= β},

so that xx−1 is a multiset of size N(N − 1). We refer to xα as the numerator and xβ as the
denominator of the element xαx−1

β of xx−1.

• Note that if a = b⊗c, then, with a natural convention about multiplication of multisets
by positive integers,

aa−1 = s.bb−1 + r.cc−1 + bb−1cc−1,

where bb−1cc−1 := bb−1 ⊗ cc−1.

• The symbols ν and ν′ will be reserved for indices running from 1 to n,
the symbols i, i′, k and k′ will be reserved for indices running from 1 to r ,
the symbols j , j ′, l, and l′ will be reserved for indices running from 1 to s, and
we maintain the conventions that ν �= ν′, that i �= k, and that j �= l.

The following simple lemma limits the search for tensor factorisations.

Lemma 2.1. Let a be an n-multiset from the abelian group A, and let A0 := 〈a〉, the
subgroup of A generated by a. Any (r, s)-tensor factorisation of a in A is equivalent to an
(r, s)-tensor factorisation in A0.

Proof. Certainly, any tensor factorisation is equivalent to a factorisation a = b⊗c in which
b = {b1, . . . , br}, where b1 = 1. Then c ⊆ a, and since for any i there exist j and ν such
that bi = aνc

−1
j , we have b, c ⊆ A0. This proves the lemma.

78https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Since the combinatorial tensor-factorisation problem is a computational question, it is
to be understood in the following way. The abelian group A must be given in computable
form. We do not propose to be explicit about this because different practical contexts re-
quire differing data structures, and our intention is to focus on the underlying algorithmic
problems. But because of Lemma 2.1 above, A can be assumed to be finitely generated (in
practice, it will usually be finite). Then it may be taken to be presented as a direct product
of cyclic groups, since there are good algorithms to achieve this. Using a natural linear or-
dering of each factor, and the lexicographic ordering of the product, it can then be assumed
that there is an easily computable linear ordering of A, which, even if not compatible with
the multiplication on A, can be used to ensure that lists of length N can be sorted at a cost of
O(N log N) comparisons of members of A (see, for example, [1] or [8]). This is important
because, although a multiset is an unordered sequence, in practice it will be represented by
an ordered sequence (a list of its members), and efficient comparison of multisets therefore
requires efficient sorting. To compare two N -multisets x and y, one may sort x, sort y, and
then compare elements of the sorted lists one by one, in order. Accordingly, we have the
following theorem.

Theorem 2.2. Let f (N) be the number of element-comparisons required to sort an N -
multiset of elements of a set A, given a computable ordering of A. Then the cost of multiset-
comparison is at most 2f (N) + N element-comparisons. Thus this cost may be taken to be
O(N log N) element-comparisons.

Suppose that the N -multiset x has already been sorted. If g ∈ A, then using list-bisection
to find the first and last occurrences of g in x costs O(log N) element-comparisons. This
leads to our next theorem.

Theorem 2.3. If x is a sorted N -multiset from A and g ∈ A, then mult(g; x) can be
computed at a cost of O(log N) element-comparisons.

3. Elementary considerations

Most n-multisets do not arise as tensor products, and therefore it is valuable to have a
quick test to discard candidates for (r, s)-factorisation. Such a test can be based on the fact
that (b ⊗ c)(b ⊗ c)−1 = sbb−1 + rcc−1 + bb−1cc−1. The multiset bb−1 is self-inverse
in the sense that for all g ∈ A, mult(g; bb−1) = mult(g−1; bb−1), and if g = g−1, then
mult(g; bb−1) is even. The same is of course true of cc−1. Therefore we can exploit the
following simple fact.

Lemma 3.1. Suppose that r � s. Let x, y and z be multisets such that sy + rz ⊆ x. If y′ is a
multiset such that |y′| = |y| and sy′ ⊆ x, then there exists a multiset z′ such that |z′| = |z|
and sy′ + rz′ ⊆ x.

The same assertion holds with the extra assumption that y, y′ and z, z′ are self-inverse.

Proof. It is sufficient to prove the first assertion in the case where y′ differs from y in just
one element. Thus we may suppose that y = {y1, y2, . . . , yR} and y′ = {y′

1, y2, . . . , yR},
where R = |y| = |y′|. If y′

1 /∈ z, then we take z′ := z. Otherwise, take z′ := (z\{y′
1})+{y1}

and, since r � s, we have sy′ + rz′ ⊆ x, as required. The case of self-inverse multisets y,
y′ and z, z′ is similar, and is omitted here.

As a consequence of this lemma, and given that r � s, to test whether a given n(n − 1)

multiset a contains a submultiset of the form sb∗ + rc∗, where b∗ is a self-inverse

79https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

r(r − 1) multiset and c∗ is a self-inverse s(s − 1) multiset, we can pick out any candi-
date for b∗ first. Note that the size of a self-inverse multiset is even. The following is the
main component in our elementary test.

Algorithm 3.2. Input: an N -multiset x from A, a positive integer m and an even positive
integer R.

Output: a self-inverse R-multiset y such that my ⊆ x, or false if no such multiset y exists.

Cost: O(N log N) time units.

Begin:
sort x into the form m[1]g[1] + · · · + m[t]g[t],

where g[1] < · · · < g[t] in A and m[σ] = mult(g[σ]; x); (1)

re-sort x so that g[2i − 1]−1 = g[2i] for 1 � i � t1,
g[i]2 = 1 for 2t1 + 1 � i � t2, and g[i]−1 /∈ x for t2 + 1 � i � t ;
re-number the m[i] accordingly; (2)

initialise y as ∅; (3)

for i = 1 to t1 do (4)
while m[2i − 1] � m and m[2i] � m do (5)

adjoin g[2i − 1] and g[2i] to y; (6)
if |y| = R then exit and return y; (7)
reduce m[2i − 1] and m[2i] by m; (8)

endwhile; (5′)
endfor; (4′)
for i = 2t1 + 1 to t2 do (9)

while m[i] � 2m do (10)
adjoin 2g[i] to y; (11)
if |y| = R then exit and return y; (12)
reduce m[i] by 2m; (13)

endwhile; (10′)
endfor; (9′)
return false; (14)

end.

We leave the reader to check that this is correct. Note that t1 could be 0, in which case
the for-loop starting at line (4) is empty; similarly, t2 could be 2t1, in which case the for-
loop starting at line (9) would be empty. The cost of sorting x is O(N log N). The cost
of re-sorting into inverse pairs costs at most O(log t) for each element (and hence at most
O(t log t) overall), and so is at most O(N log N). Within each for-loop and while-loop,
each step has small bounded cost. The total number of these steps is at most 1

2R. Clearly, if
R > N , then false will be returned after at most N steps. Thus the cost of lines (3)–(14)
is bounded above by O(N), and hence the total cost is O(N log N).

Now the test we promised is as follows.

Algorithm 3.3. Input: a multiset a of size n from A, where n = rs and 2 � r � s.

Output: a self-inverse r(r − 1)-multiset b∗ and a self-inverse s(s − 1)-multiset c∗ such that
sb∗ + rc∗ ⊆ aa−1, or false if no such multisets exist.

Cost: O(n2 log n) time units.

80https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Begin:
apply Algorithm 3.2 with x := aa−1, m := s, R := r(r − 1); (1)
if the output is false then (2)

exit and return false; (3)
else (2′)

define b∗ := y; (4)
apply Algorithm 3.2 with x := aa−1 \ sb∗, m := r , R := s(s − 1); (5)
if the output is false then (6)

exit and return false; (7)
else define c∗ := y; (8)
endif; (6′)

endif; (2′′)
return b∗ and c∗; (9)

end.

Because of Lemma 3.1, it should be clear that this algorithm is correct. The cost is effec-
tively that of using Algorithm 3.2 twice, with N := n(n − 1), and is therefore O(n2 log n).

Although the above procedure will frequently be effective as a means of telling that a

is not decomposable, it is far from capable of giving a positive answer. To do that, we
seek to improve on Algorithm 1.2, which was discarded in Section 1 as being too slow.
The idea is to examine aa−1 with some care in order to obtain information that can limit
the search for the submultisets b′ and c′ of a that figured there. In (b ⊗ c)(b ⊗ c)−1, the
elements that obviously have multiplicity at least s are those of the form bib

−1
i′ , occurring

as (bicj)(bi′cj)−1 for 1 � j � s. The numerators of these particular occurrences form the
multiset bic. Similarly, the elements cj c

−1
j ′ occur with multiplicity at least r , and in suitable

occurrences as quotients of members of b ⊗ c the numerators form the multiset bcj . This
leads to a strategy that is illustrated in the following algorithm, which works well if A has
odd order or, more generally, if A has no involutions (elements of order 2), but which has
limited value otherwise. It is based on the following definition—which, however, will need
to be modified in Section 5.

Definition 3.4. Provisionally (for this section only), the pair (b, c) in A[r] × A[s] will be
said to be recognisable if the following conditions hold:

(1) there exists g ∈ bb−1 such that mult(g; bb−1 + cc−1 + bb−1cc−1) = 1;

(2) there exists h ∈ cc−1 such that mult(h; bb−1 + cc−1 + bb−1cc−1) = 1.

Lemma 3.5. Suppose that a = b⊗c, that 2 � r � s, and that the pair (b, c) is recognisable.
Let g and h be elements of bb−1 and cc−1 that witness the recognisability of (b, c). Then:

(1) mult(h; aa−1) = r and mult(g; aa−1) = s;

(2) if b′ is the r-multiset of numerators of quotients in aa−1 equal to h, then
mult(g; b′b′−1) = 1;

(3) if c′ is the s-multiset of numerators of quotients in aa−1 equal to g, then |b′ ∩ c′| = 1,
and if d is the unique element of b′ ∩ c′ then a = (d−1)b′ ⊗ c′.

81https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Proof. The equation aa−1 = s.bb−1 + r.cc−1 + bb−1cc−1 yields that mult(h; aa−1) = r

and mult(g; aa−1) = s, as stated in (1).
Without loss of generality, h = c1c

−1
2 and b′, the r-multiset of numerators of quotients in

aa−1 equal to h, is {a1, . . . , ar}. After suitable adjustment of the indexing, ai = bic1 (and
the denominators of the occurrences of h in aa−1 are the elements bic2). Thus b′ = bc1.
Now b′b′−1 = bb−1 and so, since the pair (b, c) is recognisable, mult(g; b′b′−1) = 1, as
stated in (2).

We may suppose that g = b1b
−1
2 . The indexing of the elements a′

j of c′ (which, recall, is

the s-multiset {a′
1, . . . , a

′
s} of numerators of the occurrences of g in aa−1) may be adjusted

so that a′
j = b1cj ; that is, c′ = b1c. Clearly, b1c1 ∈ b′ ∩ c′, since a1 = a′

1 = b1c1. If
|b′ ∩ c′| > 1, then we would have bic1 = b1cj for some pair (i, j) �= (1, 1). Then we
would have g = b1b

−1
2 = bib

−1
2 c1c

−1
j , contradicting the fact that g occurs only as b1b

−1
2 in

bb−1 + cc−1 + bb−1cc−1. Therefore b′ ∩ c′ = {b1c1}. Now bicj = (b1c1)
−1(bic1)(b1cj),

and so a = (d−1)b′ ⊗ c′, where d is the unique element of b′ ∩ c′.

This lemma tells us that, by finding first b′, then c′, and then the unique element a1 of
b′∩c′, we can compute a tensor factorisation a = (a−1

1)b′⊗c′ equivalent to the original one.
It leads to the following simple algorithm to discover a recognisable tensor factorisation if
there is one.

Algorithm 3.6. Input: a multiset a of size n from A, where n = rs and 2 � r � s.

Output: either a tensor factorisation a = b ⊗ c, in which b ∈ A[r] and c ∈ A[s], or false if
no such factorisation, in which the pair (b, c) is recognisable, exists.

Cost: O(rn3 log n) time units.

Begin:
list-c := {h ∈ aa−1 | mult(h; aa−1) = r}; (1)
for h ∈ list-c do (2)

b′ := r-multiset of numerators of h as members of aa−1; (3)
list-b := {g ∈ b′b′−1 | mult(g; b′b′−1) = 1, mult(g; aa−1) = s}; (4)
for g ∈ list-b do (5)

c′ := s-multiset of numerators of g as members of aa−1; (6)
if b′ ∩ c′ is a singleton {d} then (7)

b := d−1b′; c := c′; (8)
if a = b ⊗ c, then exit and return (b, c); (9)

endif [line (7)];
endfor [line (5)];

endfor [line (2)];
return false; (10)

end.

The cost of this algorithm may be estimated as follows. We may suppose that aa−1 has
been sorted in a pre-processing phase of the computation (at a cost of O(n2 log n)). Since
at most n(n − 1)/r elements of A can have multiplicity r in aa−1, the for-loop at line (2),
processing elements h of list-c , is traversed at most n(n − 1)/r times. For each element g

of b′b′−1, the cost of finding mult(g; aa−1) is, by Theorem 2.3, at most O(log n(n − 1)),
which is O(log n). Therefore line (4) costs at most r(r − 1)O(log n) element-comparisons,
and the algorithm could be implemented so that line (6) is done at the same time.

82https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

By Theorem 2.2, line (9) costs O(n log n) comparisons. Other costs in the inner loop
starting at line (5) are relatively small, and so the cost of one pass of the for-loop starting
at line (2) is at most O(r2n log n) time units. Consequently, the overall cost is at most
O(rn3 log n) units. Since r � n1/2, this is o(n4).

Our second criterion for acceptability was that the proportion of pairs (b, c) ∈ A[r]×A[s]
for which the algorithm fails to give a factorisation (that is, the proportion of pairs that
are not recognisable) should be small. For this, we assume that A is finite of odd order,
and that |A| � n2. A careful analysis will be deferred to Section 6; for the present, we
offer a heuristic argument to illustrate the ideas. Consider for the moment pairs (b∗, c∗) of
sequences (not multisets) in Ar×As , in which the quotient b1b

−1
2 cannot serve as the element

g of Definition 3.4(1). This will be because b1b
−1
2 = bib

−1
i′ for some pair (i, i′) other than

(1, 2), or because b1b
−1
2 = cj c

−1
j ′ for some pair (j, j ′), or because b1b

−1
2 = (bib

−1
i′)(cj c

−1
j ′)

for some quadruple (i, i′, j, j ′). One of these conditions, namely that b1b
−1
2 = b2b

−1
1 ,

is anomalous in that it is of the form b2
1 = b2

2; but since A is assumed not to contain any
involutions, this is the condition that b1 = b2. Each of the other possibilities can be written
in the form u = v, where u is one of the elements bk or cl , and v is a product of others and
their inverses. Therefore each condition is satisfied by precisely |A|r+s−1 of the |A|r+s pairs
of sequences. The number of possible conditions is r(r−1)−2+s(s−1)+r(r−1)s(s−1),
which is less than n2. Thus the proportion of pairs (b∗, c∗) of sequences in Ar ×As in which
the quotient b1b

−1
2 cannot serve as the element g of Definition 3.4(1) is less than n2|A|−1.

Similarly, the proportion of pairs (b∗, c∗) of sequences in which the quotient c1c
−1
2 cannot

serve as the element h of Definition 3.4(2) is less than n2|A|−1. Consequently, the proportion
of pairs of sequences that fail Definition 3.4 is certainly less than 2n2|A|−1. Assuming that
probabilities for multisets are the same as probabilities for sequences (which is not true,
but is a good approximation), we would expect the probability that a randomly chosen pair
(b, c) of multisets is not recognisable to be smaller than 2n2|A|−1, which is small if |A| is
much larger than n2.

There are two points to be made about this argument. One is that it deals with sequences
rather than multisets: in Section 6, this point will be treated with proper care. Another is that
it over-estimates the probability of non-recognisability. It estimates only the probability that
b1b

−1
2 or c1c

−1
2 cannot serve for g and h respectively. If the conditions that bib

−1
i′ cannot

serve for g were independent, then the probability that condition (1) of Definition 3.4
fails would be (n2|A|−1)r(r−1). Those conditions are far from independent. Nevertheless,
although this suggests that it is reasonable to expect the probability of non-recognisability
to be considerably smaller than 2(n2|A|−1), we do not propose to pursue this idea further.

4. Tensor division

In Section 1 we mentioned the tensor division problem: given multisets a ∈ A[rs] (our
standing assumption that r � s is temporarily suspended) and b ∈ A[r], how can we
discover whether or not b tensor divides a and, if so, find c ∈ A[s] such that a = b ⊗ c? In
certain special circumstances, the matter may be decided by methods similar to those to be
used in Section 5, as follows.

Observation 4.1. (1) If sbb−1 �⊆ aa−1, then b does not tensor divide a.
(2) If there exists g ∈ bb−1 such that mult(g; aa−1) = s, then it can easily be decided

whether or not b tensor divides a.

83https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Proof. Clause (1) follows directly from the equation (b⊗ c)(b⊗ c)−1 = sbb−1 + rcc−1 +
bb−1cc−1. For clause (2), suppose that g ∈ bb−1 and mult(g; aa−1) = s. If a = b ⊗ c,
the only way this could happen is for g to be bib

−1
i′ and to occur as (bicj)(bi′cj)−1 (for

1 � j � s) in aa−1. Therefore, the only possible candidate for c is b−1
i c′, where c′ is the

multiset of numerators of members of aa−1 equal to g. If, with this value of c, we find that
a = b ⊗ c, then we have the factorisation sought; otherwise b does not tensor divide a.

We do not propose to pursue the general question further (see [6] for significant progress).
There is, however, an efficient elementary approach for the special case where r = 2, and,
since it may be used to solve the (2, s)-tensor factorisation problem, which escapes part of
our analysis in Section 5 below, we treat it here.

Suppose then that we have n = 2s, a ∈ A[n], and b = {b1, b2} ∈ A[2]. Define g :=
b2b

−1
1 , so that a = b ⊗ c if and only if a = b1c + g (b1c). Thus b tensor divides a if and

only if there is an s-submultiset c′ of a such that a = c′ + gc′.To discover such a multiset
c′, if it exists, one may proceed as follows.

We assume (as always) that there is a computable linear ordering on A, and that the
n-multiset a may be sorted at a cost of O(n log n) units and searched at a cost of O(log n)

units. Suppose that a has been sorted into the form m[1]a[1] + · · · + m[t]a[t], where
a[1] < · · · < a[t] in A and m[σ] = mult(a[σ]; a).

The special case in which g = 1 (that is, b1 = b2) may be handled very quickly, since
then b tensor divides a if and only if all multiplicities in a are even; moreover, if this
condition is satisfied, then a = b ⊗ c, where c := 1

2 (b−1
1 a) in the sense that c has the same

members as b−1
1 a but with half their multiplicities. A very quick routine will handle this

situation, and this is implemented in lines (3)–(6) of the algorithm below.
For the case where g �= 1, we define a directed graph � on vertices 1, 2, . . . , t by

specifying that there is an edge σ −→ τ if and only if ga[σ] = a[τ]. Thus � is a sort of
Cayley graph describing the action (or partial action) of g on the set of distinct elements of a.
It should be clear that every in-degree and every out-degree is 0 or 1. Therefore � is a disjoint
union of directed paths and directed cycles, the components of the underlying undirected
graph. The paths correspond to sequences of the form (a[σ], ga[σ], g2a[σ], . . . , gl−1a[σ]),
where g−1a[σ] /∈ a and gla[σ] /∈ a (note that l will be 1 if σ is an isolated vertex), and the
cycles correspond to sequences of the form (a[σ], ga[σ], g2a[σ], . . . , gk−1a[σ]), where k

is the order of g (note that k = 1 is now excluded).
Consider any vertex σ . Suppose for the moment that it is the initial vertex of a component

which is a directed path. If c′ exists, then it must contain m[σ]a[σ]; moreover, there must
be a vertex τ with an edge σ −→ τ , and we must have m[σ] � m[τ]. Suppose next that
σ is not the initial vertex of a component which is a directed path. Then there is an edge
ρ −→ σ . If m[ρ] < m[σ], and if c′ exists, then it will have to contain a[σ] with multiplicity
at least m[σ] − m[ρ].

These observations suggest a simple recursive procedure to discover whether a usable
multiset c′ exists, which works well unless all components are directed cycles and the
multiplicities are constant over components. In this case, every component of � is of the
form σ0 −→ σ1 −→ · · · −→ σk−1 −→ σ0 (where, recall, k = ord(g) and k > 1).
If k is even, then, taking �′ to consist of alternate vertices from each component and
c′ := ∑

σ∈�′ m[σ]a[σ], we get a usable sub-multiset c′ of a. If in each component the
multiplicities m[σ] are even, then, taking c′ := ∑

σ∈�
1
2m[σ]a[σ], we get a usable sub-

multiset c′ of a. If, lastly, k is odd and there is a component in which the multiplicities are
odd, then there cannot exist a usable multiset c′, and so b does not tensor divide a.

84https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

This analysis justifies the following algorithm. The graph � (which we shall identify
with its vertex set) initially has vertex set {1, . . . , t} and is described by arrays in[1 . . t] and
out[1 . . t]. These are arrays of length t . The σ -entries are in[σ] and out[σ] respectively,
and the equations in[σ] = ρ and out[ρ] = σ hold if and only if there is an edge ρ −→ σ .
Subsets �0 and �1 of � are maintained as part of the data structure, to record the following
information, which would be costly to recalculate as the recursion progresses.

• �0 is the set of initial vertices of components of � that are directed paths (possibly
isolated vertices).

• �1 is the set of vertices σ for which there is an edge ρ −→ σ with m[ρ] < m[σ]
(where, as above, m[σ] is the multiplicity associated with the vertex σ).

For the reader’s convenience, we make the following points about our presentation of
the algorithm.

• Lines (1), (2), and (7)–(12) initialise the data structure.

• Lines (17)–(24), (27), (28), (30), (31), (34)–(36), (38) and (39) update it as the cal-
culation proceeds.

• Lines (3)–(6) deal with the case where g = 1.

• Each pass of the while-loop at lines (13)–(39) focuses on one vertex σ , as follows.

• If �0 �= ∅, then σ is chosen from �0, lines (15)–(24) operate, and the next pass of
the while-loop starts after line (20′′).
• If �0 = ∅ (so that all components of � are directed k-cycles where k = ord(g))
but �1 �= ∅, then σ is chosen from �1, lines (26)–(31) operate, and the next pass of
the while-loop starts after line (31).

• If �0 = �1 = ∅, then lines (32)–(39) operate.

• Note that at line (26) we have τ ∈ � and υ ∈ � because the component of �

containing σ is a cycle.

• Note that at line (36) the cycle containing σ is broken and replaced by a directed path
of length k − 2 with initial vertex τ ; thus for the next 1

2k − 1 passes of the while-loop, �0
will be non-empty and the remainder of the cycle, which originally contained σ , will be
processed to extinction (while c′ duly grows, of course).

• Similarly, at line (39) the set �1 becomes non-empty (while �0 remains empty), and
so at the next few (k − 1, in fact) passes of the while-loop, the cycle that contained σ will
be processed to extinction by lines (26)–(31).

Algorithm 4.2. Input: multisets a ∈ A[2s] and b = {b1, b2} ∈ A[2].

Output: either c ∈ A[s] such that a = b ⊗ c, or false if no such factorisation exists.

Cost: O(n log n) time units.

Begin:
sort a as m[1]a[1] + · · · + m[t]a[t],

where a[1] < · · · < a[t] in A and m[σ] = mult(a[σ]; a); (1)
define g := b2b

−1
1 and initialise c′ as ∅; (2)

85https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

if g = 1 then (3)
for σ = 1 to t do (4)

if m[σ] is even then c′ := c′ + 1
2m[σ]a[σ] else exit and return false; (5)

endfor; (4′)
define c := b−1

1 c′, exit and return c; (6)
endif; (3′)
[Comment: from now on, g �= 1.]

initialise � and �0 as {1, 2, . . . , t}; initialise �1 as ∅; (7)
initialise in[ρ], out[ρ] to be 0 for all ρ ∈ �; (8)
for σ = 1 to t do (9)

if (∃ρ ∈ �)(ga[ρ] = a[σ]) then (10)
in[σ] := ρ; out[ρ] := σ ; (11)
remove σ from �0; if m[ρ] < m[σ] then adjoin σ to �1; (12)

endif; (10′)
endfor; (9′)
while � �= ∅ do (13)

if �0 �= ∅ then (14)
select σ from �0 and define τ := out[σ]; (15)
if τ = 0 or m[τ] < m[σ] then exit and return false; (16)
c′ := c′ + m[σ]a[σ]; (17)
remove σ from � and from �0 and reset in[τ] := 0; (18)
reset m[τ] := m[τ] − m[σ] and set υ := out[τ]; (19)
if m[τ] = 0 then (20)

remove τ from �; (21)
if υ �= 0 then adjoin υ to �0; (22)

else (20′)
adjoin τ to �0; (23)
if υ �= 0 and m[τ] < m[υ] then adjoin υ to �1; (24)

endif; (20′′)
else (14′)
[Comment: now all components of � are k-cycles, where k = ord(g) > 1.]

if �1 �= ∅ then (25)
select σ from �1 and define ρ := in[σ], τ := out[σ], υ := out[τ]; (26)
c′ := c′ + (m[σ] − m[ρ])a[σ]; (27)
m[τ] := m[τ] − (m[σ] − m[ρ]); m[σ] := m[ρ]; (28)
if m[τ] < 0 then exit and return false; (29)
if m[τ] = 0 then remove τ from � and adjoin υ to �0; (30)
if m[τ] < m[υ] then adjoin υ to �1; (31)

else (25′)
[Comment: now multiplicities are constant over components of �.]

select σ from � and define ρ := in[σ], τ := out[σ]; (32)
if ord(g) is even then (33)

c′ := c′ + m[ρ]a[ρ]; (34)
remove ρ and σ from �; (35)
if τ �= ρ (that is, if g2 �= 1), then adjoin τ to �0,

and reset in[τ] := 0 and out[in[ρ]] := 0; (36)

86https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

else (33′)
if m[σ] is odd then exit and return false; (37)
c′ := c′ + 1

2m[ρ]a[ρ]; (38)
m[ρ] := 1

2m[ρ]; m[σ] := 1
2m[σ]; adjoin τ to �1; (39)

endif; (33′′)
endif; (25′)

endif; (14′)
endwhile; (13′)
set c := b−1

1 c′ and return c; (40)
end.

This algorithm may be costed as follows. Sorting a in line (1) costs O(n log n) units.
Lines (3)–(6) cost O(t), hence O(n) units. Searching for ρ in line (10) costs O(log n)

units, and so, since t � n, the cost of setting up the data structure describing the graph �

is O(n log n) units. The point of using the arrays in and out, and the sets �0 and �1, is to
ensure that each pass of the while-loop starting at line (13) costs a constant amount. At each
pass of the loop, either the output false is returned and the computation stops, or the value
of

∑
σ∈� m[σ] is reduced by an even positive integer. Therefore the number of passes of

the loop is at most s, and so the cost from line (13) on is at most O(n). Thus overall the
computation costs O(n log n).

Now the promised (2, s)-factorisation algorithm concludes this section.

Algorithm 4.3. Input: a multiset a ∈ A[n], where n = 2s.

Output: either b ∈ A[2] and c ∈ A[s] such that a = b ⊗ c, or false if no such factorisation
exists.

Cost: O(n2 log n) time units.

Begin:
for λ = 2 to n do (1)

b := {a1, aλ}; (2)
if Algorithm 4.2 returns c, then exit and return the pair (b, c); (3)

endfor [line (1)];
return false; (4)

end.

Clearly, the cost of this factorisation procedure is at mostn times the cost ofAlgorithm 4.2,
and so it is at most O(n2 log n) time units.

5. The main factorisation algorithm

Algorithm 3.6 does what we want in many cases. It is useless, however, if A has many
elements of order 2. If, for example, A is an elementary abelian 2-group, then—as is easy
to see—there are no recognisable pairs in the sense of Definition 3.4. Therefore the notion
of recognisability needs to be improved.

Definition 5.1. The pair (b, c) in A[r]×A[s] will be said to be recognisable if the following
conditions hold:

(1) there exists g ∈ bb−1 such that either mult(g; bb−1 + cc−1 + bb−1cc−1) = 1 or
g2 = 1 and mult(g; bb−1 + cc−1 + bb−1cc−1) = 2;

87https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

(2) there exists h ∈ cc−1 such that either mult(h; bb−1 + cc−1 + bb−1cc−1) = 1 or
h2 = 1 and mult(h; bb−1 + cc−1 + bb−1cc−1) = 2.

For later use, and to begin to give some substance to the concept of recognisability, we
prove the following lemma.

Lemma 5.2. Suppose that the pair (b, c) in A[r] × A[s] is recognisable, as witnessed by
elements g ∈ bb−1 and h ∈ cc−1. Then

(1) each of b and c is multiplicity-free; in particular, g �= 1 and h �= 1;

(2) if g = bib
−1
i′ and h = cj c

−1
j ′ , then bic ∩ bcl = {bicl} for any l in the relevant range;

similarly, bi′c ∩ bcl = {bi′cl}, bkc ∩ bcj = {bkcj }, and bkc ∩ bcj ′ = {bkcj ′ } for any
k and l in the relevant range.

Proof. Suppose that one of b and c is not multiplicity-free. Without loss of generality, we
may suppose that b1 = b2. Then cj c

−1
l = (b1b

−1
2)(cj c

−1
l) ∈ bb−1cc−1. This is true for all j

and l, and so requirement (2) of Definition 5.1 fails. Thus the pair (b, c) is not recognisable.
This proves clause (1).

Suppose that bicl′ ∈ bcl . Then bicl′ = bkcl for some k. This leads to the equation
g = bib

−1
i′ = (bkb

−1
i′)(clc

−1
l′), which, if l′ �= l, contradicts condition (1) of Definition 5.1.

Thus bic ∩ bcl = {bicl}. The other parts of clause (2) are proved in the same way.

The definition of recognisability is, in effect, a disjunction of four different possibilities.
Let a∗ := bb−1 + cc−1 + bb−1cc−1. The four cases are:

B1C1: (∃g ∈ bb−1)(∃h ∈ cc−1)(mult(g; a∗) = mult(h; a∗) = 1);

B1C2: (∃g ∈ bb−1)(∃h ∈ cc−1)(mult(g; a∗) = 1, h2 = 1, mult(h; a∗) = 2);

B2C1: (∃g ∈ bb−1)(∃h ∈ cc−1)(g2 = 1, mult(g; a∗) = 2, mult(h; a∗) = 1);

B2C2: (∃g ∈ bb−1)(∃h ∈ cc−1)(g2 = 1, mult(g; a∗) = 2, h2 = 1, mult(h; a∗) = 2).

Although they have points in common, these cases differ sufficiently that we find it best to
treat them separately. The following simple fact is basic for most of the discussion.

Lemma 5.3. In case BβCγ , mult(g; aa−1) = βs and mult(h; aa−1) = γ r .

These equations follow from the fact that aa−1 = sbb−1 + rcc−1 + bb−1cc−1, while
in the case BβCγ ,

mult(g; bb−1) = β; mult(g; cc−1)= 0; mult(g; bb−1cc−1) = 0;
mult(h; bb−1) = 0; mult(h; cc−1)= γ ; mult(h; bb−1cc−1) = 0.

Lemma 5.4. Suppose that a = b ⊗ c, that 2 � r � s, and that the pair (b, c) is B1C1-
recognisable. Let g and h be elements of bb−1 and cc−1 that witness condition B1C1, let b′
be the r-multiset of numerators of quotients in aa−1 equal to h, and let c′ be the s-multiset
of numerators of quotients in aa−1 equal to g. Then:

(1) mult(g; b′b′−1) = 1;
(2) b′ ∩ c′ is a singleton {d} and a = (d−1)b′ ⊗ c′.

The proof is exactly the same as that of Lemma 3.5, and is therefore omitted here. For
the remaining cases, we require that r � 3, but by Algorithm 4.3, we lose nothing thereby.

88https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Lemma 5.5. Suppose that a = b ⊗ c, that 3 � r � s, and that the pair (b, c) is B2C1-
recognisable. Let g and h be elements of bb−1 and cc−1 that witness condition B2C1, let b′
be the r-multiset of numerators of quotients in aa−1 equal to h, and let c′′ be the 2s-multiset
of numerators of quotients in aa−1 equal to g. Then:

(1) mult(g; b′b′−1) = 2;
(2) |b′ ∩ c′′| = 2;
(3) if y ∈ b′ \ c′′, z ∈ b′ ∩ c′′ and c′ := yz−1c′′ ∩ a, then c′ is an s-multiset, b′ ∩ c′ is a

singleton {d} and a = (d−1)b′ ⊗ c′.

Proof. Without loss of generality, g = b1b
−1
2 = b2b

−1
1 and h = c1c

−1
2 . Then the quotients

in aa−1 equal to h are (bic1)(bic2)
−1 and b′ = bc1. Therefore b′b′−1 = bb−1, and so

mult(g; b′b′−1) = 2, as stated in clause (1).
The quotients in aa−1 equal to g are (b1cj)(b2cj)

−1 and (b2cj)(b1cj)
−1, and so c′′ =

b1c + b2c. Therefore b′ ∩ c′′ ⊆ (bc1 ∩ b1c) + (bc1 ∩ b2c). Since bc1 ∩ b1c = {b1c1} and
bc1 ∩ b2c = {b2c1} by Lemma 5.2(2), we have that b′ ∩ c′′ = {b1c1, b2c1}. In particular,
|b′ ∩ c′′| = 2 as stated in clause (2).

Now let y ∈ b′ \ c′′ and z ∈ b′ ∩ c′′. Without loss of generality, y = b3c1 and z = b1c1.
Then (yz−1)c′′ = (b3b

−1
1)c′′ = b3c + (b3g)c. Suppose that b3gcj ∈ a, say b3gcj =

bkcl for some k and l. Then g = (bkb
−1
3)(clc

−1
j), in contradiction to the assumption that

mult(g; bb−1 + cc−1 + bb−1cc−1) = 2. Therefore, if c′ := (yz−1)c′′ ∩ a, then c′ = b3c.
It now follows from Lemma 5.2(2) that b′ ∩ c′ = {b3c1}, and so a = d−1b′ ⊗ c′, where
d := b3c1; that is, d is the unique element of b′ ∩ c′. This completes the proof of the
lemma.

Lemma 5.6. Suppose that a = b ⊗ c, that 3 � r � s, and that the pair (b, c) is B1C2-
recognisable. Let g and h be elements of bb−1 and cc−1 that witness condition B1C2, let b′′
be the 2r-multiset of numerators of quotients in aa−1 equal to h, and let c′ be the s-multiset
of numerators of quotients in aa−1 equal to g. Then:

(1) mult(g; b′′b′′−1) = 2;
(2) |b′′ ∩ c′| = 2;
(3) if y ∈ c′ \ b′′, z ∈ b′′ ∩ c′ and b′ := yz−1b′′ ∩ a, then b′ is an r-multiset, b′ ∩ c′ is a

singleton {d} and a = (d−1)b′ ⊗ c′.

Notice that this is not quite the same as the previous lemma with the roles of b, g and
c, h reversed. The reason is that for computational purposes deriving from the fact that r is
the smaller of r and s, it seems better to seek h before g. Nevertheless, the proof is similar
(although here b′′b′′−1 is the 2r(2r−1)-multiset 2bb−1 +2bb−1h+2rh), and will therefore
be omitted.

Lemma 5.7. Suppose that a = b ⊗ c, that 3 � r � s, and that the pair (b, c) is B2C2-
recognisable. Let g and h be elements of bb−1 and cc−1 that witness condition B2C2,
let b′′ be the 2r-multiset of numerators of quotients in aa−1 equal to h, and let c′′ be the
2s-multiset of numerators of quotients in aa−1 equal to g. Then:

(1) mult(g; b′′b′′−1) = 4;
(2) |b′′ ∩ c′′| = 4;
(3) if y1 ∈ b′′ \ c′′ and y2 ∈ c′′ \ b′′, then ∃z ∈ b′′ ∩ c′′ such that if b′ := (y2z

−1)b′′ ∩ a

and c′ := (y1z
−1)c′′ ∩ a), then b′ ∩ c′ is a singleton {d} and a = (d−1b′) ⊗ c′.

89https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Proof. We may suppose that g = b1b
−1
2 = b2b

−1
1 and h = c1c

−1
2 = c2c

−1
1 , and then

b′′ = bc1 + bc2 = b ⊗ {c1, c2}, c′′ = b1c + b2c = {b1, b2} ⊗ c.

Now b′′b′′−1 = 2bb−1 + 2bb−1h and mult(g; bb−1h) = 0 since bb−1h ⊆ bb−1cc−1.
Therefore mult(g; b′′b′′−1) = 2 mult(g; bb−1) = 4.

Clearly, {b1c1, b2c1, b1c2, b2c2} ⊆ b′′ ∩ c′′. The fact that no elements of the form bicj
with i � 3 and j ∈ {1, 2} lie in c′′ follows easily from clause (2) of Lemma 5.2. Thus
b′′ ∩ c′′ = {b1c1, b2c1, b1c2, b2c2} and, in particular, |b′′ ∩ c′′| = 4.

Let y1 ∈ b′′ \ c′′ and y2 ∈ c′′ \ b′′. Without loss of generality, y1 = b3c1 and y2 = b1c3.
Take z := b1c1. Then(

y1z
−1)c′′ ∩ a = (

b3b
−1
1

)
c′′ ∩ a = (

b3c + (b3g)c
) ∩ a.

Now b3c ⊆ a, and we claim that (b3g)c ∩ a = ∅. For suppose that b3gcj = bicl for some
i, j, l in the relevant range. Then g = (bib

−1
3)(clc

−1
j), and this contradicts the fact that g is

non-trivial (see Lemma 5.2) and occurs only as b1b
−1
2 and b2b

−1
1 in bb−1+cc−1+bb−1cc−1.

Thus if c′ := (y1z
−1)c′′ ∩a, then c′ = b3c. Similarly, if b′ := (y2z

−1)b′′ ∩a, then b′ = bc3.
Therefore b′ ∩ c′ = {b3c3} by Lemma 5.2(2), and a = (d−1b′) ⊗ c′, where d is the unique
element b3c3 of b′ ∩ c′.

The four lemmas justify the following algorithm for tensor factorisation. To make the
algorithm more readable, we have extracted four segments of it and called them procedures,
one to deal with each of the forms of recognisability described above. Those procedures
will be described below.

Algorithm 5.8. Input: a multiset a of size n from A, where n = rs, and 3 � r � s.

Output: either a tensor factorisation a = b ⊗ c, in which b ∈ A[r], c ∈ A[s], or false if no
such factorisation in which the pair (b, c) is recognisable, exists.

Cost: O(n3 log n) time units.

Begin:
sort aa−1 as m[1]g[1] + · · · + m[t]g[t],

where g[1] < · · · < g[t] in A and m[σ] = mult(g[σ]; aa−1); (1)
create an array list[1 . . t] in which list[σ] is a list of the pairs (ν, ν′)

such that g[σ] = aνa
−1
ν′ ; (2)

list-c1 := {h ∈ aa−1 | h2 �= 1 , mult(h; aa−1) = r}; (3)
list-c2 := {h ∈ aa−1 | h2 = 1 , mult(h; aa−1) = 2r}; (4)
for h ∈ list-c1 do (5)

b′ := r-multiset of numerators of members of aa−1 equal to h; (6)
sort b′b′−1; (7)
list-b1 := {g ∈ b′(b′)−1 | mult(g; b′b′−1) = 1 , mult(g; aa−1) = s}; (8)
list-b2 := {g ∈ b′(b′)−1 | g2 = 1 ,

mult(g; b′b′−1) = 2 , mult(g; aa−1) = 2s}; (9)
for g ∈ list-b1 do Procedure B1C1; (10)
for g ∈ list-b2 do Procedure B2C1; (11)

endfor [line (5)];

90https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

for h ∈ list-c2 do (12)
b′′ := 2r-multiset of numerators of members of aa−1 equal to h; (13)
sort b′′b′′−1; (14)
list-b1 := {g ∈ b′′(b′′)−1 | g2 �= 1,

mult(g; b′′b′′−1) = 2 , mult(g; aa−1) = s}; (15)
list-b2 := {g ∈ b′′(b′′)−1 | g2 = 1,

mult(g; b′′b′′−1) = 4 , mult(g; aa−1) = 2s}; (16)
for g ∈ list-b1 do Procedure B1C2; (17)
for g ∈ list-b2 do Procedure B2C2; (18)

endfor [line (12)];
return false; (19)

end.

Since |aa−1| = n(n−1), the cost of line (1) is O(n2 log n) (see the discussion preceding
Theorem 2.2). Line (2) can be implemented by running through the collection of pairs (ν, ν′)
(where, recall, the convention is that 1 � ν � n, 1 � ν′ � n, and ν �= ν′), searching the
sorted version of aa−1 for the appropriate element g[σ] and appending (ν, ν′) to list[σ].
Since searching by list-bisection costs O(log t) element-comparisons (where, as in line (1), t
is the number of distinct elements of aa−1, so that t < n2), the cost of line (2) is O(n2 log n)

time units. The cost of lines (3) and (4) together is obviously bounded by t , and hence is
O(n2).

Lines (6) and (7) together cost O(r2 log r) units, and, by Theorem 2.3, lines (7) and (8)
cost O(r2 log n) units. Since |list-b1| < r2 and |list-b2| < 1

2 r2, lines (10) and (11) cost
less than r2cost(B1C1) and 1

2 r2cost(B2C1) respectively, where cost(BβCγ) is the number
of time units required for Procedure BβCγ . Therefore one pass of the for-loop starting at
line (5) costs at most

O(r2(log n + cost(B1C1) + cost(B2C1))

time units. Similarly, one pass of the for-loop starting at line (12) costs at most

O(r2(log n + cost(B1C2) + cost(B2C2))

units. Since |list-c1| + |list-c2| < n2/r , the total cost of the algorithm is at most
O(rn2(k + log n)), where k is the greatest of the costs of running Procedures BβCγ .
It will emerge below that k is O(n log n). Therefore the algorithm has a running cost at
most O(rn3 log n).

The four procedures called in the course of Algorithm 5.8 are as follows.

Procedure B1C1. Data: the parameters n, r and s and the n-multiset a from the main
algorithm; an element h ∈ aa−1 such that mult(h; aa−1) = r; the r-multiset b′ of numera-
tors of members of aa−1 equal to h; an element g ∈ b′(b′)−1 such that mult(g; b′b′−1) = 1
and mult(g; aa−1) = s.

Cost: O(n log n) time units.

Begin:
c′ := s-multiset of numerators of members of aa−1 equal to g; (1)
if b′ ∩ c′ is a singleton {d} then (2)

b := d−1b′; c := c′; (3)
if a = b ⊗ c then exit and return (b, c); (4)

endif [line (2)];
end.

91https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Procedure B2C1. Data: the parameters n, r and s and the n-multiset a from the main
algorithm; an element h ∈ aa−1 such that mult(h; aa−1) = r; the r-multiset b′ of numer-
ators of members of aa−1 equal to h; an element g ∈ b′b′−1 such that g �= 1, g2 = 1,
mult(g; b′b′−1) = 1 and mult(g; aa−1) = 2s.

Cost: O(n log n) time units.

Begin:
c′′ := 2s-multiset of numerators of members of aa−1 equal to g; (1)
if |b′ ∩ c′′| = 2 then (2)

select y from b′ \ c′′ and z from b′ ∩ c′′; (3)
c′ := (yz−1)c′′ ∩ a; (4)
if |c′| = s and b′ ∩ c′ is a singleton {d} then (5)

b := d−1b′; c := c′; (6)
if a = b ⊗ c then exit and return (b, c); (7)

endif [line (5)];
endif [line (2)];

end.

Procedure B1C2. Data: the parameters n, r and s and the n-multiset a from the main
algorithm; an element h ∈ aa−1 such that h2 = 1 and mult(h; aa−1) = 2r; the 2r-
multiset b′′ of numerators of members of aa−1 equal to h; an element g ∈ b′′b′′−1 such that
mult(g; b′′b′′−1) = 2, mult(g; aa−1) = s, and g �= 1.

Cost: O(n log n) time units.

Begin:
c′ := s-multiset of numerators of members of aa−1 equal to g; (1)
if |b′′ ∩ c′| = 2 then (2)

select y from c′ \ b′′ and z from b′′ ∩ c′; (3)
b′ := (yz−1b′′) ∩ a; (4)
if |b′| = r and b′ ∩ c′ is a singleton {d} then (5)

b := d−1b′; c := c′; (6)
if a = b ⊗ c then exit and return (b, c); (7)

endif [line (5)];
endif [line (2)];

end.

Procedure B2C2. Data: the parameters n, r and s and the n-multiset a from the main
algorithm; an element h ∈ aa−1 such that mult(h; aa−1) = 2r and h2 = 1; the 2r-multiset
b′′ of numerators of members of aa−1 equal to h; an element g from b′′b′′−1 such that
mult(g; b′′b′′−1) = 4, mult(g; aa−1) = 2s, and g2 = 1.

Cost: O(n log n) time units.

Begin:
c′′ := 2s-multiset of numerators of members of aa−1 equal to g; (1)
if |b′′ ∩ c′′| = 4 then (2)

select y1 from b′′ \ c′′ and y2 from c′′ \ b′′; (3)

92https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

for z ∈ b′′ ∩ c′′ do (4)
b′ := (y2z

−1)b′′ ∩ a; c′ := (y1z
−1)c′′ ∩ a; (5)

if |b′| = r and |c′| = s and b′ ∩ c′ is a singleton {d} then (6)
b := d−1b′; c := c′; (7)
if a = b ⊗ c then exit and return (b, c); (9)

endif [line (6)];
endfor [line (4)];

endif [line (2)];
end.

Each of the procedures is justified by the corresponding lemma. If there really is a tensor
factorisation a = b ⊗ c in which the pair (b, c) is recognisable, then the search for possible
witnesses g and h must succeed at some point, and the computation will certainly yield
some factorisation; that factorisation might perhaps not be the original one, however.

The four procedures may all be costed in essentially the same way, and so we treat only
Procedure B1C1. The point of line (2) of the main algorithm is to ensure that finding the
numerators of members of aa−1 equal to g costs very little—the cost of line (1) is O(s)

units. Line (2) can obviously be done at a cost of at most rs (that is, n) comparisons;
line (3) costs very little; and by Theorem 2.2, the cost of line (4) is O(n log n) comparisons.
Therefore the procedure costs at most O(n log n) time units.

6. The frequency of recognisable factorisations of multisets

The algorithm that we have produced in Section 5 is a deterministic solution to a special
case of the combinatorial factorisation problem. In practice (that is to say, in applications to
matrix groups), we propose to use it as the basis of a Monte Carlo algorithm by interpreting
the output false as indicating that the input a has no tensor factorisation (with factors of
sizes r and s). This interpretation will sometimes be incorrect. The algorithm would be of
no interest if it gave the wrong answer too often, and so in this section we shall prove that
wrong answers are rare.

This needs careful interpretation. First, there must be an acceptable concept of what it
means to be rare. As far as that goes, in this section we assume that A is finite, but that
|A| is large compared with n2. We use the uniform probability distribution on A[n] (and
on A[r], A[s] and A[r] × A[s]), and we interpret ‘rare’ as ‘occurring with low probability’.
Unfortunately, the uniform distribution is not particularly convenient for calculations. The
distribution induced from the uniform distribution onAn by the natural mapφ : An −→ A[n]
would be easier to use, but does not seem as well adapted to applications. The main test
of the acceptability of a definition of rarity should be that it correlates well with rarity in
practice. But ‘rarity in practice’ is hard to define. All we can offer in defence of our choice
of definition is that it seems to be appropriate for the applications that we have in mind, and
that it is a reasonably natural one.

Secondly, we need to be clear about the context in which we accept that wrong answers
are rare. The operation ⊗ is a map A[r]×A[s] −→ A[n]. Elements of A[n] that lie in the image
will be said to be tensor decomposable or sometimes (r, s)-decomposable. Our algorithm
certainly gives a correct response whenever the input a is not (r, s)-decomposable, and
there is an intuitive argument that indicates that decomposable n-multisets are rare. Fix on
a bijection {1, . . . , r} × {1, . . . , s} −→ {1, . . . , n}, and use this to define a tensor product
map ⊗ : Ar ×As −→ An in the natural way. Since in this context (of sequences, rather than

93https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

multisets), x⊗y = x′⊗y′ if and only if xiyj = x′
iy

′
j for all i, j , one has that x⊗y = x′⊗y′

if and only if there exists g ∈ A such that x′ = gx and y′ = g−1y, and so this version of
⊗ is a |A|-to-one map. On ‘most’ of An, the natural map φ : An −→ A[n] is (n!)-to-one.
This suggests that |A[n]| is approximately |A|n/n!, that the number of decomposable n-
multisets is approximately |A|r+s−1/n!, and therefore that the probability that a randomly
chosen n-multiset is (r, s)-decomposable should be approximately |A|−(n−r−s+1), that is,
|A|−(r−1)(s−1), which is very small indeed. Since it is only for decomposable inputs that
our algorithm could give a wrong answer, if input multisets a are chosen at random from
A[n], then the probability of failure is extremely low.

In practice, however, the context is a more limited one. Often we know (or believe)
that a is (r, s)-decomposable and want to use the algorithm as a method for finding a
tensor factorisation. Therefore our interest becomes focused on rather different probability
measures, namely versions of the probability of failure, given that a is decomposable. One
natural possibility would be the conditional probability that the algorithm yields a wrong
answer, given that the input n-multiset is (r, s)-decomposable. Another is the probability
that a pair (x, y) chosen randomly from A[r] × A[s] should not be recognisable. Although
these two measures of probability are likely to differ very little, that seems hard to prove, and
we have had to choose between them. We shall work with the latter. There are two reasons
for our choice. One is pragmatic—we have found Prob[Non-Recog] (defined explicitly
below) far easier to work with than the conditional probability. The other is practical—it is
Prob[Non-Recog] that turns out to be relevant in applications to matrix group algorithms.
With this in mind, we define

Y := {
(b, c) ∈ A[r] × A[s] | (b, c) is recognisable

}
,

Z := A[r] × A[s] \ Y ,

Prob[Non-Recog] := |Z |/|A[r] × A[s]|.
Our intention is to prove the following theorem.

Theorem 6.1. Suppose that n = rs and r � s. If |A| � 1
2 (s − 1)n, then

Prob[Non-Recog] � 2n2

|A| .

The proof will occupy the remainder of this section. We begin with a general lemma.
Define

A
[n]
mult := {

a ∈ A[n] | a is not multiplicity-free
}
,

and

Prob[mult] :=
∣∣A[n]

mult

∣∣∣∣A[n]∣∣ ,

so that Prob[mult] may be thought of as the probability that a randomly chosen n-multiset
from A has multiplicities.

Lemma 6.2. Prob[mult] <
n(n − 1)

|A| .

Proof. An n-multiset a is determined by the family (mult(g; a))g∈A of multiplicities, and
this family may be considered as an ordered partition of n into |A| non-negative parts.

94https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Such ordered partitions are in one-to-one correspondence with ordered partitions of |A|+n

into |A| positive parts. Writing |A|+n as (1+1+· · ·+1), and replacing each of a selected
set of |A| − 1 of the + symbols with the sequence of three symbols) + (, one proves the
well-known fact that the number of ordered partitions of |A| + n into positive parts is the
binomial coefficient (|A| + n − 1

|A| − 1

)
,

whence ∣∣A[n]∣∣ =
(|A| + n − 1

n

)
.

On the other hand, it should be clear that the number of multiplicity-free elements of A[n]
is

(|A|
n

)
. Thus

∣∣A[n]
mult

∣∣ =
(|A| + n − 1

n

)
−

(|A|
n

)

and

Prob[mult] =
∣∣A[n]

mult

∣∣∣∣A[n]∣∣ = 1 −
n−1∏
ν=1

|A| − ν

|A| + ν
.

If ε > 0, then (1 − ε)/(1 + ε) > 1 − 2ε, and if 0 < ην < 1 for all relevant ν, then∏
(1 − ην) > 1 −

∑
ην.

Therefore

Prob[mult] <

n−1∑
ν=1

2
ν

|A| = n(n − 1)

|A| ,

as the lemma states.

As a first step in the proof of Theorem 6.1, we divide Z into two parts. Recall from
Lemma 5.2(1) that if (b, c) is a recognisable pair of multisets, then each of b and c is
multiplicity-free. Define

Z0 := {(b, c) ∈ Z | b or c is not multiplicity-free},
Z1 := Z \ Z0.

An immediate corollary of Lemma 6.2 is the following lemma.

Lemma 6.3.
|Z0|

|A[r] × A[s]| <
r(r − 1) + s(s − 1)

|A| .

Clearly, the probability we are seeking, that is, the probability that a randomly chosen
pair (b, c) ∈ A[r] × A[s] is not recognisable, is at most

Prob[(b, c) ∈ Z0] + Prob[(b, c) ∈ Z1].
Lemma 6.3 gives a satisfactory estimate for Prob[(b, c) ∈ Z0] and our problem is to find a
bound for Prob[(b, c) ∈ Z1].

95https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Define

Zb := {
(b, c) ∈ A[r] × A[s] | b and c are multiplicity-free and

clause (1) of Definition 5.1 fails
};

Zc := {
(b, c) ∈ A[r] × A[s] | b and c are multiplicity-free and

clause (2) of Definition 5.1 fails
};

Pb := |Zb|
|A[r] × A[s]| ;

Pc := |Zc|
|A[r] × A[s]| .

Then Prob[(b, c) ∈ Z1] � Pb + Pc.

Lemma 6.4. Suppose that n = rs, as usual. If |A| � 1
2 (r − 1)n, then

Pb � n2 − r(r − 1)

|A| ,

and if |A| � 1
2 (s − 1)n, then

Pc � n2 − s(s − 1)

|A| .

Proof. We prove only the first assertion, and ensure that we do so without using the as-
sumption that r � s; the other then follows by interchange of b with c and r with s.

If (b, c) ∈ Zb, then for every relevant i, k, some equation of the form bib
−1
k = z must

hold, where z ∈ bb−1 ∪ cc−1 ∪ bb−1cc−1 and z �= (bib
−1
k)±1. We shall focus just on

the first such equation, namely that for b1b
−1
2 . Recall from Section 2, the convention that

1 � i � r , 1 � k � r , 1 � j � s and 1 � l � s, and define index sets

Ib := {(i, k) | i �= k, (i, k) �= (1, 2), (i, k) �= (2, 1)},
Ic := {(j, l) | j �= l},

Ibc := {(i, k; j, l) | (i, k) ∈ Ib ∪ {(2, 1)}, (j, l) ∈ Ic},
and I := Ib∪Ic∪Ibc. For ξ ∈ I , let zξ denote bib

−1
k , cj c

−1
l , or (bicj)(bkcl)

−1 appropriately,
and define

Zξ := {
(b, c) ∈ A[r] × A[s] | b1b

−1
2 = zξ , and b and c are multiplicity-free

}
,

so that Zb ⊆ ⋃{Zξ | ξ ∈ I }. Define

Eξ := {
(b, c) ∈ Ar × As | b1b

−1
2 = zξ , and b and c are multiplicity-free

}
.

If ξ ∈ I , then

|Eξ | � |A|(|A| − 1) · · · (|A| − r + 2) × |A|(|A| − 1) · · · (|A| − s + 1).

Because we are dealing here with multiplicity-free sequences, the natural projection Eξ −→
Zξ is an r!s!-to-1 map, and so

|Zξ | � 1

|A| − r + 1

(|A|
r

)(|A|
s

)
.

Now |I | = r(r − 1) − 2 + s(s − 1) + (r(r − 1) − 1)s(s − 1) = r(r − 1)(s2 − s + 1) − 2,
and so

|Zb| <
r(r − 1)(s2 − s + 1)

|A| − r + 1

(|A|
r

)(|A|
s

)
.

96https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

Suppose that |A| � 1
2 (r − 1)n. Suppose also (seeking a contradiction) that

r(r − 1)(s2 − s + 1)

|A| − r + 1
� n2 − r(r − 1)

|A| .

Now

r(r − 1)(s2 − s + 1) = n2 − rn − sn + n + r(r − 1),

and so

|A|(rn + sn − n − 2r(r − 1)
)

� (r − 1)
(
n2 − r(r − 1)

)
.

From our assumption that |A| � 1
2 (r − 1)n, we find that

n(rn + sn − n − 2r(r − 1)) � 2n2 − 2r(r − 1);
that is,

(r + s − 3)n2 � (2n − 2)r(r − 1).

Since s � 2, this yields that

(r − 1)n2 � (2n − 2)r(r − 1) < 2nr(r − 1),

and since n = rs, this leads to the inequality s < 2, which is false. Thus if |A| � 1
2 (r −1)n,

then
r(r − 1)(s2 − s + 1)

|A| − r + 1
<

n2 − r(r − 1)

|A| ,

and so

|Zb| <
n2 − r(r − 1)

|A|
(|A|

r

)(|A|
s

)
.

It follows immediately that

|Zb|∣∣A[r] × A[s]∣∣ <
(n2 − r(r − 1))

|A| ,

which is what we were seeking to prove.

Proof of Theorem 6.1. We know that

Prob[Non-Recog] � Prob[(b, c) ∈ Z0] + Prob[(b, c) ∈ Z1].
But

Prob[(b, c) ∈ Z0] � r(r − 1) + s(s − 1)

|A| ,

by Lemma 6.3, and

Prob[(b, c) ∈ Z1] � Pb + Pc � 2n2 − r(r − 1) − s(s − 1)

|A|
by Lemma 6.4. Therefore

Prob[Non-Recog] � 2n2

|A| ,
as the theorem states.

97https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

7. Uniqueness of factorisations of multisets

Tensor factorisations are certainly not unique, even up to equivalence as defined in
Section 2. Trivially, if a = b ⊗ c and r = s, then also a = c ⊗ b. Even if we agree to regard
such factorisations as being essentially the same, then tensor factorisations still need not be
unique.

Example 7.1. Suppose that b ∈ A[r], that c ∈ A[s], and that c has a tensor factorisation
b′ ⊗ c′′, where b′ ∈ A[r]. If c′ := b ⊗ c′′, then c′ ∈ A[s] and b ⊗ c = b′ ⊗ c′.

Example 7.2. Suppose thatb is a subgroup of order r inA, that c ∈ A[s], and thata = b⊗c ∈
A[n]. Let φ : {1, . . . , s} −→ b be any function, and define c′ := {φ(j)cj | 1 � j � s}.
Then a = b ⊗ c′.

Definition 7.3. A tensor factorisation a = b ⊗ c, where (b, c) ∈ A[r] × A[s] will be said
to be essentially unique if whenever a = b′ ⊗ c′, where (b′, c′) ∈ A[r] × A[s], either there
exists λ ∈ A such that b′ = λb and c′ = λ−1c, or r = s and there exists λ ∈ A such that
b′ = λc and c′ = λ−1b.

It seems possible that tensor factorisations a = b⊗c where the pair (b, c) is recognisable
are essentially unique, but we have not been able to prove or disprove this. The matter can
be settled on stronger hypotheses, however.

Definition 7.4. The pair (b, c) in A[r] × A[s] (where, as usual, 2 � r � s) will be said to
be clearly recognisable if the following conditions hold:

(1) for all g ∈ bb−1, either mult(g; bb−1 + cc−1 + bb−1cc−1) = 1 or
g2 = 1 and mult(g; bb−1 + cc−1 + bb−1cc−1) = 2;

(2) for all g ∈ cc−1, either mult(g; bb−1 + cc−1 + bb−1cc−1) = 1 or
g2 = 1 and mult(g; bb−1 + cc−1 + bb−1cc−1) = 2;

(3) for all g ∈ bb−1cc−1, either mult(g; bb−1cc−1) < r or
g2 = 1 and mult(g; bb−1cc−1) < 2r .

Although this is considerably more demanding than the definition of recognisability, the
proof of Theorem 6.1 shows in fact that pairs (b, c) satisfying conditions (1) and (2) occur
with frequency bigger than 1−2n2|A|−1, and it seems likely that clause (3) does not reduce
this significantly.

Theorem 7.5. Suppose that a = b ⊗ c, where (b, c) is a clearly recognisable pair from
A[r] × A[s] and 2 � r � s. If also a = b′ ⊗ c′, where (b′, c′) ∈ A[r] × A[s], then either
there exists λ ∈ A such that b′ = λb and c′ = λ−1c, or r = s and there exists λ ∈ A such
that b′ = λc and c′ = λ−1b.

Proof. Suppose first that r < s. Since aa−1 = sbb−1 + rcc−1 + bb−1cc−1, by (3) above,
the only elements of aa−1 that have multiplicity greater than or equal to r are those in
bb−1 or cc−1. Then, by (2), the elements of cc−1 can be recognised within aa−1 as being
those which have multiplicity r , or which have order 2 and multiplicity 2r . And by (1) the
elements of bb−1 can be recognised within aa−1 as being those which have multiplicity s,
or which have order 2 and multiplicity 2s. Thus bb−1cc−1 can be recognised as that sub-
multiset of aa−1 which consists of elements with multiplicity less than r . Now aa−1 =
sb′b′−1 + rc′c′−1 + b′b′−1c′c′−1, and it follows that bb−1cc−1 ⊆ b′b′−1c′c′−1. Since these
multisets both have size r(r − 1)s(s − 1), in fact b′b′−1c′c′−1 = bb−1cc−1. Then also,

98https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

by comparing elements of multiplicity r or 2r and elements of multiplicity s or 2s, we
find that b′b′−1 = bb−1 and c′c′−1 = cc−1. Consequently, the pair (b′, c′) also is clearly
recognisable.

At this point, the argument divides into four cases corresponding to B1C1, B2C1, B1C2
and B2C2, as in Section 5. In the first of these, there exist g ∈ bb−1 and h ∈ cc−1 such
that mult(g; bb−1 + cc−1 + bb−1cc−1) = 1 and mult(h; bb−1 + cc−1 + bb−1cc−1) = 1.
Without loss of generality, g = b1b

−1
2 = b′

1b
′−1
2 and h = c1c

−1
2 = c′

1c
′−1
2 . The multiset

of numerators of quotients in aa−1 equal to h is on the one hand bc1, and on the other
hand b′c′

1. Therefore if λ := c1c
′−1
1 , then b′ = λb. It follows similarly that c′ = µc, where

µ := b1b
′−1
1 . Now b1c1 is the only element of a that occurs both as a numerator of a quotient

in aa−1 equal to g, and as a numerator of a quotient in aa−1 equal to h. The same is true of
b′

1c
′
1, and so b1c1 = b′

1c
′
1. Consequently, µ = λ−1 and b ⊗ c, b′ ⊗ c′ are equivalent tensor

factorisations of a.
Cases B2C1 and B1C2 are left to the reader, and we turn to case B2C2. Here we have

g ∈ bb−1, h ∈ cc−1 such that mult(g; bb−1 + cc−1 + bb−1cc−1) = 2 and g2 = 1, and
mult(h; bb−1+cc−1+bb−1cc−1) = 1 andh2 = 1.Without loss of generality,g = b1b

−1
2 =

b′
1b

′−1
2 and h = c1c

−1
2 = c′

1c
′−1
2 . Notice that (gh)2 = 1 and mult(gh; bb−1cc−1) � 4

since gh occurs in bb−1cc−1 as b1b
−1
2 c1c

−1
2 , b2b

−1
1 c1c

−1
2 , b1b

−1
2 c2c

−1
1 , b2b

−1
1 c2c

−1
1 . By

clause (3) of Definition 7.4, we must therefore have r � 3. The multiset b′′ of numerators of
quotients in aa−1 equal to h is on the one hand bc1 +bc2, and on the other hand b′c′

1 +b′c′
2.

The multiset c′′ of numerators of quotients in aa−1 equal to g is on the one hand b1c + b2c,
and on the other hand b′

1c
′ + b′

2c
′. As in Lemma 5.7, |b′′ ∩ c′′| = 4, and if y1 ∈ b′′ \ c′′ and

y2 ∈ c′′ \ b′′, then ∃z ∈ b′′ ∩ c′′ such that (y2z
−1)b′′ ∩ a = λb and (y1z

−1)c′′ ∩ a = µc

for some λ, µ ∈ A. Equally, (y2z
−1)b′′ ∩ a = λ′b′ and (y1z

−1)c′′ ∩ a = µ′c′ for some
λ′, µ′ ∈ A. It is not hard to prove that λµ = λ′µ′, and it follows that the tensor factorisations
a = b ⊗ c and a = b′ ⊗ c′ are equivalent.

There remains the situation where r = s. It follows as before that bb−1cc−1 can be
recognised as the sub-multiset of aa−1 consisting of elements with multiplicity less than r

and that b′b′−1c′c′−1 = bb−1cc−1. Therefore also b′b′−1+c′c′−1 = bb−1+cc−1. Consider
case B1C1, in which there exist g ∈ bb−1, h ∈ cc−1 such that mult(g; bb−1 + cc−1 +
bb−1cc−1) = 1 and mult(h; bb−1 + cc−1 + bb−1cc−1) = 1. Without loss of generality,
g = b1b

−1
2 and h = c1c

−1
2 . Let b′′ be the multiset of numerators of quotients in aa−1

equal to h, and c′′ the multiset of numerators of quotients equal to g, so that b′′ = bc1 and
c′′ = b1c. Considering a as b′ ⊗c′, we will find (without loss of generality) that b′′ is b′c′

1 or
b′

1c
′ and c′′ is b′c′

j or b′
ic

′. Now b′′b′′−1+c′′c′′−1 = bb−1+cc−1 = b′b′−1+c′c′−1, whereas

(b′c′
1)(b

′c′
1)

−1 + (b′c′
j)(b

′c′
j)

−1 = 2b′b′−1 and (b′
1c

′)(b′
1c

′)−1 + (b′
ic

′)(b′
ic

′)−1 = 2c′c′−1.

Since mult(g; b′b′−1 + c′c′−1) = 1, b′b′−1 + c′c′−1 �= 2b′b′−1 and b′b′−1 + c′c′−1 �=
2c′c′−1. Therefore either b′′ = b′c′

1 and c′′ = b′
ic

′, or (without loss of generality) b′′ = b′
1c

′
and c′′ = b′c′

j . Cases B2C1, B1C2 and B2C2 are similar, and lead to the same conclusion.
From there on, the argument is the same as that for the situation where r < s, and we find
that b′ ⊗ c′ is equivalent either to b ⊗ c or to c ⊗ b, as required.

Acknowledgements. We are grateful to the EPSRC for Research Grant GR/K69186, which
made this collaboration possible. The research of the second author was supported also by an
Australian Research Council grant. We are grateful also to Mr Jia Lun Huang for corrections
to the previous draft of this work, and for confirming in [6] that our ideas are workable in
practice.

99https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001054

Combinatorial tensor factorisation

References

1. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, Data structures and
algorithms (Addison-Wesley, Reading, MA, 1983). 79

2. Richard Arratia, A. D. Barbour and Simon Tavaré, ‘On random polynomials over
finite fields’, Math. Proc. Cambridge Philos. Soc. 114 (1993) 347–368. 77

3. Catherine Greenhill, ‘From multisets to matrix groups: some algorithms related to
the exterior square’ DPhil dissertation, Oxford, 1996. 78

4. Catherine Greenhill, ‘An algorithm for recognising the exterior square of a matrix’,
Linear and Multilinear Algebra 46 (1999) 213–244. 78

5. Catherine Greenhill, ‘An algorithm for recognising the exterior square of a multiset’,
LMS J. Comput. Math. 3 (2000) 96-116; http://www.lms.ac.uk/jcm/3/lms1999-021. 78

6. Jia Lun Huang, ‘The implementation of a factorisation algorithm for combinatorial
tensor products’, MSc dissertation, Oxford, August 2003. 76, 77, 84, 99

7. Nathan Jacobson, Lectures in abstract algebra, vols I–III (Van Nostrand, New Jersey,
1953). 74

8. Donald E. Knuth, The art of computer programming, vol 3: ‘Sorting and searching’
(Addison-Wesley, Reading, MA, 1973). 79

9. M. Mignotte and J.-L. Nicolas, ‘Statistique sur Fq [X]’, Ann. Inst. H. Poincaré Sect. B
(N.S.) 19 (1983) 113–121. 77

Peter M. Neumann peter.neumann@queens.ox.ac.uk

The Queen’s College
Oxford OX1 4AW
United Kingdom

Cheryl E. Praeger praeger@maths.uwa.edu.au
http://www.maths.uwa.edu.au/∼praeger

School of Mathematics and Statistics
University of Western Australia
Crawley, WA 6009
Australia

100https://doi.org/10.1112/S1461157000001054 Published online by Cambridge University Press

http://www.lms.ac.uk/jcm/3/lms1999-021
mailto:peter.neumann@queens.ox.ac.uk
mailto:praeger@maths.uwa.edu.au
http://www.maths.uwa.edu.au/~praeger
https://doi.org/10.1112/S1461157000001054

	Introduction
	Notation, terminology, and other preliminaries
	Elementary considerations
	Tensor division
	The main factorisation algorithm
	The frequency of recognisable factorisations of multisets
	Uniqueness of factorisations of multisets

