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Słociński–Wold decompositions for row
isometries
Adam H. Fuller

Abstract. Słociński gave sufficient conditions for commuting isometries to have a nice Wold-like
decomposition. In this note, we provide analogous results for row isometries satisfying certain
commutation relations. Other than known results for doubly commuting row isometries, we provide
sufficient conditions for a Wold decomposition based on the Lebesgue decomposition of the row
isometries.

1 Introduction

Let V be an isometry acting on a Hilbert space H. A well-known result, discovered
independently by von Neumann (1929) and Wold (1938), tells us that H decomposes
uniquely into V-reducing subspaces H = Hu ⊕Hs where V ∣Hu is a unitary and
VHs is a unilateral shift. We will follow the convention of calling this result the
Wold decomposition of V. Over the decades, there have been generalizations of this
result, decomposing isometric representations of semigroups into their unitary and
nonunitary parts. Suciu’s work in [20] is an early example of such results.

The work at hand is largely inspired by the Wold-like decomposition given
Słociński [19]. Let V1 and V2 be commuting isometries on a Hilbert space H. We say
that V1 and V2 have a Słociński–Wold decomposition if H decomposes as H = H1 ⊕
H2 ⊕H3 ⊕H4, where each space H i reduces both V1 and V2; V1∣H1 , V1∣H2 , V2∣H1 , V2∣H3

are unitaries; and V1∣H3 , V1∣H4 , V2∣H2 , V2∣H4 are unilateral shifts. Słociński gives
sufficient conditions for a pair commuting isometries to have a Słociński–Wold
decomposition. Most notable, or at least the most noted, of these results is that a pair of
doubly commuting isometries V1 and V2 has a Słociński–Wold decomposition (where
doubly commuting means that V1V2 = V2V1 and V∗1 V2 = V2V∗1 ). Generalizations of
this result for n doubly commuting isometries have been given [8]. Słociński also gives
sufficient conditions for the existence of a Słociński–Wold decomposition based on
the structure of the individual unitary parts of the isometries. Recall that a unitary
U can decomposed as Uabs ⊕Using where Uabs has absolutely continuous spectral
measure and Using has singular spectral measure (both with respect to Lebesgue
measure). Słociński gives two results [19, Theorems 4 and 5], showing the existence
of a Słociński–Wold decomposition in the absence of absolutely continuous unitary
parts.

Received by the editors June 27, 2022; revised November 2, 2022; accepted November 8, 2022.
Published online on Cambridge Core November 14, 2022.
AMS subject classification: 47A13, 47A45.
Keywords: Wold decomposition, Lebesgue decomposition, row isometries.

https://doi.org/10.4153/S0008439522000686 Published online by Cambridge University Press

http://dx.doi.org/10.4153/S0008439522000686
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9002-0501
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008439522000686&domain=pdf
https://doi.org/10.4153/S0008439522000686
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Let S = [S1 , . . . , Sm] be a row isometry on a Hilbert space H. That is, S∶H(m) → H
is an isometric map. Equivalently, S = [S1 , . . . , Sm] is a row isometry if S1 , . . . , Sn are
isometries with pairwise orthogonal ranges. Popescu [14] shows that there is a Wold
decomposition for S. That is, H can be decomposed into S-reducing subspaces H =
Hu ⊕Hs where S∣Hu is a row unitary, and S∣Hs is an n-shift. Beyond row isometries,
Muhly and Solel [13] give a Wold decomposition for isometric representations of C∗-
correspondences, decomposing an isometric representation into unitary and induced
parts.

Let S = [S1 , . . . , Sm] and T = [T1 , . . . , Tn] be two row isometries on a Hilbert space
H. We say that S and T θ-commute if there is a permutation θ ∈ Sm×n such that for
1 ≤ i ≤ m and 1 ≤ i ≤ n, S i Tj = Tj′S i′ when θ(i , j) = (i′ , j′). A pair of θ-commuting
row isometries determines an isometric representation of a 2-graph with a single
vertex. Thus, a pair of θ-commuting row isometries is an isometric representation
of a product system of two finite-dimensional C∗-correspondences (see, e.g., [6,
Section 4]). Skalski and Zacharias [18] generalized Słociński’s Wold decomposition
for doubly commuting isometries to isometric representations of product systems
of C∗-correspondences which satisfy a doubly commuting condition. Thus, Skalski
and Zacharias’s result gives a Słociński–Wold decomposition for θ-commuting row
isometries.

In this note, we will give sufficient conditions for two θ-commuting row isome-
tries to have a Słociński–Wold decomposition mirroring the three theorems proved
by Słociński for commuting isometries. Theorems 3–5 of [19] are generalized in
Theorems 3.4, 3.8, and 3.10, respectively. In [19, Theorems 4 and 5], Słociński uses
the Lebesgue decomposition of a unitary. For row unitaries, we use the Lebesgue
decomposition due to Kennedy [10]. This states that any row unitary decomposes into
an absolutely continuous row unitary, a singular row unitary, and a third part called a
dilation-type row unitary. For a single unitary U, the statements “U has no absolutely
continuous part” and “U is singular” are equivalent; for row unitaries, the existence
of dilation-type parts means that the latter is a stronger statement than the former. In
this note, for a row unitary, the statement “U is singular” will play the role that “U has
no absolutely continuous part” played in [19].

2 Row isometries and their structure

A row isometry on a Hilbert space H is an isometric map S from H(n) to H. An
operator S∶H(n) → S is a row isometry if and only if S = [S1 , . . . , Sm]where S1 , . . . , Sm
are isometries on H with pairwise orthogonal ranges. Equivalently, the S1 , . . . , Sm are
isometries satisfying

m
∑
i=1

S i S∗i ≤ IH .

A row isometry S = [S1 , . . . , Sm] is a row unitary if S is a unitary map. Equivalently, S
is a row unitary if

m
∑
i=1

S i S∗i = IH .
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Let S = [S1 , . . . , Sm] be a row operator on a Hilbert space H, and let M ⊆ H be
a subspace. The subspace M is S-invariant if S i H ⊆ H for each 1 ≤ i ≤ m; M is S∗-
invariant if S∗i H ⊆ H for each 1 ≤ i ≤ m; and M is S-reducing if M is both S-invariant
and S∗-invariant.

Denote by F
+
m the unital free semigroup on n generators {1, . . . , m}. For w =

w1 . . . wk ∈ F+n , denote by Sw the isometry

Sw1 Sw2 . . . Swk .

Here, S∅ will denote IH .

Example 2.1 Let H = �2(F+m) with orthonormal basis {ξw ∶w ∈ F+m}. For i ∈
{1, . . . , m}, define the operator L i by

L i ξw = ξ iw .

Then L = [L1 , . . . , Lm] is a row isometry on H.

Definition 2.1 Let S = [S1 , . . . , Sm] be a row isometry. Let L be the row isometry
described in Example 2.1. We call S an m-shift of multiplicity α if S is unitarily
equivalent to an ampliation of L by α. That is, [S1 , . . . , Sm] ≃ [L(α)1 , . . . , L(α)m ].

Note that when m = 1, an m-shift is a unilateral shift. Thus, the following result, due
to Popescu [14], is a generalization of the Wold decomposition of a single isometry.

Theorem 2.2 (Cf. [14, Theorem 1.2]) Let S = [S1 , . . . , Sm] be a row isometry on H.
Then H decomposes into two S-reducing subspaces

H = Hu ⊕Hs ,

such that S∣Hu is a row unitary and S∣Hs is an m-shift.
Furthermore,

Hu = ⋂
k≥0
⊕
∣w∣=k

Sw H,

and

Hs = ⊕
w∈F+n

Sw M ,

where M = ⋂n
i=1 ker(S∗i ).

Definition 2.2 When S is a row isometry on a Hilbert space H, the decomposition
H = Hs ⊕Hu described in Theorem 2.2 is called the Wold decomposition of S.

2.1 The Lebesgue–Wold decomposition

Just as a unitary can be decomposed into its singular and absolutely continuous parts,
a row unitary can be decomposed further. We will briefly summarize these results
now, drawing largely from [2, 10].
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Let L = [L1 , . . . , Lm] be the m-shift described in Example 2.1. Denote by Am and
Lm the following two algebras:

Am ∶= Alg{I, L1 , . . . , Lm}
∥⋅∥

,

Lm ∶= Alg{I, L1 , . . . , Lm}
wot

.

The algebra Am is called the noncommutative disk algebra, and the algebraLm is called
the noncommutative analytic Toeplitz algebra.

Let S = [S1 , . . . , Sm] be a row isometry on a Hilbert space H. The free semigroup
algebra generated by S is the algebra

S ∶= Alg{I, S1 , . . . , Sm}
wot

.

Popescu [16] observed that the unital, norm-closed algebra generated by S1 , . . . , Sm
is completely isometrically isomorphic to the noncommutative disk algebra Am . The
free semigroup algebra S, however, can be very different from Lm .

Definition 2.3 Let S = [S1 , . . . , Sm] be a row isometry on a Hilbert space H with
m ≥ 2.
(i) There is a completely isometric isomorphism

Φ∶Am → Alg{I, S1 , . . . , Sm}
∥⋅∥

,

such that Φ(L i) = S i for 1 ≤ i ≤ m. The row isometry S is absolutely continuous
if Φ extends to a weak-∗ continuous representation of Lm .

(ii) The row isometry S is singular if S has no absolutely continuous restriction to
an invariant subspace.

(iii) The row isometry S is of dilation type if it has no singular and no absolutely
continuous summands.

Remark 2.3 (i) Absolute continuity for row isometries was introduced by
Davidson, Li, and Pitts [3]. We refer the reader to [3, Section 2] or [10, Section
2] for details on why Definition 2.3 (i) generalizes the notion of a unitary with
absolutely continuous spectral measure.

(ii) By [10, Theorem 5.1], a row isometry S = [S1 , . . . , Sm], with m ≥ 2, is singular
if and only if the free semigroup algebra S generated by S is a von Neumann
algebra. Read [17] gave the first example of a self-adjoint free semigroup algebra,
by showing that B(H) is a free semigroup algebra (see also [1]).

(iii) The name “dilation type” is justified in [10, Proposition 6.2]. If S is a row
isometry of dilation type on H, then there is a minimal subspace V ⊆ H such
that V is invariant for each S∗i , 1 ≤ i ≤ m, and the restriction of S to V⊥ is an
m-shift. In which case, S is the minimal isometric dilation of the compression
of S to V. In particular, if K = (V +∑m

i=1 S i V) ⊖ V , then H = V ⊕⊕w∈F+m Sw K .

We can now describe the Lebesgue–Wold decomposition of a row isometry, due
to Kennedy [10].
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Theorem 2.4 (Cf. [10, Theorem 6.5]) If S is a row isometry on H, then H decomposes
into four spaces which reduce S:

H = Habs ⊕Hsing ⊕Hdil ⊕Hs ,

where Habs ⊕Hsing ⊕Hdil and Hs are the unitary and m-shift parts of the Wold
decomposition, respectively. Furthermore, we have the following properties:
(i) S∣Habs is absolutely continuous.
(ii) S∣Hsing is singular.
(iii) S∣Hdil is of dilation type.
This decomposition is unique.

Kennedy [10, Theorem 4.16] gives another characterization of absolute continuity.
Let S = [S1 , . . . , Sm] be a row isometry with m ≥ 2, and let S be the free semigroup
algebra generated by S. Then S is absolutely continuous if and only if S is isomorphic
to Lm . This characterization answered a question asked in [3].

The property of S being isomorphic to Lm plays an important role in the work
of Davidson, Katsoulis, and Pitts [2] in describing the structure of free semigroup
algebras. We summarize the results which will be relevant to us now. Note that what
we are calling “absolutely continuous” was called “type L” in [2]. The equivalence of
the terms is due to the aforementioned work of Kennedy [10].

Theorem 2.5 (Cf. [2, Theorem 2.6]) Let S = [S1 , . . . , Sm] be a row isometry on a
Hilbert space H with m ≥ 2. Let S be the free semigroup algebra generated by S. There is
a largest projection P in S such that PSP is self-adjoint. Furthermore, the following are
satisfied:
(i) PH is S∗-invariant.
(ii) The restriction of S to P⊥H is an absolutely continuous row isometry.

Definition 2.4 Let S be a row isometry, and let P be the projection described in
Theorem 2.5. Then P is called structure projection for S.

Let S = [S1 , . . . , Sm] be a row isometry on H, with H = Habs ⊕Hsing ⊕Hdil ⊕
Hs being the Lebesgue–Wold decomposition. Furthermore, write Hdil = V ⊕
⊕w∈F+m Sw K, as described in Remark 2.3(iii). It follows from Theorems 2.4 and 2.5
that

PH = Hsing ⊕ V .

3 Słociński–Wold decompositions for θ-commuting row isometries

Definition 3.1 Let A = [A1 , . . . , Am] and B = [B1 , . . . , Bn] be two row operators
on a Hilbert space H, and let θ ∈ Sm×n be a permutation. We say that A and
B θ-commute if

A i B j = B j′A i′
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when θ(i , j) = (i′ , j′). When θ is the identity permutation, we will say that A and B
commute.

If A and B are θ-commuting row operators which further satisfy

B∗j A i = ∑
θ(k , j)=(i , jk)

Ak B∗jk
and

A∗i B j = ∑
θ(i ,k)=(ik , j)

Bk A∗ik
,

we say that A and B θ-doubly commute.

The following lemma is proved by repeated applications of the commutation rule
from θ. It will be used liberally in the sequel.

Lemma 3.1 Let A = [A1 , . . . , Am] and B = [B1 , . . . , Bn] be θ-commuting row opera-
tors. For each k, l ≥ 1, θ determines a permutation θk , l ∈ Smk×n l so that

Au Bw = Bw′Au′

when θk , l(u, w) = (u′ , w′).

Any 2-graph with a single vertex, in the sense of [11], is uniquely determined by
a single permutation. Thus, two θ-commuting row contractions A and B determine
a contractive representation of single vertex 2-graph. This is the perspective θ-
commuting row operators are studied from in, e.g., [4, 5, 7].

Definition 3.2 Let S = [S1 , . . . , Sm] and T = [T1 , . . . , Tn] be θ-commuting row
isometries on a Hilbert space H. We say that S and T have a Słociński–Wold decompo-
sition if H decomposes into

H = Huu ⊕Hus ⊕Hsu ⊕Hss ,

where Huu , Hus , Hsu , and Hss are both S-reducing and T-reducing subspaces satisfy-
ing:
(i) S∣Huu and T ∣Huu are both row unitaries.
(ii) S∣Hus is a row unitary, and T ∣Hus is an n-shift.
(iii) S∣Hsu is an m-shift, and T ∣Hsu is a row unitary.
(iv) S∣Hss is an m-shift, and T ∣Hss is an n-shift.

The following general lemma will be used throughout our analysis.

Lemma 3.2 S = [S1 , . . . , Sm] is a row isometry which θ-commutes with a row oper-
ator A = [A1 , . . . , A l ]. Let H = Hu ⊕Hs be the Wold decomposition of S. Then Hu is
A-invariant.

Proof Take h ∈ Hu and fix k ≥ 0. Since S is a row unitary on Hu ,

h = ∑
∣w∣=k

Sw S∗w h.
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Choose an A i , 1 ≤ i ≤ l . For each w with ∣w∣ = k, there is a w′ with ∣w′∣ = k, and iw
with 1 ≤ iw ≤ l so that A i Sw = Sw′A iw . Thus,

A i h = A i ∑
∣w∣=k

Sw S∗w h

= ∑
∣w∣=k

Sw′A iw S∗w h ∈ ∑
∣w∣=k

Sw H.

Since this holds for all k ≥ 0, A i Hu ⊆ Hu by Theorem 2.2. ∎

We can now give a general statement on the existence of Słociński–Wold decom-
positions. The case when m = n = 1 is covered in [19, Proposition 3].

Proposition 3.3 Let S = [S1 , . . . , Sm] and T = [T1 , . . . , Tn] be θ-commuting row
isometries on H. Then S and T have a Słociński–Wold decomposition if and only if:
(i) if H = HS

u ⊕HS
s is the Wold decomposition of S, then HS

u reduces T; and
(ii) if HS

u = HT
u ⊕HT

s is the Wold decomposition of T ∣HS
s
, then HT

u reduces S.

Proof If S and T have a Słociński–Wold decomposition, then conditions (i) and
(ii) are clearly satisfied.

Suppose now that conditions (i) and (ii) are satisfied. Let H = HS
u ⊕HS

s be the Wold
decomposition for S. Let HS

u = KT
u ⊕ KT

s be the Wold decomposition of HS
u from the

restriction of T to HS
u . By Lemma 3.2, KT

u is S-invariant. Take any 1 ≤ i ≤ m, and h ∈
KT

u . Recall, by Lemma 3.1, for each k ≥ 1, there is a permutation θ1,k on Sm×nk so that
for 1 ≤ i ≤ m and w ∈ F+n , S i Tw = Tw′S i′ when θ1,k(i , w) = (i′ , w′). Hence, for every
k ≥ 1,

S∗i h = S∗i ∑
∣w∣=k

Tw T∗w h

= ∑
∣w∣=k

S∗i Tw T∗w h

= ∑
∣w∣=k

m
∑
l=1

S∗i Tw S l S∗l T∗w h

= ∑
∣w∣=k

∑
θ 1,k(i ,w i)=(l ,w)

Tw i S
∗
l T∗w h

∈ ⊕
∣w∣=k

Tw HS
u ,

where the fact that S is a row unitary on HS
u is used in the third equality. It follows

from Theorem 2.2 that S∗i h ∈ KT
u . Hence, KT

u is S-reducing.
Letting HS

s = HT
u ⊕HT

s be the Wold decomposition of T ∣HS
u
, we have that

Huu = KT
u , Hus = KT

s , Hsu = HT
u , and Hss = HT

s gives the desired Słociński–Wold
decomposition. ∎

Skalski and Zacharias studied Wold decompositions of isometric representations
of product systems of C∗-correspondences [18]. The following is a special case of one
of their results.
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Theorem 3.4 (Cf. [18, Theorem 2.4]) If S and T are θ-double commuting row
isometries, then they have a Słociński–Wold decomposition.

Proof Let H = HS
u ⊕HS

s be the Wold decomposition of H from S. We will show
that HS

u is T-reducing. Lemma 3.2 gives that HS
u is T-invariant, so it only remains to

show that HS
u is T∗-invariant. Take 1 ≤ j ≤ n and h ∈ HS

u . Using the condition that S
and T θ-doubly commute and that S is a row unitary on HS

u , we have, for every k ≥ K,

T∗j h = ∑
∣w∣=k

T∗j Sw S∗w h

= ∑
θ k ,1(wk , j)=(w , jw)

Swk T∗jw
S∗w h

∈ ∑
∣w∣=k

Sw H.

Thus, T∗j h ∈ HS
u by Lemma 2.2.

Now, let HS
s = HT

u ⊕HT
s be the Wold decomposition of T ∣HS

s
. The same calculation

as above, with the roles of S and T swapped, shows that HT
u is S-reducing. Thus, S and

T have a Słociński–Wold decomposition by Proposition 3.3. ∎

Remark 3.5 As described in [18], the Słociński–Wold decomposition for θ-doubly
commuting row isometries has additional structure on the shift part Hss . On Hss , S
and T are not just both (m and n) shifts. The operators S and T work as shifts together,
giving an ampliation of the left-regular representation of the unital semigroup

F+θ = ⟨i1 , . . . , im , j1 , . . . , jn ∶ ik j l = j′ i′ when θ(ik , j l) = (i′ , l ′)⟩.

Explicitly, if M = ⋂m
i=1 ker S∗i ∩⋂n

j=1 ker T∗j , then

Hss = ⊕
u∈F+m , w∈F+n

Su Tw M .

Theorem 3.4 generalizes Theorem 3 of [19]. In the rest of this note, we will give
analogues of Theorems 4 and 5 of [19] for θ-commuting row isometries. That is, we
will give sufficient conditions for the existence of a Słociński–Wold decomposition for
θ-commuting row isometries based on the Lebesgue decomposition of their unitary
parts.

Lemma 3.6 Let S = [S1 , . . . , Sm] be a row isometry on H with m ≥ 2, and let P be the
structure projection for S. If T = [T1 , . . . , Tn] is a row isometry on H which θ-commutes
with S. Then PH is T∗-invariant.

Proof By Theorem 2.2, S is absolutely continuous on P⊥H. Thus, by [10, Corollary
4.17], P⊥H is spanned by wandering vectors for S. Recall that a vector h ∈ H is
wandering for S if ⟨Sw h, h⟩ = 0 for all w ∈ F+m , w ≠ ∅. Let h be a wandering vector
for S. Then, for any 1 ≤ j ≤ n and w ∈ F+n , ∣w∣ ≥ 1, we have

⟨Sw Tj h, Tj h⟩ = ⟨Sw′h, T∗j′Tj h⟩,

https://doi.org/10.4153/S0008439522000686 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000686


788 A. H. Fuller

where w′ and j′ satisfy Sw Tj = Tj′Sw′ . If j′ ≠ j, then T∗j′Tj = 0, in which case
⟨Sw Tj h, Tj h⟩ = 0. If j′ = j, then

⟨Sw Tj h, Tj h⟩ = ⟨Sw′h, h⟩ = 0,

since h is wandering for S and ∣w′∣ = ∣w∣ ≥ 1. Hence, Tj h is wandering for S, and so
Tj h ∈ P⊥H. It follows that TjP⊥H ⊆ P⊥H, and hence PH is T∗-invariant. ∎

Let V be an isometry on a Hilbert space H, and let N ∈ B(H) be an operator
commuting with V. Let H = Habs ⊕Hsing ⊕Hs be the Lebesgue–Wold decomposition
of V. It then follows from [12, Theorem 2.1] that Hsing reduces N. Thus, if Habs = {0},
the unitary part of V reduces N. In Proposition 3.7, we show that if S and T are
θ-commuting row isometries and the unitary part of S is singular, then the Wold
decomposition of S reduces T.

Proposition 3.7 Let S = [S1 , . . . , Sm] and T = [T1 , . . . , Tn] be θ-commuting row
isometries on H. Let H = Hu ⊕Hs be the Wold decomposition for S. If the unitary part
of S is singular, then Hu reduces T

Proof When m = 1, the result follows from [12, Theorem 2.1] (see [19, Remark 2]).
Otherwise, we have Hu = PH where P is the structure projection for S. The result
follows from Lemmas 3.2 and 3.6. ∎

We now give a row-isometry analog of [19, Theorem 4].

Theorem 3.8 Let S = [S1 , . . . , Sm] and T = [T1 , . . . , Tn] be θ-commuting row isome-
tries on a Hilbert space H. Furthermore, suppose that the unitary parts of S and T are
singular. Then S and T have a Słociński–Wold decomposition.

Proof The result follows immediately from Propositions 3.3 and 3.7. ∎

The following lemma generalizes [19, Lemma 2] to row isometries. It is notable that
the conditions are less restrictive for the row-isometry case than they are in single-
isometry case dealt with in [19].

Lemma 3.9 Let S be an m-shift of finite multiplicity on a Hilbert space H. Let T =
[T1 , . . . , Tn] be a row unitary on H which θ-commutes with S. If
(1) n ≥ 2, or
(2) n = 1 and T has empty point spectrum,
then H = {0}.

Proof Let L = ⋂m
i=1 ker S∗i . By assumption, L is finite-dimensional. Since T and S θ-

commute, it is clear that L is T∗-invariant. As T is a row unitary, if h ∈ L and 1 ≤ i ≤ m,
we have that

S∗i Tj h =
n
∑
k=1

Tk T∗k S∗i Tj h = ∑
θ(i ,k)=(ik , j)

Tk S∗ik
h = 0,

and so L is T-reducing.
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If n ≥ 2, then T1∣L , . . . , Tn ∣L are isometries with pairwise orthogonal finite-
dimensional ranges. If n = 1, then T ∣L is a unitary on a finite-dimensional space
and so has an eigenvalue. In either case, we see that we must have L = {0} and hence
H = {0}. ∎

We end with the following generalization of [19, Theorem 5].

Theorem 3.10 Let S = [S1 , . . . , Sm] and T = [T1 , . . . , Tn] be θ-commuting row isome-
tries on a Hilbert space H. Assume that the unitary part of S is singular, and that the shift
part of S has finite multiplicity, then S and T have a Słociński–Wold decomposition if
(i) n ≥ 2; or
(ii) n = 1 and θ is the identity permutation.

Proof Let H = HS
u ⊕HS

s . As S has only singular unitary part, HS
u reduces T by

Proposition 3.7. Let HS
s = KT

u ⊕ KT
s be the Wold decomposition of the restriction of T

to HS
s . Lemma 3.2 says that KT

u is S-invariant. As S is an m-shift of finite multiplicity
on HS

s , the restriction of S to KT
u is an m-shift of finite multiplicity. When m = 1, this

is [9, Lemma 4]; when m ≥ 2, it follows from [15, Theorem 3.1] and [15, Theorem 3.2].
When n ≥ 2, it follows from Lemma 3.9 that KT

u = {0} and hence S and T have a
Słociński–Wold decomposition by Proposition 3.3. When n = 1 and T is an isometry
commuting with each S i , the proof follows as in [19, Theorem 4]. ∎
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[19] M. Słociński, On the Wold-type decomposition of a pair of commuting isometries. Ann. Polon.
Math. 37(1980), no. 3, 255–262.

[20] I. Suciu, On the semi-groups of isometries. Stud. Math. 30(1968), 101–110.

Department of Mathematics, Ohio University, Athens, OH 45701, USA
e-mail: fullera@ohio.edu

https://doi.org/10.4153/S0008439522000686 Published online by Cambridge University Press

mailto:fullera@ohio.edu
https://doi.org/10.4153/S0008439522000686

	1 Introduction
	2 Row isometries and their structure
	2.1 The Lebesgue–Wold decomposition

	3 Słociński–Wold decompositions for θ-commuting row isometries

