NOTE ON RELATIVE HOMOLOGICAL DIMENSION

G. HOCHSCHILD*

Let R be a ring with identity element 1, and let S be a subring of R con-
taining 1. We consider R-modules on which 1 acts as the identity map, and
we shall simultaneously regard such R-modules as S-modules in the natural
way. In [4], we have defined the relative analogues Ext(z s, of the functors
Extz of Cartan-Eilenberg [1], and we have briefly treated the corresponding
relative analogues of module dimension and global ring dimension. If M is an
R-module the relative projective dimension of M is denoted dg,s(M). It is the
smallest non-negative integer # (or o) for which there is an R-module N such
that Extl: ¢ (M, N) =% (0). The relative global dimension d(R, S) of the pair
(R, S) is defined as supu (dr,s(M)). We use the similar notations dx(M) and
d(R) for the absolute projective R-module dimension of M and the global
dimension of R, respectively.

Our purpose here is to establish some elementary relations between the
relative dimensions and the absolute dimensions, and to point out how the rela-
tive dimensions can be used to obtain information on absolute dimensions. In
particular, we are thereby led to a simple derivation of the known results on
the dimension of polynomial rings. In this connection, I have had a number
of clarifying discussions with Maurice Auslander, and I wish to thank him here

for his valuable comments.

§1. Following Cartan-Eilenberg, we shall say that R is right Sflat if
Tors (R, C) =(0), for every S-module C and all » > 0, or, equivalently, if, for
every monomorphism U - V of S-modules, the induced homomorphism R&® sU
> R®sV is a monomorphism. In particular, R is right S-flat whenever it is

S-projective as a right S-module.
TreorREM 1. Suppose that R is right S-flat. Then, for every R-module M,
dp(M) £ dp, (M) + d(S).
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If, furthermore, R is S-projective as a left S-module, then
db(M) = dr(M) = dg,s(M) + ds(M).

Proof. Since R is right S-flat, it is clear that, for every S-projective reso-

lution ... > X;—» Xo» M~ (0) of M, the sequence ... > R&:Xi—»> R&:sXp
- R®sM - (0) is an R-projective resolution of R&sM. Hence dn(R& sM)
= ds(M).

In proving the inequalities involving dr,s(M), we may evidently assume
that dgr,s(M) is finite, and we shall proceed by induction on dr s(M). Suppose
first that dr s(M)=0. This means that M is (R, S)-projective, and hence a
direct R-module summand of R®sM (see §§1, 2 of [4]). Hence dz(M)
£ dpr(R®sM) < ds(M).

Now assume that dg,s(M) >0, and consider the standard (R, S)-exact
sequence

(0) > K-> R&®sM-> M~ (0).
Since R®sM is (R, S)-projective, we have dg,s(K)=dg (M) —1. Also, for

every # > 0 and every R-module C, we have the exact sequence
Exti " (R®sM, C) » Exti™' (K, C) » Extz (M, C) - Exti (R&® M, C).

We take n=dgs(M)+d(S)+1, or n=dpsM)+diM)+1, according to
whether we deal with the first part of Theorem 1, or with the second part.
Since dr(R®sM) = ds(M) < n -1, the groups at the ends of our sequence are
(0). Hence

Extz ' (K, C) T Exti (M, C).

Now we prove the first part of Theorem 1: here we take #=dg,s(M)
+d(S)+1, and the inductive hypothesis gives dr(K) < ds (M) —1+d(S)
=n—2. Hence we conclude that Extz (M, C) = (0), whence dr(M) < n, ie,
dr(M) £ dg,s(M) + d(S).

Now we assume that R is S-projective as a left S-module and prove the
second part of Theorem 1: note first that our assumption implies that every
R-projective resolution is also an S-projective resolution, whence ds(M) = dr(M).
Also, d(R®sM) £ dpn(ROsM) <ds(M). Since K is a direct S-module
summand of R®sM, it follows that ds(K) = ds(M). Hence our inductive
hypothesis gives dp(K) = di,s(M)—1+ds(M)=n~-2. As above, we conclude
that Ext}(M, C) =(0), whence du(M)<n, ie, du(M) < dny(M)+ds(M).
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This completes the proof of Theorem 1.

Note. For the first part of Theorem 1, it is useful to observe that it holds
more generally also in the case where, instead of SC R, we have a given
unitary homomorphism ¢ : S > R, and R-modules are regarded as S-modules

i

via ¢; the same proof gives dr(M) £ dg, (M) +d(S), if R is right S-flat.

§2. We shall use a generalization of a complex defined by Koszul in order

to prove the following result on the relative dimension of a polynomial ring.

TuEOREM 2. Let S be an arbitrary ring with identity element, and let
R=S[x, ..., x:] be the polynomial ring in n variables x; over S. Then
d(R, S) =n. Moreover, if M is any non-zero R-module that is annihilated by
the xi’s, then dr,s(M) =n.

Proof. Let E,=Z be the ring of the rational integers, and let E: be the
free Z-module Zy,+ . . . + Zyn of rank = over Z, with generators y;. Generally,
let Er (k=0,1,...) denote the homogeneous component of degree % of the
exterior Z-algebra built over E;. Let M be any R-module. We let E; operate
on R&®sM such that, for rE Rand me M, yi- (r dm) =570 m —r & x; * m.
It is immediately verified that any two E,-operations on R& ;M commute.

Now set Xo= R® sM, and let d, be the canonical epimorphism R & M — M.
Generally, set Xx = R® M & 7 Er, and define the R-homomorphism di : X - Xi-1
such that, for #; € E; and v € RQ s M,

k .
Ao uy .. .up)= Zl( ~ 1" i ) ®uy o o UiciUicy . . . Uk

Since the Ej-operators on R &®sM commute, it follows as usual that de-; °> de =0,
so that we have an R-complex (X, d) over M. Clearly, each X is (R, S)-
projective for its natural structure as an R-module, and X = (0) for k> =.
Next, we shall exhibit an S-homotopy & of the complex (X, d), whence we
shall conclude that (X, d) is an (R, S)-projective resolution of M. We define
oyt M->RE&EsM=X, by: hoy(m)=1& m. Then h_; is clearly an S-homo-
morphism, and d, ° k-, is the identity map on M. Now we define an S-homo-
morphism 7, : X, - X, such that 2(1 & m) =0 and, for ¢g> 0 and 7, = ... =1,

q-1
<\
ho(xiy o o . 2%, ® m) = %«'}xil Xy R Kipa e Kiy MR P

Generally, for 23>0, we define an S-homomorphism & : Xi - X1 such
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that, with 1 =7, < ... <jr =n,
(l&EmSyj, ..., =0, and T(xi, ... %, &m&yj, - « . ¥ji)
=(=1F 3 K X ® Ky e e Ky E Y] e e Vi Vi
S SES S

Thus, for instance,
R 2::0mIy) = =218 % MO N Yo — XXM Y1 ¥a.

One can verify by induction on ¢ that di+1° hr+ he-1 © dp sends each
Xiy ... X, ®@mEyj, . . .Y and each 1& m&y;, . . . y;, onto itself. In doing this,
it is convenient to treat separately the case where i, = j, and the case where
i, > jr. The verification is tedious but presents no essential difficulties; we
shall omit it. Once this verification has been made, one concludes that ko d
+d o I is the identity map on X, so that 2 is an S-homotopy.

Since X =(0) for k> n, it follows that d(R, S) =n Now let M be a
non-zero R-module that is annihilated by the x;’s. Then we shall see that
Extl ¢ (M, M) =~ Homg (M, M) = (0). Indeed, Ext(r s (M, M) is the n-th
cohomology group of the complex whose component of degree & is Homg ( Xz, M).
Consider the coboundary map & : Homg (X, M) - Hompg (Xp.1, M) of our
complex. If & Homg (Xe, M) we have 0r(f) =f° dps1. Since xi+ M= (0),
for each £, it is seen at once from the definition of dki: that drvi( Xe+1)
C fo + Xr. Using again that the x;’s annihilate M, and that ¥ & Hompz (X, M),
we ‘see that f ° dp+; =0. Thus 0, =0, whence Extlz o (M, M) = Homgz (X,, M).
Since E, is of rank 1 over Z, we have X, X< R®sM, so that Homg (X,, M)
~ Homz (R®sM, M) =~ Homs (M, M). Hence we conclude, using that d(R, S)
< n, that di,s(M) =n and d(R, S) = n. This completes the proof of Theorem 2.

It is worth while to observe that if S is semisimple the notions of (R, S)-
projective resolution and R-projective resolution coincide, so that dg,s(M)
=dr(M) and d(R, S)=d(R). Hence, in that case, Theorem 2 immediately
gives the results that d(R) =#, and dix(M)=n for every non-zero R-module
that is annihilated by the x;’s.

If we combine Theorem 2 with a rather simple argument we obtain the

following complete results, which were first proved by Eilenberg, Rosenberg
and Zelinsky, in [2].

Let S be an arbitrary ring with identity ele;gzent. and let R be the polvnomial
ring SLxi, .. ., xn]. Then, for every R-module M, d( M) < de(M) < n+ ds(M).
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Moreover, if M is annihilated by the x:’s and is not {0), then d{M) = n+ ds(M).
Hence we have d(R) = n+d(S).

Proof. Clearly, the second part of Theorem 1 applies, so that d«(M)
£ de(M) £ ds,s(M) +ds(M). The first of the results stated above follows
immediately from this and Theorem 2.

We shall prove the second result by induction on n. Clearly, it is therefore
sufficient to show that, with R=S[x] and x+ M = (0), M = (0), we have dn(M)
= 1+ ds(M).

Let ...-> X > Xy,> M- (0) be an S-projective resolution of M. Then
the sequence

o> R&Xi—» R&sXo—» R& s M~ (0)

is an R-projective resolution of R&® M. Let ¢ denote the endomorphism of this
complex that is obtained by operating on it with the element x. Let C be
another R-module such that x» C=(0), and consider the complex with components
Homy, (R& s Xk, C). It is clear, because x + C = (0), that the endomorphism of
this complex that is induced by ¢, namely the map f-> /> ¢, is 0. Hence the
endomorphism ¢¥ of Exti(R&sM, C) that corresponds to <-;: R& M
> R®«M is 0. On the other hand, the sequence

(0) -» R®3M§—31R®,QJW—> M- (0)
is exact, because x *+ M= (0), and it yields the exact sequence
Extr (R& <M, C) z Exti (R® M, C) » Exti' (M, C) - Exti"' (R& «M, O).
Since R& X is an R-projective resolution of R& A and Homy (R® X, C)
= Homs (X, C), we have Ext} (R® M, C) =~ Ext? (M, C). Using this, and the
fact that £* =0, we obtain the following exact sequence from the above
(0) » Exts (A1, C) - Ext}'1 (M, C) » Exti™ (M, C).

Since dy(M) = d.(M), we may assume that ds( 1) is finite. Take n = ds(A]).
Then the last sequence gives Ext? (A4, C) = Exty;"' (A, C), which shows that
di(M)=21+n=1+d«M). Thus we may now conclude by induction that, in
the general case, dr(A) = n+ds(M). - Since every S-module may be regarded
as an R-module annihilated by the x;’s, our results imply that d(R) =n+d(S).
Our proof is now complete.

§8. As a final illustration, we shall prove a result on the dimensions for
matrix rings, the second part of which is due to M. Harada, [3].
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TueoreM 3. Let S, be the ring of all n by n matrices over S. Then d(Sa, S)
=0, and hence d«(M) =d{(M), for every Sy-module M.

Proof. Consider the canonical epimorphism S, ® M = M. Using the usual
matrix units e;, we define a map ¢ : M- S, ®sM by setting ¢(m) = ‘Zlen

& ey » m, for every me M. It is easy to verify directly that ¢ is an Sy,-homo-
morphism, and that » o ¢ is the identity map on M. Hence M is isomorphic
with a direct S,-module summand of S, ® sM, whence M is (S, S)-projective.
Since M is an arbitrary S,-module, this means that d(S,, S)=0. Now the
second part of Theorem 1 applies to the present situation and shows that
ds,(M) = ds(M), for every Sp-module M.
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Added in proof. The arguments of §2 yield also the following result.

TreoreM 4. Let R be the ring of polynomials in an arbitrary set U of
Sfreely non-commuting variables, with coefficients in a ring S with 1, the elements
of S commuting with those of U. Then d(R, S) =1, and ds(M') £ dr(M) <1
+d<(M), for every unitary R-module M. If M is not (0) and is annihilated
by some u e U then de(M) =1+ ds(M).

Proof. Let X,, X\, dy, d. be defined as in the proof of Theorem 2; in
defining d;, operate on R by multiplying from the right. Consider the resulting
sequence (0) > X; —» Xy > M - (0). Using k-, and ke, as defined in the proof
of Theorem 2, we verify that this is an (R, S)-projective resolution of M.
Hence d(R, S)£1. If we take M=(0) and such that U+ M= (0) we see
directly that the sequence cannot split as an R-module sequence. Hence d(R, S)
=1. The inequalities for the dimensions of M now follow from Theorem 1.

Now suppose that M satisfies the conditions of the last assertion. Since
R is free over S[«], every R-projective resolution of M is also S[u]-projecti\}e,
so that dr(M) 2dsrg(M). We know from. §2 that dsp(M) =1+ d«(M), and
the last assertion of Theorem 4 follows on putting our results together,
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