
J. Functional Programming 4 (4): 435-477, October 1994 © 1994 Cambridge University Press 435

The complexity of type inference for higher-
order typed lambda calculfl

FRITZ HENGLEIN*
DIKU, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark

HARRY G. MAIRSON§

Computer Science Department, Brandeis University, Waltham, MA 02254, USA

Abstract

We analyse the computational complexity of type inference for untyped X,-terms in the second-
order polymorphic typed X-calculus (F2) invented by Girard and Reynolds, as well as higher-
order extensions F3,F4, ...,/^ proposed by Girard. We prove that recognising the i^-typable
terms requires exponential time, and for Fa the problem is non-elementary. We show as well
a sequence of lower bounds on recognising the i^-typable terms, where the bound for Fk+1 is
exponentially larger than that for Fk.

The lower bounds are based on generic simulation of Turing Machines, where computation
is simulated at the expression and type level simultaneously. Non-accepting computations are
mapped to non-normalising reduction sequences, and hence non-typable terms. The accepting
computations are mapped to typable terms, where higher-order types encode reduction
sequences, and first-order types encode the entire computation as a circuit, based on a
unification simulation of Boolean logic. A primary technical tool in this reduction is the
composition of polymorphic functions having different domains and ranges.

These results are the first nontrivial lower bounds on type inference for the Girard/Reynolds
system as well as its higher-order extensions. We hope that the analysis provides important
combinatorial insights which will prove useful in the ultimate resolution of the complexity of
the type inference problem.

Capsule review

The polymorphic X-calculi F2,F3, ...,FW form a useful foundation for the study of modern
programming languages. Since the utility of a language's type system depends heavily on being
able to ensure type correctness at compile time, the study of the complexity of type inference
for F2, F3, . . . , i^ is well motivated. This paper takes a significant step forward by establishing
interesting lower bounds for type inference for this class of languages. Although the

f A preliminary version of this work appeared in the Proceedings of the 18th Annual ACM Symposium on
Principles of Programming Languages, 1991, pp. 119-130.

} Research performed at Vaakgroep Informatica, University of Utrecht, and Computer Science
Department, New York University, supported in part by Office of Naval Research grant N00014-90-J-
1110.

§ Supported by National Science Foundation Grants CCR-9017125 and CCR-9216185, Office of Naval
Research Grant N00014-93-1-1015, and the Tyson Foundation. Part of this work was done while the
author was on leave at the Cambridge Research Laboratory of Digital Equipment Corporation.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


436 F. Henglein and H. G. Mairson

decidability of type inference is left open, the lower bounds are non-trivial, and grow as
language expressiveness grows. In addition, the proof methods used to establish the results are
themselves interesting. In particular, the technique of encoding a Turing Machine within a
language's type system used previously to establish complexity results for type inference for
ML is used again here, although with some subtle differences. The reader will find this proof
method both fascinating and mind-boggling, but more importantly, entirely convincing.

1 Introduction

One of the outstanding open problems in programming language theory and type
theory is the decidability of type inference for the second order polymorphic typed X-
calculus invented by Jean-Yves Girard (1972) and John Reynolds (1974). More
precisely, does there exist an effective procedure which, given an untyped X.-term, can
decide whether the term is typable in the Girard/Reynolds system? If so, and the
term is typable, can the algorithm produce the required type information?

While this decision problem remains tantalisingly open, we present techniques
which can be used to prove significant lower bounds on the complexity of type
inference for the Girard/Reynolds system, also called F2, as well as higher-order
extensions F3, F4,..., Fa proposed by Girard. In particular, we show that recognising
the iytypable terms requires exponential time, and for Fa the problem is non-
elementary. We show as well a sequence of lower bounds on recognising the Fk-
typable terms, k integer, where the bound for Fk+l is exponentially larger than that
for Fk.

These results are the first non-trivial lower bounds on type inference for the
Girard/Reynolds system as well as its higher-order extensions. We hope that the
analysis provides important combinatorial insights which will prove useful in the
ultimate resolution of the complexity of the type inference problem.

The problem of type inference is one of both theoretical and practical interest.
Following the insights of Landin (1966), Strachey (1973), Penrose*, and others, the
untyped ^.-calculus has long been recognised as not merely Turing-complete, but a
syntactically natural foundation for the design of programming languages. The
process of [^-reduction is a simulation of computation and function call, while normal
forms correspond to final returned answers.

Types augment programming languages with additional guarantees about resultant
computational behaviour. For instance, static typing as in Pascal requires explicit
typing by the programmer, but allows all type checking to occur at compile time, with
the guarantee that no compiled program will 'go wrong' at run-time due to type
mismatches. The price paid for this guarantee is a loss of parametric polymorphism

+ In his 1977 Turing Award lecture, as well as his Foreword to Joseph Stoy's book on denotational
semantics, Dana Scott mentions that it was physicist Roger Penrose who pointed Strachey in the
direction of the X-calculus as a useful device for describing programming language semantics (Scott,
1977; Stoy, 1977). Scott quotes Strachey as having written, 'The X-calculus has been widely used as an
aid in examining the semantics of programming languages precisely because it brings out very clearly the
connections between a name and the entity it denotes, even in cases where the same name is used for more
than one purpose. The earliest suggestion that X<alculus might be useful in this way that has come to
our notice was in a verbal communication from Roger Penrose to [me] in about 1958. At the time this
suggestion fell on stony ground and had virtually no influence.' (Stoy, 1977, p. xxiii).

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference

(' code reuse'), so that programs designed for abstract data types must be recorded for
each type on which they are used. As an example, the computation of the identity
function I(x) = x is certainly data-independent, yet its realisation in Pascal demands
identical code with different type declarations for the identity function on integers,
booleans, arrays of length 10 of characters, etc. - all this redundancy merely to please
the compiler.

A powerful extension to this programming language methodology was proposed by
Robin Milner, namely a theory of type polymorphism for achieving code reuse, while
retaining the benefits of static typing. He gave an algorithm which, presented with an
untyped program, could construct the most general type information, known as the
principal type (Hindley, 1969; Damas and Milner, 1982) for the program (Milner
1978). These insights are implemented in the ML programming language (Harper et
al., 1990) as well as a variety of the other functional languages (Hudak and Wadler,
1988; Turner, 1985). The principal type of an ML program provides an important
functional specification of the program, describing how it can be used by other
programs; as such, types are useful as specifications, and to facilitate incremental
compilation. The ML module system is an elegant realisation of these basic intuitions.

We view the type system of the ML language as not merely an example of successful
software engineering. Because it provides a simplified, yet powerful subset of the
polymorphic features inherent in more sophisticated type systems, it has served as an
ideal initial subject in the investigation of the computational combinatorics of typed
lambda calculi. The 'Core ML' language comprising simply typed X-calculus with
polymorphism (as embodied in l e t ) enjoys the strong normalisation property:
typable programs are guaranteed to terminate under all reduction strategies.*
Reconstructing the type of an (untyped) ML expression is thus in essence the
synthesis of a termination proof.

Of special interest here is the fact that typable ML expressions are, modulo
syntactic sugar, a non-trivial subset of the ^.-terms typable in F2,F3,...,Fm.
Furthermore, all of these type systems enjoy strong normalisation. Since X-terms
typable in Fk are also typable in Fk+1, we may regard the higher-order type systems as
more and more powerful expression languages in which to encode termination proofs.
It is natural to expect that greater expressiveness may facilitate the extraction of
stronger lower bounds; proving lower bounds on type inference for Fm should at least
be easier than for F2.

We note, however, that Fa is not simply an esoteric variation on F2, since it has been
proposed as the mathematical foundation for a new generation of typed functional
programming languages, for example Cardelli's (1989) language Quest, and the
language LEAP of Pfenning and Lee (1989). The practical use of such languages,
however, is considerably hampered by the absence of any type inference algorithm,
forcing the programmer into detail and debugging of types as well as of the program.
Some arguments have been made that the problem to be solved is partial type
inference, where the programmer supplies constraints in the form of type information
for certain fragments of the program. In view of the undecidability results of Pfenning
(1988), from a theoretical perspective, it is clear that partial type inference is not easier
' Asa consequence, ML is in practice augmented with a set of typed fixpoint operators.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


438 F. Henglein and H. G. Mairson

than pure type inference; in fact, pure type inference might be decidable. Because no
progress on (pure) type inference for F2 and similarly sophisticated typed lambda
calculi has seemed possible, there has no doubt been a redirection of research
attention elsewhere, where the promise of success has been more encouraging. We
intend to refocus attention on type inference by an incremental analysis of its
combinatorics, suggesting that there is indeed hope for a better understanding of the
problem.

The lower bounds we present on type inference are all proved via generic reductions,
where an arbitrary Turing Machine (henceforth, TM) M with input x of length n is
simulated by a A.-term *¥M x, such that M accepts x in ixra&fin) iff^M,* is typable. In
constructing strong lower bounds, the challenge is to encode as rapidly increasing an
fin) as possible, while constraining the transducer reducing M and x to *?'M x to run
in logarithmic space. By the time hierarchy theorem (Hartmanis and Stearns, 1965;
Hopcroft and Ullman, 1979), these complexity-class relativised hardness bounds
translate (via diagonalisation arguments) to non-relativised bounds. For instance, the
DTIME[2"]-hardness bound for typability in F2 implies a fi(cn) lower bound for some
constant c > 1.

The structure of *FM x is basically a consequence of the following proposition
(Kanellakis et al, 1991)':

Proposition 1.1
Given any strongly normalising X-term E, the problem of determining whether the
normal form of E is first-order typable is DTIME[f[n)]-hard, for any total recursive
function fiji).

Proof
(Sketch) Given a TM M halting in f[n) steps on input x of length n, construct a ^-term
8 encoding the transition function of M, so that if y codes a machine ID, (5y) P-
reduces to a A,-term encoding the ID after a state transition. Let / b e the Church-
numeral encoding of/, n be the Church numeral for n, and ID0 be the encoding of the
initial ID. Consider the typing of the normal form of E' =fh~5ID0 I > / ( K ) 5 / D 0

o 8/<n) 7Z)0, where i> denotes a sequence of P-reductions. The normal form of E'
codes a machine ID after fin) transitions; construct E (using E' as a subterm) to force
a mistyping in the case of non-acceptance. D

The fundamental contribution of this paper is to detail what is absent from this proof
sketch, strengthening the statement of the proposition to concern the typability of E
(instead of its normal form) in the various systems Fk, while weakening the
proposition by restricting the possible asymptotic growth otfiri)? The key insight of
the lower bound constructions is the understanding of how a sophisticated type
system can be used to type terms having long reduction sequences to normal form.

The remainder of the paper details our elaboration on Proposition 1.1, mixed with
some short tutorials on the type systems under study, where we have attempted to
provide useful and informal intuition along with the usual parcels of formal inference
f Observe that these type systems preserve typings under p-reduction, the so-called subject reduction lemma

(see, for example, Hindley and Seldin, 1986).

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 439

rules. In section 2, we briefly outline F2, the second order polymorphic typed X-
calculus, and in section 3 we present an exposition of the DTIME[2" ]-hardness
bound for typability in F2. As corollaries, we present simple proofs of the DTIME[2fl ]-
completeness of recognising typable ML programs, as well as an utterly transparent
proof that first-order unification is PTIME-complete. The latter is especially
perspicuous in that it replaces the ingenious gadgets of Dwork et al. (1984) with
classical combinators from the ^.-calculus, and shows how the theorem might have
been proved by merely writing a simple, let-free ML program.

In section 4, we provide a description of the systems F3,F4, ...,Fa generalising F2,
with emphasis on the significance of kinds in these systems. In section 5 we prove the
non-elementary lower bound on typability for Fa, and show the connections between
this bound and related lower bounds for the Fk. Our tutorial material was in many
ways inspired by the presentation of Pierce et al. (1989), which we enthusiastically
recommend to anyone desiring a readable introduction to programming in higher-
order typed ^.-calculi.

2 The second order polymorphic typed ^-calculus (F2)

F2 is best introduced by a canonical example: the identity function. In F2, we write the
typed polymorphic identity function* as Id = Aa: *. Xx: a . x. The Xx. x should be
familiar; the Aa:* denotes abstraction over types1. For instance, given a type Int
encoding integers, we can represent the identity function for integers as:

Id[\nt] = (Aa:* Ax:a.x)[lnt] i>pX.x:lnt.x

The t>p indicates P-reduction at the type level, where Int is substituted for free
occurrences of a in the body Xx: a. x. (We will henceforth use o to mean the reflexive,
transitive closure of relation defined by op.) Given a type Bool encoding Boolean
values, we may similarly write W[Bool] to get the identity function for booleans. In
short, Id is a polymorphic function which may be parameterised with a given type to
derive an identity function for that type. We write the type of Was Ide Aa:*. a ̂ >-<x,
where A (sometimes written as V) represents universal quantification over types.
Church numerals may be typed in a similar fashion, for example:

0 = Aa: * .Xf: a-> a .Xx:a .x

T = Aa: * Af: a -> a. Xx: a. fx

2 = Aa:* Af:a->aAx:a.f(fx)

where the type of all Church numerals is:

Int = Aa:*.(a-?-a)->-a->a

Here we see how Int need not be a built-in 'constant' type, but can actually be
expressed as the type of Church's coding of integers. In the untyped ^.-calculus, we
f For clarity, we show expression variables in boldface and type variables in italic when both occur in the

same expression.
5 For the moment, it seems that the * is redundant and unnecessary, though in this case, it means that the

type variables a ranges over types. In generalisations of Fs this notation will become more meaningful,
where variables will be able to range over functions of types.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


440 F. Henglein and H. G. Mairson

realise the exponent nm by reducing the expression (Xf.Xx.fnx)(Xf.Xx.fx) to
normal form. The type language of F2 is sufficiently expressive to type this reduction
sequence, given an initial assumption that the two terms are typed as Church
numerals of type Int:

= Ax:*.((Aa:* Af : a^a . :x:
((Aa:*lg:a->aly:a.g"y)[T])

t>p A T : *. Xx: x -*• x. (Xg : x ->• x. A,y: x. g" y)m x

opAx:* .Xx:x -»x .(Xg:x ->x .Xy.x .g" y)m~\Xy:x .xn y)

Op Ax: *. Xx: x -»• x. Xy: x. x" y

Observe that the normal form is also of type Int.1 Hence we might define:

expt = Xm: I nt. ̂ .n: I nt. Ax: *. (m[x -»• x]) (n[x])

Church numerals are merely polymorphic iteration functions which compose other
functions having the same domain and range, while exponentiation is just a higher
order mechanism for constructing such function composers. What happens when we
want to compose a function having a different domain and range? We will show that
the answer to this question is crucial to the development of lower bounds.

2.1 Syntax and inference rules of F2

The syntax of F2 terms is given by the following grammar:

g~ :== a | g~ -»• 3T | Aa: *. 5"

The non-terminals a and x range over a set of type variables and expression variables,
respectively, while the non-terminals 9~ and g define the set of types and the set of
expressions.

Observe that types are either type variables, function types, or quantified types,
where we are able to quantify only over type variables. Expressions are either
expression variables, ^.-abstractions over variables of type ST, function applications
of an expression to another expression, A-abstractions over type variables appearing
in an expression (of kind *; for more details, see section 4), or applications of an
expression to a type (i.e. a parameterisation, as in the example above of the identity
function).

The terms generated from this grammar are sometimes called raw terms, and
contain a particular subset called the typed terms; we think of the latter as the terms

* Here, we allow a-renaming of A-bound variables at the type level.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 441

that 'make sense'. We distinguish this sense of a term by a type judgement F h- esx,
read 'in context F, term e has type T'. Type judgements are derived via a set of
inference rules characteristic to F2; we adopt the basic presentation of Pierce et al.
(1989).

The first inference rules define a well-formed context. A context is a function from
a finite domain of expression variables to types. When F is a context, we write T[x: a]
to mean the function identical to F, except that its value on x is a:

(Env-O)

(Env-term)

(Env-type)

wf«»

Fl -Te*
wf(F[x:x])

wf(F)
wf(F[a:*])

The next three rules define the well-formedness of types:

(Type-var) ^ ^ r(a) =

(Wff-A) na:*H-xe.
F I— Aa: *. x e *

The last rules define the well-typedness of expressions, in a syntax-directed fashion:

(Var) f p _ r W = T

, . . . r\-xe* r[x:x]\-eex'

, . Fl— eex->x' Fl— e'ex
(^•-ehm) —

(A-int)

(A-elim)

T\-ee'e x'

a:*\\-eex

Fl—Aa:*.eeAot:*.x

Fl— eeAa:*.x' Fl— xe*

n-4c]eT'[a/T]

When giving a type judgement in an empty context, we write eex rather than
<>keex . In addition, we adopt the following non-standard convention: when
writing F2 expressions, expression variables will appear in boldface, while we
omit boldface when discussing the erasure of types in the expression. For example,
in this slight abuse of language, we will write A.jc.;ceAa:*.a->-a as well as
Aa: *. Xx: a. x e Aa: *. a ->• a.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


442 F. Henglein and H. G. Mairson

3 An exponential lower bound on F2 type inference

3.1 Paradise lost: lessons learned from ML

It has been known for some time that type inference for the simply-typed (first-order)
X-calculus can be solved in polynomial time. A simple and elegant exposition of this
fact can be found in Wand (1987), where a syntax-directed algorithm is given that
transforms an untyped X-term into a linear sized set of type equations of the form
X=Y and X= Y->Z, such that the solution of the equations via unification
(Robinson, 1965; Paterson and Wegman 1978) determines the principal type of the
term.

In progressing from this language to ML, it is necessary to understand the effect of
quantification over type variables on the complexity of type inference. Naturally, this
insight is also crucial in the case of F2. The progress in understanding ML
quantification and type inference is primarily due to two straightforward obser-
vations. The first, given by Mitchell (1990)^ is that the following inference rule for
l e t preserves exactly the type judgements for closed terms usually derived using the
quantification rules:

rhMei, r\-[M/x]Nex1
K ' rHletx = MinNex1 '

Because T0 and TX are first-order types, this alternate inference rule is a classic
instance of quantifier elimination. In the spirit of the Curry-Howard propositions-as-
types analogy, it also acts as a sort of cut elimination, preserving propositional
theorems at the expense of greatly enlarging the size of the proofs. A proof of this cut
elimination theorem appears in the appendix of Kanellakis et al. (1991); a different
and much cleaner proof inspired by the Tait (1967) strong normalisation theorem is
found in Mairson (1992a). The added combinatorial insight comes from that fact that
type inference can be completely reduced to first-order unification.

The second observation, due to Paris Kanellakis and John Mitchell, is that l e t can
be used to compose functions an exponential number of times with a polynomial-
length expression (Kanellakis and Mitchell, 1989):

Example 3.1
*F = letxo = 5in

l e t xx = Xy.x0(xoy)±n
l e t x 2 = Xy.x1(x1y)±n

( = Xy .xt_l(xt_1

The above expression let-reduces | to Xy.82'y, where the occurrences of 5 are
polymorphic - each occurrence has a different type.

* In this survey, the rule is attributed to Albert Meyer. However, it appears as well in the thesis of Luis
Damas (1985), and in fact a question about it can be found in the 1985 postgraduate examination in
computing at Edinburgh University (Sannella, 1988).

i Following the {let) rule given above, we say that let x = M in N ter-reduces in one step to [M/x] N.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 443

The significance of this polymorphism is exploited in the lower bound of Mairson
(1990) and Kanellakis et al. (1991), where it is shown that recognising typable ML
expressions of length n can be solved in DTIME[2"], and is DTIME[2n*]-riard for
every integer k ^ 1 under logspace reduction.1 The lower bound is a generic reduction:
given a TM M accepting or rejecting its input x of length n in at most 2" steps, we
construct an ML term Q>M x using a logspace transducer, where M accepts x iff<I>M x

is typable. We expand further on this proof technique in this section, extending its
application to more powerful type systems.

The coding of the TM computation sketched above is embedded in the putative
typing of OM x, rather than in its value. The simulation of the TM is based on the
observation that the transition function of M is merely a Boolean circuit computing
state, head movement, and what to write on the tape, combined with rudimentary list
processing to manipulate the left- and right-hand sides of the tape. The details of the
proof show that these basic operations can be simulated by first-order unification
problems which may be induced via the typing of let-free ^,-terms. If 5 is indeed the
ML term simulating the transition function, and ID0 codes the initial ID of the TM,
then the type of *¥ Wo codes the ID of the TM after 2( state transitions. Taking t = nk,
we can then construct an ML expression E containing *¥ IDO as a subterm, where the
type of E necessarily codes whether M rejected x.

Using the methods of Dwork et al. (1984) for coding Boolean logic, the simulation
codes the Boolean values true and false as:1

true = Xx.Xy.Xz. Kz(Eq xy) eAa:*.Ab:*.a^>a->b->b

false = Xx.Xy .Xz .zsAa:* .Ab:* .Ac:* .a^-b-*c->c

where:
Eq = Xx.Xy. Kx(Xz. K(zx) (zy)) eAa:*.a^~a^-a

As a consequence, if the types of ML expressions P and Q cannot be unified, we know
true PQ cannot be typed, while false PQ can be typed: true is a function insisting that
its two arguments have the same type, while false makes no such restriction.

In its nascent state, the ML lower bound is useless to bound the complexity of F2

type inference. The proof of 'machine accepts iff ML expression types' is made by
a straightforward appeal to the simple logic of first-order unification: the proof
construction computes a Boolean value coding the answer to ' Did M reject its input?'
and uses the value, as described above, to force a first-order mistyping when the
answer is true. To further claim that there is no F2 typing is far from clear, since unlike
ML, F2 does not admit naive quantifier elimination, where an ML expression
involving l e t is typable iff a similar, let-free expression is typable. Because of this
equivalence, we see that arguments about typability based on first-order unification
are simply too weak. Proving that strongly normalising terms are not /^-typable is
very difficult: as evidence, we point merely to the tremendous effort of Giannini and

1 An alternate proof, based on the analysis of a problem called acyclic seminunification, is found in Kibury
et al. (1990).

J We use the syntax of F2 types to give typings of ML terms, observing that ML types are merely
outermostquantifiedyirsr-ofYfe;- (i.e. quantifier-free) types. Such types are a proper subset of the F2 types,
where any subterm of a type may contain quantifiers.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


444 F. Henglein and H. G. Mairson

Ronchi della Rocca (1988) in their identifying a single, simple, strongly normalising
term which is not F2-typable. The Giannini-Ronchi results are an indication that F2

type inference might in fact be decidable, since they achieved a separation between
F2-typable terms and the r.e.-complete class of strongly normalisable terms. However,
the techniques they employ require such overwhelming computational detail, and
provide so little large-scale insight, that they seem virtually useless for showing
whether or not the term we have constructed is /ytypable.

3.2 Paradise regained: an F2 lower bound

The force of the ML argument can be regained, however, by changing the simulation
of Boolean logic from that found in Dwork et al. (1984) to the classic simulation in
the X-calculus. For example, we type the Boolean values as:

true = Aa:*.AP:*Ax:a.X.y:p.xe Aa:*.Ap:*.a->p^>-a

false = Aa: *. Ap :*.A,x:a.A.y:p\yeAa:*.A|$:*.o(-»-|3-»-|3

We remark that this encoding is not Girard's inductive-type definition of Boolean
values; observe simply that true and false have different types, while in Girard's
construction, the Boolean values are both terms of type Aa: *. a -»• a -> a.

By using this well-known coding of classical logic (see, for example, Hindley and
Seldin, 1986), we discover a new class of directed acyclic graphs realising Boolean
operations via first-order unification, in the style of Dwork et al. (1984). Moreover,
the analysis of these graphs allows us to view types as explicit codings of certain
reduction sequences in the ^.-calculus. As a consequence, we derive a new and
simplified proof that first-order unification is PTIME-complete, which is particularly
striking since it shows how that theorem could have been proved by writing a very
simple let-free ML program using the classic coding of Boolean logic. By
generalising the realisation of Boolean logic to the realisation of any functions on
finite domains, we derive a new and simpler proof of the DTIME[2n ]-hardness of
recognising typable ML expressions.

Finally, by a slight augmentation of the ML proof, we derive a DTIME[2"*]-
hardness bound on the recognition of /"2-typable terms. We make essential and
powerful use of the strong normalisation theorem for F2 (Girard, 1972; Girard et al.,
1989; Gallier, 1990), using the coded Boolean answer A to the question 'Did machine
M reject its input of length n in 2"* steps?' to choose between a trivial terminating
computation and a clearly nonterminating one:

¥ = (kx. xx) (A(Xx. x) (Xy. yy))

Observe that if A ofalse, then *P o(kx.xx)(ky.yy); since *F is not normalisable, it
is not typable. The difficult technical question then becomes to show that if the TM
accepts, then *F can be typed. In this case, we will have to look more carefully at the
structure of the term A.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 445

3.3 Encoding Boolean logic by terms and types

Using the definitions of true and false from the previous section, we can type the usual
codings of Boolean functions as:

and = Aa: *. Ap: *. Ay: *. A5: *.

e Aa: *. A|3: *. Ay: *. A5: *.

(a -> (P -*• y -» y) -> 5) -» a -»• 8

or s Aa: *. Ap: *. Ay: *. A5: *.

Xp: (a -> P -> a) -> y -> 8. taj: y. p(?r«e[a] [ P]) q

e Aa: *. Ap: *. Ay: *. A8: *.

( (a-*p^a)^Y^8)^y^5
no/ = Aa: *. Ap: *. Ay: *. A8: *. Ae: *.

Xp: (a -> p -> P) -> (y -> 8 -> y) -> 6.

e Aa: *. Ap: *. Ay: *. AS: *. Ae: *.

Observe that all of these typings can be derived by the ML type inference algorithm.
As in ML, all the types are outermost quantified, although we have written the
typings in the notational style of F2. The subterms true and false are explicitly
parameterised to ensure that the terms are well-typed; in this manner, the typing rules
of F2 are used to simulate the unification mechanism of the ML type inference
algorithm.

The computational significance of these typings is not particularly lucid as written.
We can however clarify this significance by picturing the types as directed acyclic
graphs (dags), having nodes labelled with appropriate subterms. For example, Fig. 1
shows the typing of and drawn as a graph, together with the dags for true and false.
At the level of pure A.-terms, we know that the defined terms simulate Boolean logic,
but Fig. 1 shows how the simulation is effected as well at the level of first-order
unification and types. For instance, we know that and true q should reduce to q, and
that and false q should reduce to false. To simulate the former reduction, we unify the
dag rooted at p (the 'first input') with the dag representing the type of true, causing
the node labelled q to be unified with the ' output node' labelled pqfalse, so that the
type of input q is indeed the type of and true q. To simulate the reduction of and false
q, observe that unification of 'input' p with the dag representing the type of false
causes the substructure of the graph for and rooted at the node labelled false to be
unified with the output node. Then the value and the type of the 'second input' q
become irrelevant to the final output.

Similar arguments can be made that the definitions of or and not function properly
at the level of reductions in the untyped ^.-calculus, and that the types of these
definitions simulate logic faithfully at the level of first-order unification. Figure 2
shows the relevant dags coding the types of or and not.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


446 F. Henglein and H. G. Mairson

and

pq false

true false

Fig. 1. Graph representations of and, true, false.

3.4 Unification is PTIME-complete

The graphs depicted in Figs. 1 and 2 have the same computational significance as the
gadgets invented by Dwork, Kanellakis and Mitchell (1984) in their well-known
proof that unification is complete for deterministic polynomial time. In this section,
we show how their theorem could have been proved by writing an ML program using
the classic /.-calculus encodings of the logical operations. The insight provided by this
simpler problem is important in understanding the more detailed and sophisticated
arguments we will see later on.

The proof of Dwork et al. (1984) was, essentially, that the circuit value problem
(given a Boolean circuit with inputs, what is its output?) could be reduced to
unification. The circuit value problem is logspace complete for polynomial time
(Ladner, 1975) since any polynomial time TM computation can be described by a
polynomial sized circuit, where the input to the circuit is the initial tape contents, and
polynomial 'layers' of circuitry implement each state transition.

To carry out the simulation of a Boolean circuit in ML, we define (as above);+

— fun True x y= x;
val True = fn : 'a —> ' b —> 'a
— fun False x y= y;
val False = fn : 'a —> 'b —> 'b

* To avoid conflict with ML reserved words, examples using ML capitalise the names of declared
functions.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 447

p true q

not

p false true

Fig. 2. Graph representations of or, not.

— fun And p q= p q False;
val And=fn : (' a -> ('b -> 'c -> 'c) -> 'd) -> 'a

-> 'd
— fun Or p q = p True q;
val Or = fn : ((' a -> 'b -> 'a) -> 'c -> 'd) -> 'c

-> 'd
— fun Not p = p False True;
val Not = fn : (('a -> 'b -> >b) -> ('c -> 'd -> 'c)

—> ' e —> ' e

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


448 F. Henglein and H. G. Mairson

When these Boolean functions are used, notice that they output functions as values;
moreover, the principal types of these functions identify them uniquely as True or
F a l s e :

— Or False True;
val True = fn : 'a —> ' b -> 'a

— And True False;
val False = fn : 'a —> 'b —> 'b

— Not True;
val False = fn : 'a —> 'b —> 'b

As a consequence, while the compiler does not explicitly reduce the above expressions
to normal form, hence computing an 'answer', its type inference mechanism
implicitly carries out that reduction to normal form, expressed in the language of first-
order unification.

We now introduce pairing and fanout:

— fun Pair x y=fn z=> z x y;

val Pair=fn : 'a —> 'b —> ('a —> 'b —> 'c) —> 'c
— fun Fanout p = p (Pair True True) (Pair False False);
val Fanout = fn : ((((' a -> 'b -> 'a) -> ('c -> 'd

-> 'c) -> 'e) -> 'e)

-> ((('f -> 'g -> 'g) -> ('h -> >i -> 'i) -> 'j)

-> 'j) -> 'k) -> 'k

The importance of Fanou t , as in Mairson (1990) and Kanellakis et al. (1991), is
that it produces two copies of a logic value which do not share type variables:

— Fanout True ;
v a l i t = fn : ( ( ' a - > ' b - > ' a ) - > ( ' c - > ' d - > ' c )

- > >e) - > ' e
— Fanout F a l s e ;
v a l i t = fn : ( ( ' a - > ' b - > ' b ) - > ( ' c - > ' d - > ' d )

- > ' e ) - > ' e

We code circuits so that every Boolean value is used exactly once. An intuitive
correspondence to linear logic should be immediately apparent, in that the described
simulation of logic breaks down if a Boolean value is used as an input to two different
computations. For example, if we define fun Break p = 0 r p (Not p),wefind,
rather peculiarly, that Break True has type ' a —> ' a —> ' a, a type that is
the most general unifier (least upper bound, in the lattice of unification) of the types
of True and F a l s e . The function b reak uses input p in two different contexts, and
each context imposes constraints on the (monomorphic) type. As a consequence, the
output no longer uniquely codes a Boolean value.

To facilitate the understanding of our coding, we introduce some syntactic sugar
for pattern matching, introducing the use of semicolon (;) to simulate a notion of
sequentiality. We write (vlt ...,ut> = vy; (j) for vj/^t^. ••• Xvk.$). For example,
<j>,q} = fanout r; <j> should be read as 'fanout Boolean value r, making two copies

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 449

p and q, and in that context return the value of <{>'. We write r = oppq; §
for (kr.fy)(oppq) and r = opp; 4> for (kr.fy)(opp) for binary and unary
operators, respectively. The ; is meant to be right associative, so that <J>X; <J>2; <t>3 means

<t>i; O t a ; <t>3)-
A Boolean circuit can now be coded as a A.-term by labelling its (wire) edges and

traversing them bottom-up, inserting logic gates and fanout gates appropriately. We
consider the circuit example from (Dwork et al., 1984, p. 43), pictured in Fig. 3; the
circuit is realised by the code:

Xe1. Xe2. Xe3. Kei. Xeb. Xe6.

e1 =ande2e3;

es =andeiei;

<e9'eio> = fanout(ande7es);

elt =ore1et;

e12 = ore10ee;

oreue12

Removing the syntactic sugar, this straight-line code 'compiles' to the slightly less
comprehensible

— fun circuit el e2 e3 e4 e5 e6=
(cp2 And) e2 e3 (fn e7=>
(cp2 And) e4 e5 (fn e8=>
(Fanout f (fn e9=>
(cp2 Or) el e9 (fn ell=>
Or ell el2))))));

val circuit = fn : (('a —> 'b —> 'a) —> 'c —> ('d —>
'e -> 'd) -> 'f -> 'g) -> ('h -> ('i -> »j -> »j)
-> 'k -> ('1 -> 'm -> »m) -> ((('n -> 'o -> 'n)
-> ('p -> 'q -> »p) -> 'r) -> 'r) -> ((('s -> 't
-> 't) -> ('u -> 'v -> »v) -> 'w) -> 'w) -> ('c
-> (('x -> 'y -> 'x) -> 'z -> 'f) -> 'g) -> 'ba)
-> 'h -> ('bb -> ('be -> 'bd -> 'bd) -> 'k)
-> 'bb -> 'z -> 'ba

The type of c i r c u i t is the equivalent of the construction in Dwork et al. (1984) of
the circuit as a unification structure. We can compute circuit values by instantiating
the inputs appropriately, for instance:

— circuit False True True True True False;
val it = fn : 'a —> 'b —> 'a

Observe that this evaluation produces both the correct type, and the correct value:
there is of course only one closed .̂-term in normal form with the given type, namely
true = Xx.Xy.x. The computation of the value is performed by the interpreter, while
that of the type is performed by the compiler, yet both are essentially the same. In
essence, we have forced the compiler - more specifically, the type inference

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


450 F. Henglein and H. G. Mairson

E6-

Er

E10

E9

E12

Ell

Fig. 3. Labelling of a Boolean circuit

mechanism - into doing computation typically carried out by the interpreter. It
should be clear that any Boolean circuit can be transformed into such a ^.-term. In
mundane programming language terminology, the complexity theoretic reduction is
merely a compiler. The size of the .̂-term is clearly linear in the size of ihe circuit, and
the transformation described can be effected in polynomial time. Observe that
polynomial space is required by this translation scheme, since output wire names (for
example, e7) are output by the transducer while their values (for example, And e2
e3) are pushed on a stack for subsequent output. The size of the stack can clearly be
linear in the size of the ML program output by the transducer.

We can in fact carry out this sort of reduction in logarithmic space, curiously, by
coding computation in a continuation-passing style. A hint towards carrying out such
a reduction is given by the use of the Fanout gate in the above example, where
Panout takes input And e7 e8, and produces two outputs packaged together as a
pair. The pair is then applied to the continuation (fn e9=> fn elO =>.. .) , so
that the two (duplicate) truth values in the pair are bound to e9 and elO. It is a
simple matter to treat the single-output cases similarly, by coding a continuation-
passing version of unary and binary logical functions:

— fun cpl fnc p k = k (fnc p);
val cpl = fn : (' a -> 'b) -> ' a -> ('b -> 'c) -> 'c
— cpl Not;
val it = fn :
(('a -> 'b -> 'b) -> ('c -> 'd -> 'c) -> 'e)
-> ('e -> 'f) -> 'f

— fun cp2 fnc p q k = k (fnc p q);
val cp2 = fn : ('a -> 'b -> ' c) -> 'a -> 'b ('c -> 'd)

-> 'd

Now we use the continuation-passing version of the logic gates, in a style very much
like straight-line code or machine language:

— fun c i r c u i t e l e2 e3 e4 e5 e6=
(cp2 And) e2 e3 (fn e7=>

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 451

(cp2 And) e4 e5 (fn e8=>
(cp2 And) e7 e8 (fn f = >
Fanout f (fn e9=> fn elO=>
(cp2 Or) el e9 (fn ell=>
(cp2 Or) elO e6 (fn el2=>
Or ell el2))))));

val circuit = fn : (('a —> 'b —> 'a) —> 'c —> ('d
-> 'e -> 'd) -> 'f

-> 'g) -> ('h -> ('i -> 'j -> 'j) -> 'k -> ('1
-> 'm -> 'm) -> ((('n

-> 'o -> 'n) -> ('p -> 'q -> >p) -> 'r) -> ' r)
-> (((' s -> ' t -> 't)

-> ('u -> 'v -> 'v) -> 'w) -> 'w) -> ('c -> (('x
—> ' y —> 'x) —> 'z —>

>f) -> >g) -> 'ba) -> 'h -> ('bb -> ('be -> ' bd
-> 'bd) -> 'k) -> 'bb

—> 'z —> 'ba

— circuit False True True True True False;
val it = fn : 'a —> 'b —> 'a

The style of this coding is very similar to that used by Mitchell Wand (1992) in a
framework for verifying compilers, where assembly code is generated in a version of
^.-calculus; the idea also appears in Appel and Jim (1989) and Kelsey and Hudak
(1989). A trivial analysis shows this translation scheme to be a logarithmic space
reduction, since the transducer need only count right parentheses to be output at the
end of the expression, instead of storing expressions on a stack. In this analysis, we
have also assumed that the wire names have length logarithmic in the size of the
circuit.

5.5 Coding functions with finite domains

The coding techniques used in the previous section make no particular use of the fact
that the functions simulated are logical ones. On the contrary, the essential feature of
the coding is that the Boolean functions are over finite domains and ranges. As a
consequence, we may generalise the construction to any function with this
characteristic.

Given a finite set £* = {e\,...,e*}, we code the rth element ef by the X-term:

A t-tuple e = <e15..., et} is coded by the A.-term \z.zel---et; note ed\ o e(, recalling t>
to be the reflexive, transitive closure of the basic reduction step denoted by op . A
function m:Ek^-F with finite domain can then be coded as the tuple:

so that md\ o m(e(). When the finite domain of a function is the product of several
finite sets, we realise the function in its curried form.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


452 F. Henglein and H. G. Mairson

In this manner, we can code the Boolean functions in tabular form: recalling
true = Xx.Xy.x and false = Xx.Xy.y, we have:

not = (false, true}

and = ((true, false}, (false, false}}

or = ((true, true}, (true, false}}

Again, the codings work simultaneously at the value level and at the type level; they
are, moreover, ML-typable. Observe that the ' currying' trick of nested tuples is used
for the binary operations.

3.6 Encoding Turing Machines by lambda terms

Given a deterministic TM M, we show how to encode the transition function of M
as a A.-term 8 such that if ID is a .̂-term encoding a configuration of M, and ID' is
the next configuration of M coded as a A.-term, then 8 ID c~W. We call this a
simulation at the value level. In section 3.7, we will see that the type of 8 also encodes
a simulation at the type level. The encoding, which uses the methods of the previous
section, also yields a very compact and simple proof of the DTIME[2" ]-hardness
bound for recognising ML-typable terms. To reduce notational clutter, we blur the
name distinctions between parts of the TM and their respective codings in the X-
calculus; for example, we write qt for a TM state as well as its coding as a X-term.

Since the TM manipulates a tape (represented as two lists, to the left and right of
the read head), we need to code lists and relevant operations on them, while
preserving the symmetry of values and types. Therefore, a list [x1; ...,xk] denotes the
tuple <x1; <JC2, ..., (xk, nil) ••• >>, where nil = Xz.z.

Let M have finite states Q = {qx, ...,qk) with initial state q1 and final states F a Q;
tape alphabet C = {cu ...,cf} with blank symbol ty=cx; tape head movements
D = {dx,d2,d^ (left, no movement, right); and transition table d-.Q^C^Q xCx D)
A configuration (ID) of M is a triple (q,L,R}eQxC*xC* giving the state and
contents of the left- and right-hand sides of the tape; we thus define the transition
function of M by the usual extension of 3. We assume that the TM never writes a
blank, that it does not move its tape head iff it reads a blank, and that it never runs
off the left end of the tape.

Using techniques of the previous section, we code each state qt as the projection
f u n c t i o n Xxx.Xx2. ••• Xxk.xt, e a c h t a p e s y m b o l c, a s Xxx.Xx2. ••• Xxe.xt, a n d h e a d

m o v e m e n t d( a s Xx1.Xx2.Xx3.x(. If dq(c} = ttj f o r s o m e t u = (q,c,d}eQxCxD,

then the map can be coded by the ^.-term:

^ = \ V l , l ' ' l , 2 > • • • ' ' i y / ' V 2 , l ' * 2 , 2 > • • • ) ^ 2 , ^ } ' ' " > V / t , 1> ' i t , 2 ' • •• ' ' * y / /

Observe that dqtCj > ( ( J . The term 9 is just a table; qi projects out the fth row, and
then c, projects out the 7th column of that row.

We represent a TM ID by a tuple (q,L,R>, where L = \(x, •••,^m] and
R = [r1; ...,rn] are lists coding the left and right contents of the tape; we assume the
tape head is reading r1; and £x is the cell contents to the immediate left.

t Note that we choose to represent 5 in its curried form, rather than of type d:Q*C-+QxCxD.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 453

Recalling the pattern-matching notation we have introduced in section 3.4, the
transition function of M has a very simple encoding:

</,£> = L;

(q',c',dry = dqr;

Notice that when the read head does not move, the ID (jq', <<f, L>, <c', (Jf>, nil>» is
chosen; in this case, we know by the definition of the TM that a blank has been read,
and the read head has therefore reached its rightmost position, where there should be
an infinite sequence of blank cells to the right. This infinite sequence is not coded
explicitly, but rather simulated implicitly by constructing a new right-hand side of the
tape, namely <c',<0,nil>>; we have 'tacked on' another blank cell. Should the TM
move again to the right, the process will be repeated. We note that even though the
TM can write several different values in a tape cell over time, the simulation of this
behaviour manufactures a new coding of the cell each time the tap position is
traversed, and uses list processing to place the cell in the correct position on the tape.
In this way, no representation of a cell is every used more than once.

We also observe that <#', c', a") codes the state, symbol written, and head direction
for the next machine configuration, as computed by 3; the term a" is then used as a
projection function to choose the .̂-term coding the next configuration. Because no
value is 'used' more than once, no side-effecting of type variables occurs, and the
fanout gates mentioned earlier, used in the proofs in Mairson (1990) and Kanellakis
et al. (1991), are not necessary.

3.7 Encoding Turing Machines by types

The simple encoding 8 of the transition function is typable in ML; moreover, it has
the following property:

Proposition 3.2
Let ID and ID' be X-terms coding successive configurations of M, and let a and a' be
their respective first-order principal types. Then 8 ID o /D ' , and 8 ID e a'. Furthermore,
if IDk is a X-term with principal type a" coding the state of M after k transitions from
ID, then (k~5)ID t>IDk, and (k~5)IDeok.

Proof
Before proceeding with details of the proof, the statement of this important
Proposition deserves further explanation. It claims that the computation of TM M
is simulated not only at the value level, but also at the type level. The first part of the
Proposition, dealing with successive machine configurations, asserts this dual
representation purely in the type system of ML, and by extension, in F2.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


454 F. Henglein and H. G. Mairson

The commutative diagram shown in Fig. 4 summarises this duality.
In typing 8 ID, first-order unification is performed on the principal types of 5 and

ID, producing a most general typing of 8 ID. The unification is merely a complicated
variant of the calculation seen in sections 3.3 and 3.4, where unification simulated
Boolean calculations; in the case of the Proposition, unification simulates calculations
of finite functions specified by the transition map of the TM.

The second part of the Proposition, concerning the coding of multiple transitions
of the TM, makes a similar assertion, but not purely in the type system of
ML - essential use is made of the added expressiblity of F2 types. Given that 8 ID can
indeed be typed, how can the typing technology be extended to type, say,
8(8(8(8/D)))?

The answer is simple: each instance of 8 is typed differently. Each such typing is
indeed an instance of the principal type of 5, but changes according to the type of its
argument. The key idea implicit in this construction is the composition of functions
having different domains and ranges.

We are certainly familiar with composing functions of type Int — > Int, for example,
while a function of type Int —> Bool cannot be so composed with itself. However, in
the case of polymorphic functions where the range can be parameterised to have the
same structure as the domain, we may in fact carry out such function composition.
Rather than examining the fairly complicated type of 8, we consider as a motivating
example the polymorphic composition of the Boolean function not. We begin by
carrying out the composition in ML:

— val Not=Pair False True;
val Not = fn : (('a -> 'b -> 'b) -> ('c -> ' d -> 'c)

-> 'e) -> 'e
— Not True;
val it = fn : 'a -> 'b -> 'b
— Not False;
val it = fn : 'a —> 'b -> 'a
— fun Notnot p = Not (Not p);
val Notnot = fn : (('a -> 'b -> >b) -> ('c -> 'd

-> 'c) ->
('e -> 'f -> 'f) -> ('g -> 'h -> 'g) -> 'i) -> 'i

— Notnot True;
val it = fn : 'a —> 'b -> 'a
— Notnot F a l s e ;
v a l i t = fn : ' a - > ' b - > 'b

In F2, Notnot can be denned as:

notnot = Aa: *. Ap: *. Ay: *. A8: *. Ae: *. A({>: *. A^: *. An: *. Ai: *.

(not [a] [P] [y] [8] [(E -* * - c|>) -> ($ - r, -> Q -> i] p)

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 455

ID 5 > i ID'

unify 8

Fig. 4. Duality of ID representation via types and terms.

In Fig. 2, the type of not is depicted as a dag. Even though we think of not as a
function on the ' type' of Booleans, we have already noted that our codings of true
and false are not of Boolean type in the standard inductive sense. Furthermore, the
right-hand side of the dag, a single-node, clearly has less structure than the left-hand
side. In fact, we can instantiate the right-hand side to look like the left-hand side, as
shown in Fig. 5, to construct a type for notnot. The F2 code for notnot contains type
information that syntactically reproduces the information in the graph of Fig. 5.
Notice that the outermost not in the F2 code corresponds to the deeper graph for not
in the figure.

Observe what happens when the dag rooted at p is unified with the dag for true:
the leftmost/a/se in Fig. 5 is forced to unify with the dag rooted at/?' - in other words,
false is ' input' into the rightmost not gate. Continuing the unification chain reaction,
the rightmost dag for true is then forced to unify with the 'output' node p". Hence
application of notnot to true yields an answer of the type of true.

When we replace not with 5, and compose the coding 5 of the transition function
of a TM with itself, the details of the unification become more complicated, but the
high-level structure of this argument remains unchanged. As in the case of Notnot,
the left-hand side of the dag coding the type of 8 has considerable structure, while the
right-hand side is simply an external node (see Fig. 6). Assume that 4> is the type of
5; we unify the dag ̂  (the so-called 'TM circuitry') with a dag coding a TM ID. A
dag coding the next ID of the TM is then forced to unify with node ID', and
subsequent unification with the next copy <€i of TM circuitry simulates another
transition, unifying ID" with the following TM instantaneous description.

The essential property allowing polymorphic functions to be so composed is that
the right-hand side of the dag encoding the type can be parameterised (i.e.
instantiated by grafting of appropriate dags to the external nodes) to be identical to
the left-hand side. When the right-hand side is simply a node (as in the case of the type
of unary Boolean functions, and the type of 8 as well), this property is obvious.
Observe that the type 4>2 of 8 o 8 then has the same property, and so it too can be
composed with itself. In section 5, we will formalise this general property in the type
language of Fa to derive a nonelementary bound on type inference.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


456 F. Henglein and H. G. Mairson

notnot

not

Fig. 5. Graph representation of the type of Notnot.

ID

ID"

Fig. 6. Graph representation of the composition of 8.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 457

Given these intuitions about composing functions, the proof of the first part of the
Proposition is straightforward: it follows from principles of first-order unification.
We can, however, elaborate further on the second part.

Define X-term k = Xs.Xz.s" z and type 8e<D = Av1:*.Av2:*, ....Avr:*.

£e(vl,vi,...,vr)^-®(v1,v2,...,vr), where JSffo, r>2, ...,vr) and 0l(vx,v2,...,v^ are

metanotation representing quantifier-free (i.e. first-order) types over type variables
!)J,D2, ...,vr. Given these definitions, we type (£5) ID so that k has type

where the n(J are quantifier-free parameterisations of <D such that if s[n( J ••• [K( r] has
type a-»- P, then a unifies with a*"', and P is equal to a*"'"1"1 (up to renaming of type
variables). We can then assign to z a type unifying with a = a0, and assign term s* z
the type a". Q

The typing of £8 in the above Proposition uses an essential feature of F2: observe that
the type of & is not outermost-quantified, since the type of s is the (polymorphic) type
of 8, containing quantifiers.

Corollary 3.3
Let k denote the Church numeral for Xs.Xz.sk z, and let:

E=(Xf.2(2-(2f)--))bID<)

where there are m occurrences of 2, and ID0 codes an initial ID of M. Then E has the
same normal form and rank 2 type as (2m 5)ID0.

Proof
We write Avt:* (resp. Avt:*) to denote abstraction over a sequence vr,...,vt of type
variables, and [TC] to denote a sequence of parameterisations. We then write the type
pictured in Fig. 6 as Avt voat: *. ^C(vt uout) -> vout, where JS? is a type functional mapping
t+ 1 types to a type.* Here, as in Proposition 3.2, i f is a metanotation, since it clearly
is not part of the syntax of the type language of F2; we see in section 5 how constructs
similar to i f can be formalised in Fa. Using this notation, the rightmost 2 in E can
be given the type:

x1 = (Avt voul: *. &(vt vout) -+ vout) ->

Avt v't v'mt: *. &(vt £f(v't v'out)) -y v'out,

that is:

Xg: Avt vout: *. i?(g( »out) -* z;out.

Avt: *. Av't: *. Av'out: *.

f Observe the informal use of concatenation of type variables, e.g. A2(uout:» denotes the type
Ai)j: *. AD 2 : *. • • • Ay,: *. Au o u t : *.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


458 F. Henglein and H. G. Mairson

Iterating this construction, we can type the second rightmost 2 as:

^ g : Avt vt v'mt: *. <?{vt <£(v\ v'mJ) - C t •

Avt: *. Av't: *. A0": *. /\.v"t': *. Av'^t: *.

with type:

We continue the iteration to type each occurrence of 2, deriving a typing T of
2(2(-Of) — )), and hence a typing of (kf.2(2(• • • (2/))))5. We then type E by first-
order unifying the type of ID0 with the left-hand side of x. This unification is indeed
possible, using an induction on m; we know the type of ID0 unifies with
(j) = Avt vmt: *. S£(vt vaut) -*• vout as a basis, and the left-hand side of x extends (j> at the
output variable. We then use the inductive step to follow through the 'chain reaction'
of subsequent unifications with separate copies of TM circuitry. Since E reduces to
(2mS)ID0, the result follows from the so-called subject reduction theorem (see, for
example, Hindley and Seldin, 1965), the .̂-calculus interpretation of cut elimination:
namely, if a term has a particular type, then any reduct of that term has the same
type. •

We note that rank 2 typing refers to the fact that rank 2 is necessary for the type
derivation, although the actual type of E is rank 1.

Theorem 3.4
Recognising the typable Core ML terms typable in F2 is DTIME[2n']-hard for any
integer t ^ 1 under logspace reduction.

Proof
For a description of Core ML - essentially, the first-order typed ^.-calculus with a
polymorphic l e t such that l e t x = E i n B is syntactic sugar for [E/x]B-see
Harper et al. (1990), Kanellakis et al. (1991) and Mairson (1992a). Assume that
F= {qp+1...,qk} <= Q are the accepting states of M. We define a combinator:

Eq = Xx.Xy.Kx(kz.K(zx)(zy)) eAa:*.a->a->a

and consider the ML expression:

l e t 82 = X.j.51(51j')in

l e t 5n< = ^•8n'-i(5n
1-i>;) i n

8n,/iD0

(Xstate .XS.Xr. Eq I ((statefalse.. .false true... true) IK))

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 459

where the first p arguments of state are false, and the remaining k—p arguments are
true. If TM M accepts its input, then R = state false.. .false true. ..true reduces to true,
so that RIKo~I, and EqII can be typed. If TM M rejects its input, then RIKoK,
and EqlK cannot be typed, since the types of / and K are not first-order unifiable,
and the type constraints of Eq force their type equality. •

The construction in the above Theorem depends upon two basic components: a
short coding of a long reduction sequence, and a gadget (based on first-order
unification) to force a mistyping in the case of a rejecting computation. To derive a
similar lower bound for F2, we replace the coding of the reduction sequence by the
construction of Corollary 3.3, and the mistyping gadget by one based on the strong
normalisation theorem for F2.

Theorem 3.5
Recognising the lambda terms typable in F2 is DTIME[2" \-hardfor any integer t ^ 1
under logspace reduction.

Proof
Again, assume that F= {qp+1, ...,qk} c Q are the accepting states of M. Consider:

A = <q, L, R} = (Xf. 2(2 - Of) • • •)) 5ID0;

qfalse.. .false true... true

where 2 occurs nl times, the first p arguments of q are false and the remaining k—p
arguments are true. If M accepts input x after exactly 2n steps, then A P-reduces to
true. By Lemma 3.2 and Corollary 3.3, the ^.-expression A can be given type
Aa: *. Ap: *. a -* P -» a, so that T M l = (kx. xx) (A(Xx. x) (Xy. yy) is typable in rank 3:

(Xx: AT : *. x -»• t . x [AT : *. T -> T] X)

(^[AT : *. T -»• T] [(AT : *. x —> x) -> (AT : *. T -*• T)] (AT : *. Xx: x. x)

(Xy: AT : *. x -> x. y [Ax: *. x -> x] y))

If M rejects x, then A P-reduces to Xx.Xy.y, and consequently ^M x reduces to
(Xx.xx)(Xy.yy). By Girard's strong normalisation theorem (Girard, 1972; Girard et
ai, 1989), *PM x is not F2-typable. It is easily seen that xFMia. can be constructed in
logarithmic space from M and x, since the transducer need only count how many
copies of the term 2 to output in the construction of A. •

Corollary 3.5 (Fixed type inference)
Let x be an arbitrary but fixed F2 type that is inhabited, so that some lambda term exists
with type x. Then the problem of recognising the lambda terms which can be given the
F2 type x is also DTIME[2n ]-hard for any integer t ^ 1 under logspace reduction.

4 An overview of F3, F 4 , . . . , Fa

The F2 lower bound given above has two parts: (1) a simulation of the transition
function of an arbitrary TM by a closed A.-term; and (2) a method for composing the
transition function an exponential number of times. The analogous ML bound stops

16 FPR4

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


460 F. Henglein and H. G. Mairson

at exponential because of MLs limited ability to (polymorphically) compose arbitrary
functions. No such limit is apparent in F2 or its higher-order extensions, so a natural
place to strengthen the iybound is to improve the function composition realised in
(2) and thus 'turn the "crank" (of the transition function) faster'. Note that the
'crank' of Example 3.1 is (without syntactic sugar) merely the X-term:

(kx0.(kxt .••• (A.x(_!.(Xxt.xt)(ky.x^Ot,-!7)))''' ( ^ • *i(*iy)))Q-y• *o(*oy)))8

which has the same power as the term E in corollary 3.3. Might there be more
powerful typable reduction sequences in the systems Fkl

We show that program can be carried out in Fa to derive a nonelementary lower
bound. Related superexponential bounds can be proven for the Fk so that recognising
typable ^.-terms of length n requires fk(ri) time, where fk(n) is an 'exponential' stack
of 2s growing linearly in k, with n on top of the stack. Before describing these lower
bounds in more detail, we provide a brief overview of the type systems F3, Ft,..., Fm.

4.1 Kinds and abstraction over functions on types

In the first-order typed ^.-calculus, the type language is made up of type variables, and
a binary function -> mapping a pair of types to a type. In F2, we add universal
quantification, but only over type variables. The higher-order systems F3,Fi,...,Fa

are designed to allow abstraction and quantification as well over functions on types,
with varying degrees of freedom.

We introduce the notion of kinds to categorize types, similar to our use of types to
categorise terms. For instance, we use * (sometimes pronounced 'prop', as in
logical proposition) to denote the types found in F2. (Not coincidentally, these types all
have the essential syntax of logical propositions.) We describe the functionality of the
(curried) function-space constructor->as^e*=>*=>*, where =>is a version of->• at
the kind level; the significance of this description is that, given two types TX and x2 of
kind *, the expression ->• x1 x2 (usually written as the infix x1-~x2) is also of kind *.
Interpreted logically, this merely asserts that if xl and T2 are logical propositions, so
is Tj -> T2. Though ->• is not an F2 type, we see clearly that it is a type constructor.

Following these intuitions, if we introduce ^.-abstraction at the type level, imitating
its existence at the expression level, we can describe other functions on types, and
abstract over such functions. For example, given an arbitrary type A, the type
AP:*.{A->P^P)-^P->P can be used to code the type of lists of elements of type
A, where we code the list [xltx2, ...,xk] as the term:

AP: *. A.c: A -> P-* P An: P.cx^cx^ • •• (c xk n)))

Note that with type information removed, this term is simply Xc.Xn.cx^
(cx2(---(cxkn))), virtually identical to the familiar consx^consx^-- (consxfcnil))),
except that we have abstracted over the constructors cons and nil.

By abstracting over the arbitrary type A, we might define:

so that, for instance, we could write W[List Int] to parameterise the identity function
with the type of lists of integers.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 461

In this case, List becomes a higher-order type of kind* => * that, for example, maps
Int (of kind *) to List Int = AP:*.(\nt^P^P)^P^P (also of kind *). To use such
definitions, equivalents of a-renaming and P-reduction must be introduced at the type
level to effect substitution. Other examples of higher-order types and complex kinds
occur in the encoding of intuitionistic logical connectives using minimal second order
logic:

not = XA:*.A->AP:*.P

In these examples, not has kind * => *, while and and or have kind *=>*=>*. As we
noted earlier, observe that the idea of higher-order types takes what we might have
used as metanotation in F2 (giving names to complicated types we tired of writing over
and over with minor changes, for instance the construction if in section 3.7), and
embeds the notation formally in the typed ^.-calculus under consideration, along with
requisite substitution mechanisms at the type level.

The type systems Fk differ in the degree to which they allow this higher-order type
abstraction. In F2, no such ^-abstraction is allowed, and all types have kind *. In F3,
^.-abstraction is allowed only over types of kind *, and in Fk+l abstraction is allowed
only over types of kinds found in Fk. In Fa, there are no such restrictions. We can
describe the kinds 3Ck allowed in Fk by a grammar:

4.2 Syntax and inference rules for the systems F3,Ft, ...,Fm

The syntax and inference rules of F3, Ft, ...,Fa are a generalisation of those found for
F2 in section 2.1. The systems differ only in their definition of kinds. Let JfT denote a
grammar of kinds as described above; we then define the syntax of types and
expressions as:

We have the inference rules defining well formed contexts:

(£«»-<»

{Env-term)

wf«»

TI-T6*

16-2

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


462 F. Henglein and H. G. Mairson

Next, we define the well-formedness of types:

T{a) = K

(Wff-A)

n-aetf

ri— xe* T\—x'e*
ri-x-^T'e*

r[a:/qi-Te*
Fh Aa.K.xe*

T[a.:K\\-xeK'
r\-Xa:K.xeK=>K'

r\-xeK^>K' r\-x'eK
TY-xx'eK'

Notice also the introduction of rules denning the meaning of X at the type level.
The last rules define the well-typedness of expressions, in a syntax-directed fashion.

Observe that the (constant) function-type constructor ->• can only be applied to two
terms of kind *.

Ff— Te* r\x\T]\-eex'

T\— eet-s-t' Fl— e'ex
Y\— ee' ex'

.. .. . T\-eeAa:K.x' F\-xeK
(A-elm) r^e[x]ex'[a/x]

r\-eex' x x x' Y\-xe*
(~} ~~ ' Fl-eex

In the last rule, x x x' means that the types are Pr)-convertible.

5 Type inference for Fm is nonelementary

To derive a nonelementary bound, we show how to type the X.-term C5/Do, where:

C = (Xf. Xx .f x) (Xgn .Xyn.g
2
nyn) (Xg^. Xyn_t .g2

n^yn^)--- (Xg0. Xy0. g
2
0 y0)

and 5 and ID0 code the transition function and initial ID of a TM, as in section 3. The
method we describe for typing C makes very broad assumptions about the reductions
caused by 5, and thus provided a general technique for composing functions. Observe
that:

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 463

~(Xy,.Xyo.yTn+2)y0)8ID0 .>8*<"+2>ID0,

where the function <I> is denned as <J>(0) = 1, $>(a+ 1) = 2*(a).t The technical challenge
is to type C so that yx gets the type of 8, and y0 the type of ID0. The term C codes
repeated exponentiation as in Example 3.1, except that the function 8 being composed
does not have the same domain and range. To understand how to compose functions
with different domains and ranges, we have to examine the type of 8 more closely; we
abstract its structure as:

8 e Avx: * . Av2: * . • • • Avr: * .

Proposition 5.1
v v%,..., vr) is a substitution instance of 3fc(wx, w2,..., wr).

Proof
They both encode TM IDs, and so are unifiable. The 'circuitry' of the unification
logic exists on the ' ^ ' side, which induces structure on the '^2' side. •

The construction that follows may in fact be used to type the iteration of any
function 8, provided that the above Proposition is satisfied.

We now represent the type of 8 by using higher-order type constructors. Divide
the type variables V = {vt, ...,vr} into disjoint sets V, = {vv...,vp} and
Vo = {vp+1, -..,*VHj_r}, w n e r e the output variables Vo appear in M(vv v2, ...,vr), and the

intermediate variables V, form the complement. For example, in Fig. 2, the type of
not has a single output variable (the rightmost node labelled p false true), while the
other external nodes of the graph comprise the intermediate variables. We can then
define an ID-constructor make-ID as a function on types:

make-ID = Xxt: *. Xx2: *. • • • XxQ: *.

^(x1,x2,...,xQ)e*"+1

where we use the abbreviation *' = *, *a+1 = *=>*", and 0t is M restricted to the
output variables.

Lemma 5.2
There exist type functions Tt e *r+1, 1 ^ i ^ q, such that the type of 8 can be represented
as:

8 e Avt: *. Av2: *. • • • Avr: *.

(make-ID ( r \ vlv2--- vr) (T2 vx v2 • • • vr) • • • (TQ v1v2--- vr))

-> make-ID vv+lvv+2---vp+q

Proof

By first-order unification and Proposition 5.1. We note that the functions F( encode
what we have called 'TM circuitry'. In fact, for the coding of the TM we have given,
the right-hand side of the type of 8 consists of a single output variable, so q = 1,

* Recall from section 2 that the term (Xs.Xz.smz) (ks.'kz.s''z) reduces to the normal form Xs.Xz.s""z.
Therefore, a X-term consisting of a (left associating) sequence of k Church numerals for 2 will normalise
to the Church numeral denoting a stack of n2s.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


464 F. Henglein and H. G. Mairson

there is only one functional T, and make-ID = Xx:*.x. We maintain this more
general notation to treat composition of polymorphic functions with more complex
types. •

How is 5 composed polymorphically, namely the equivalent of ML's l e t
52 = XID.8(8ID)? In ML, the type of 82 is realised by first-order unification; we
simulate this using the functions F(.

Proposition 5.3

The X-term 82 can be given the Fa-type:

Avx: *. Av2: *. • • • Avp: * . Av[: *. Av2: *. • • • Av'r: *.

(make-ID

( T 1 v 1 v 2 ••• v p ( T 1 v'x ••• v ' r ) ••• ( T q v [ • • • < ) )

(r2vlv2--vp(Tlv'1--v'r)-(TQv'1-v'r))

(TQvlv2--vp(T1v[-v'r)-(rQv'1-v'r)))

-+make-ID v'p+lv'v+2---v'p+Q

Observe that the output variables vp+v ..., vp+Q in the type of 8 have been instantiated
so that vp+i = r,i>i ••• v'r. The primed variables form a second floor of circuitry, while
make-ID puts a roof on the type structures generated by the variables and the T(.
Repeated composition yields a giant directed acyclic graph, where the depth of the
dag (i.e. the number of floors) is linearly proportional to the degree of composition.

The type constructors Tt and make-ID can therefore be used to define the types of
A.-terms XID. 8(8 • • • (8 ID) • • •) in normal form, where 8 is iterated some fixed number
of times. However, in typing the X-term C defined at the beginning of this section, we
observe that C is not in normal form. In the next section, were use higher-order
functionals to iterate the type constructors, so that the reduction of C to normal form
at the value level proceeds in a well defined synchrony with reduction of the type
constructors (and base types) to normal form at the type level.

5.1 Higher-order type data structures

We now show how ^.-abstraction and application at the type level can be used to
manufacture huge dags representing the /-fold composition of 8. The existence of X
at the type level allows the construction of such 'abstract' data structures.

The graphs in Figs. 5 and 6, as well as the introduction to section 5, show how the
type of a function defined by (polymorphic) composition can be understood in terms
of linking' output nodes' to ' input nodes', building a larger graph with greater depth.
The construction is like the construction of a large building, where each floor has the
same design, and we can use the language of higher-order types to build these big
buildings. For example, by X-abstraction over the external nodes of a graph, we can
'plug in' another floor by function application at the type level, where substituting a
type (i.e. graph) for a bound type variable in a higher-order type causes the graph to
be grafted into the position of an external node. Since a large graph may need (type)

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 465

variables at the leaves, we can use the standard X-calculus hacks for maintaining a
tuple of type variables to store a list of type variables. At every level (i.e. floor) of the
construction where external nodes of the graph occur, we can use projection to get
new type variables from the tuple, and plug them into the right position. The type
language thus gets used as an ordinary, if somewhat arcane, programming language
for building big graphs.

The basic idea is the following: we construct a certain X.-term 9~ at the type level
which in a precise sense represents the type of they-fold composition of 5, where the
kind K of 9~ does not depend on j . We will then define a function map: K => K such
that map ST represents the type of the (/+ l)-fold composition of 8. Because the
domain and range (both kinds) of map are identical, we can at the type level engage in
' conventional' function composition tricks that would not work at the expression level:
the kind of map is identical to the kind ofmap o map. On the other hand, considerable
technology was developed earlier for composing particular functions at the expression
level (e.g. 5) that do not have identical domain and range. Notice that when we
compose a function with identical domain and range we may define, for instance:

20 = Xa: K => K .Xx: K . ah

e (K => K) => K => K

21 = Xu: (K => K) => K => K .Xx: K => K . ah

e ((K => K) => K => K) =>

(K => K) => K => K

and write:
2j 20 map o XST: K . map(map(map(map ST)))

The coding of the type map is not pretty, but its use is quite elegant. The fundamental
data structure manipulated by map is called a pair. A pair has two parts: a prototype,
and a variable list.

A prototype is a X.-term of the form:

The d= d( are just ' dummy' type variables to ' p a d ' the kind, and the 4>, are types
involving some set vv .,vpt of type variables, xx, ...,xq, and ->, so each §t is of kind
*. We imagine the 4>( to be the dag 'under construction', so that make-ID§x ••§„
would form a suitable if, given type variables for the xv

A variable list is a X-term of the form:

Xx,: *. Xx2: *. • • • XxQ: *. XV: *<+pt+1. <t>'fj2 • • -fa • • • vpt

where the/, are the output variables (i.e. external nodes) of the dag ultimately to be
constructed, and the v, are a list of type variables to be used during the construction.
The A.;crbindings are padding, since they make the kind of a prototype identical to the
kind of a variable list.

A pair is a A.-term of the form:

XTI:K'=>K'=>K'.UPV

£ (K' => K' => K') => K'

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


466 F. Henglein and H. G. Mairson

where P is a prototype and V is a variable list (both of kind K'). Because of the kind
identity, fst and snd are definable on pairs:

fst = Xpair: (K' => K' => K') => K' .pair (XP : K ' . X K : K ' . ? )

snd = Xpair:(K' =>K' =>K') =>K'.pair(XP:K'.XV:K'. V)

Given a prototype or variable list applied to types T1; . . . ,T9 of kind *, the result is a
tuple of kind *9+p(+1 => *, and we may then code terms project5+pM, similar to the
definitions of fst and snd, which project the 7th type from the tuple. For a variable
l i s t V, w e w r i t e V} f o r projectq+ptj(V d1d2-- dq).

The X-term map maps pairs to pairs, where the new pair is one ' composition step'
closer to the ultimate /-fold composition, as represented by the prototype. The
definition of map involves straightforward list processing on pairs, where the type
variables in the variable list, used as intermediate variables in the sense denned earlier,
are repeatedly shifted cyclically and retrieved as the 'floors' are built; each floor
represents the type of another iteration of 5.

To facilitate the description of type functionals, we use an ML-like let syntax,
where let x = E in B is syntactic sugar for (Xx.B)E. No ML-style 'kind
polymorphism' exists in this programming style: the type language is entirely
monomorphic:

map = Xpair: (K' => K' => K') => K'.
let/* = istpairin

let V = sndpair\n
\etP' = X x 1 : * . ••• X x Q : * .

P(graft r t) (graft r , ) - (graft r,)
in
let V = Xx1 :* . • • • Xxq: *. XV: *Q+pt+1 -> *.

< b ' V - - - V V V • • • V V V ••• V i n
^ *\ rQ rQ+p+l 'q+v+2 Q+pt 'q+1 ' 8+2 ' q+v

The higher-order type functional map decomposes the pair into its prototype P and
variable list V. It builds dags Tix1xi-- xq Vg+1 VQ+2 • • • Vq+V out of ^-abstracted type
variables xp which mark external nodes in the dag where subsequent grafting will take
place, and type variables Vg+j extracted from the variable list. Applying prototype P
to the constructed dags grafts the dags onto the external nodes of the dags <j>, stored
in the prototype, building the new 'floor' of constructed circuitry. The type variables
v} in variable list V are cyclically shifted in assembly-line fashion, so that applying map
again to the just-constructed pair will select a different set of type variables to build
the next 'floor' of circuitry. The variables^ in the variable list are not rotated: they
remain fixed, to be substituted as the final output variables.

To convert a prototype into a first-order type of the iterated polymorphic
composition of 8, we substitute the ' final' type variables ^ from the variable list
(which were never cyclically shifted) into the prototype, and make-ID is applied to the
dags ()>; that have tediously been constructed:

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 467

J = Xpair: (K' => K' => K') => K' .
\etP = istpairin

let V = sndpairin
\etT=PV1V2-- Vg\n

make-ID (pro)ectQ+ptl T) (project,+p( 2 r)(project8+J)(,9 T)

The relationship between these functionals and the type of iterative compositions
of 8 is given by the following lemma:

Lemma 5.4
The X-term XID.8(8 ••• (8ID)), where there are t instances of 8, can be given type:

Ad: *. Ai>,: *. Av2: *. • • • AvQ+pt: *.
\etP = Xx1:*. •••XxQ:*.X<3>':*Q+lH+1^*.

<b'x1---xQd---d\n
\etV=Xx1:*. •••XxQ:*.X®':*Q+pt+1^*.

^'vi — vqvQ+1 — vq+pt\n
\etpair0 = A.n: K' => K' => K' . UPV in

J(map(map • • • (mappair0) •••))-*• J{pair^)

where there are t instances of map.

As an example of the use of this Lemma, when t = 2, we get (without quantifiers) the
type described in Proposition 5.3.

5.2 Composing map

Now comes the elegant and truly fun part: we use the ' crank':

(at the expression level) to compose map <S>(n + 2) times, where <£(0) = 1,
$(a+ 1) = 2*(a). The dag gets constructed at a 'speed' controlled by the reduction
sequence of C to normal form. Let K = K0 = (K' => K' => K') => K' be the kind of a pair,
so that mapeK0 =>K0, and / E K O = > * ; we define Kj+1 = K}=>KP and let at be a type
variable of kind Kj+2. Suppressing kinds temporarily to increase readability, we
recursively define a set of types used to type C:

%{a0} = Amap. (Ax. J(map x) -> Jx) ->
(Ax. J(a0 map x)

^ } = Aa o . W ^ o { a i

Amap.

(Ax. J(map x)

(Ax.J(ctla.li

^Jx)

- > > T ) ^

, map x) -+ Jx)

We may intuitively think of the at,j > 0, as the types of higher-order Church numerals,
and %{a0} as the type of an 'oc0-composer' which, given the transition function 8 of

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


468 F. Henglein and H. G. Mairson

type Ax.J(mapx)^<fx as input, returns the oc0-fold composition of 5 with itself.
Accordingly, ^ { a j is the type of an '^-composer composer' which, given an <x0-
composer, returns an at a0-composer. Recall that the normal form of o^a,,
corresponds to exponentiation of the respective Church numerals, in the style of the
introductory example of section 2. In general, ^+ i{a t + i} is the type of a function
taking a higher-order composition function of type ^k{ak}, and returning a more
powerful iterator of type ^k{ak+1 <xk}.

Lemma 5.5

For each 0 ^ i ^n, Gt = ^-gl-'kyi.g1yi can be typed as ^({2(}, where:

2i = Xa:Kf => K4 . X/c: K(. CJ(GT)

is a type having the same kind as a(, namely K(+2 = (K4 => K() => K, => K(.

Proof

For Go = ^ o - ^ o - ^ o J o ' w e n a v e the construction:

Go = A map: K0 => K0.

A.g0: AT : K0 .

AX:K 0 .

Xy0: J(map(map T)) = ^"(20 map x).

g0 M (go [""*/> T]y0)

and for G(+1 = 'kgi+1-Xyl+x-g
2
i+iyi+i,i> 0, we have the construction:

G< +i = Aotj: Kj + 2 .

In this term, notice that:

Lemma 5.6
In the term C:

F = X/ .Xx . f xe %{2n}->^n_1{2n_1}->^n_i(2n+12n2n_j}

We have the construction:

f[2»2,,_1](ft2ll_Jx)

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 469

Recall ^t{2t} = Aat_1:Kt+1.^t_1{at_1}^-^t_1{2tat_1}; with the given parameter-
isations, the subterms are typed as:

fl2n_ J e ^ { ^ - i ) ^ n - , ( 2 n 2 ^ }

f[2n 2n_J e ^_x{2n 2n_x} -> Sr^ACS,, 2n_x)}

However, observe that by P-reduction at the type level, 2n(2n 2n_x) and 2n+12n 2n_s are
equivalent. D

Theorem 5.7
Recall the definitions of F and Ĝ  from Lemmas 5.5 and 5.6. 77ien /Ae term C {the
'crank'1) has typing:

C = FGn G , . ^ , . J Gn,2[2n_3] • • • G ^ J Go

so that:

Ce%{2n+l2n-%}

= Amap: K0 => K0 . (AT : K0 . J(map T) ->• JT.) ->

(AT : K0 . J((2n+12n • • • 20) ma^ x)

: K0 => K0 . (AT : K0 . J{map T) -

(AT : K0 . jF(map^n+2h) -> ./x)

From Lemmas 5.5 and 5.6, we know that:

FGn Gn_, e %_,{2n+12n 2n_J = Aan_2: Kn. ^n_2{an_2} -> ^n_2{2n+12n 2n_x an_2}

By parameterising this term with type 2n_2, we derive a term of type:

•yn-2lzn-2J •'n-Z lzn+l An z n - l -̂ 71-2/

However, by Lemma 5.5, we know Gn_2e^n_2{2n_2}, so that:

FGn G ^ f r . J Gn_2 e ^n_2{2n+12, S, . , 2n_2}

= Aan_3: Kn_t. ^n_3{an-3} -> ^n-3(2n+i 2n 2n_t 2n_2 an_3}

Formally, the proof consists of an induction on n; informally, we continue to
'unwind' the above construction. Each type parameterisation 2t, followed by
application to Gp augments the exponential stack contained in the type with another
2. The reduction of the stack of 2s to normal form (at the type level) results in a
nonelementary Church numeral applying map to a (A-bound) pair T. •

Theorem 5.8
Recognising the lambda terms of length n typable in Fa is DTIME\Q>(nl)]-hard for any
integer t~^\ under logspace reduction, where:

4>(0) = 1,

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


470 F. Henglein and H. G. Mairson

Proof
Again, we simulate the computation of a TM M accepting or rejecting its input x in
<J>(|.x|*) steps by a ^.-term TM i I , where M accepts x if and only if *PM x is typable.

Using the typing of C in Theorem 5.7, we type M = C5IDO as:

M = (Ad: *. AJ>X : *. • • • AvQ+pt: *. C[map] 8[pair0])

Observe that we take the type of the ' crank' and parameterise it with the definition
of map; since b€(/S.x.J(mapx)^fx), we know C[map]5eAt:K0.^((2n+12n • • •
2^)mapi)^-^\. Next, parameterise this term over the initial pair pair0 denned in
Lemma 5.4, and abstract over all the variables v} appearing in the pair. The term thus
constructed is the <$>(t + 2)-fold unwinding of the transition function, and its
outermost-quantified first order type codes the reductions on an arbitrary ID as a
directed acyclic graph.

To apply this term to an initial ID, we need to instantiate the quantified variables
v} so that the left-hand side of the type is identical to a typing of the initial ID. The
parameterisation of each v} by a type \x.p and the complementary parameterisation n
of the initial ID, simulates the unification process of the ML type inference algorithm.
The instantiations are huge: the substitutions for intermediate variables on the ' top
floor' of the type will have non-elementary size. These instantiations must code the
computations of the TM on the input.

The proof of the theorem now concludes exactly in the style of Theorem 3.5. By
choosing the parameterisations of the output variables carefully, the term:

A = (q, L, i?> = M; qfalse.. .false true... true

where the instances of true and false are appropriate substitutions of Boolean terms
for the accepting and rejecting states, will be given type Aa: *. Ap: *. a -> P -*• a if the
TM accepts its input, and Aa:*.AP:*.oc->p-s-P if the TM rejects its input. Then
*¥M x = (kx. xx) (A(kx. x) (Xy. yy)) is typable if and only if the TM accepts its input.
In the case of an accepting computation, the typing is straightforward; in the case of
a rejecting computation, we appeal to the fact that all typable terms in Fa are strongly
normalising, and the term we have constructed is divergent. •

Corollary 5.9
Recognising the lambda terms of length n typable in Fk is DTIM'E\fk_t(ri)]-hard under
logspace reduction, where:

/o(«) = "
fk+1(n) = 2'*<»>

Proof
The proof of the corollary is identical to that of the previous theorem, except that the
restrictions on kinds imposed by Fk do not allow as powerful a 'crank' as given in
Theorem 5.7, because the type language does not have functionals of high enough
order.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 471

In particular, the 'kinding' of prototypes and variable lists require the degree of
higher-order abstraction found in system Fs; this assertion can be verified by
examining their respective kinds and the grammar of kinds found at the end of section
4.1. As described in section 5.1, pairs are representable in F4, and map and J are
representable in F-o. The iterator 2} is then representable in Fj+t. As a consequence, the
typing of the term C in Theorem 5.7 is realised in Fn+6. Note that %{%} can then be
represented in FHb by explicitly iterating the 2;, i.e.:

^{2,} = Aa,.!: K m . ^ { a ^ J -> ^{Xx: K}_2 . a ^ a ^ x)}

To achieve the simulation of an arbitrary TM for /fc_4(n) steps, we repeat the
argument of Theorem 5.7, except that we replace the term Fby N = Xf. Xx.f x, which
can be given type:

2k_b 2k_e}k_, 2k_b 2k_e

where n is the analogous Church numeral for n at the type level. By once again
carefully manipulating the typing, we can represent nk_i 2k_b 2k_a instead by a reduced
form of the iteration, that is, 2Jfc_5(2fc_B( • • • (2k_b 2k_6) •••)), where 2k_5 is iterated n
times. The typed 'crank' that iterates the computation is then:

C/t = NGt_5 Gt_6 [2j._7] Gt_7 [2k_8] • • • Gj [20] Go

so that:

= Amap: K0 => K0 . (AT : K0 . J(map x) -> Jx) ->

(AT : K0 . J((nk_i 2k_b • • • 20) map x) -+ Jx)

i> Amap: K0 => K0 . (AT : K0 . J(map x) -> Jx) ->•

(Ax:K0../(ma/A-«(B)T)-»-./T) D

The constant ' -4' reflects the foW overhead of building pairs: the data structures in
the construction, as well as the functionals acting on them, require a certain level of
kind abstraction. We make no claim as to the optimality of this overhead; the goal
of the analysis has rather been to show, for sufficiently large k, a bound on type
inference for Fk+l that is at least exponentially harder than that for Fk. The cost of
improving the constant would almost certainly be a pedagogically unnecessary
complication of the proof.

6 Discussion; open problems

We have provided the first lower bounds on type inference for the Girard/Reynolds
system F2 and the extensions F3, F4,.. . Fm. The lower bounds involve generic simulation
of Turing Machines, where computation is simulated at the expression and type level
simultaneously. Non-accepting computations are mapped to non-normalising
reduction sequences, and hence non-typable terms. The accepting computations are
mapped to typable terms, where higher-order types encode the reduction sequences,
and first-order types encode the entire computation as a circuit, based on a unification
simulation of Boolean logic. Our lower bounds employ combinatorial techniques

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


472 F. Henglein and H. G. Mairson

which we hope will be useful in the ultimate resolution of the F2 type inference
problem, particularly the idea of composing polymorphic functions with different
domains and ranges.

Even if our bounds are weak (if the F2 problem is undecidable, they certainly are!),
the analysis puts forward a certain program; it remains to be seen how far that
program can be pushed. While the higher-order systems are of genuine interest, it is
F2 which occupies centre stage: in particular, we would like to know if the technique
of the higher-order lower bounds can be ' lowered' to F2, somehow using the F2 ranks
to simulate the expressiveness we have obtained from the kinds in F3,Ft, ...,Fa. The
computational power of the kinds includes not merely higher-order quantification,
but more importantly P-reduction at the type level.

Generic simulation is a natural setting for lower bounds, particularly when the
complexity classes are superexponential, and there are few difficult combinatorial
problems on which to base reductions. It seems equally natural that the type
information added to an (untyped) term is of a length proportional to the time
complexity of the TM being simulated. Furthermore, the program of generic
simulation generalises nicely, as expressed in the slogan ' how fast can the crank (of
the transition function) be turned?': better lower bounds can be proven by analysing
different 'cranks'. We observe in particular that the typing outlined in section 5 was
discovered by studying the reduction sequence of the untyped term C to normal form,
and constructing the type as an encoding of that sequence. This analysis suggests an
examination of F2 types, particularly in the light of the strong normalisation theorem,
as encodings of reduction sequences. Of course, these encodings are in general
ambiguous since, for example, different Church numerals are not interconvertible
under P- and n-reduction, and as such they cause different reductions to take place
when used as iterators, yet they have the same type. Note, however, that the
programming style used to derive our lower bounds avoids exactly this kind of
ambiguity: this is the essence of the duality of terms and types.

The non-elementary lower bound for Fa type inference should immediately call to
mind a well-known theorem of Statman: the theorem states that if we have two k-
terms typable in the first order typed lambda calculus, deciding whether the terms
have the same normal form requires nonelementary time (Statman, 1979; Mairson
1992b). The proof of Statman's theorem is a reduction from deciding the truth of
expressions in higher-order logic, where quantification is allowed not only over
Boolean values, but over higher-order functions over Booleans (Meyer, 1974). Every
formula in higher-order logic is transformed, using the reduction, into a A.-term that
P-reduces to the standard term Xf.a.kf.a.t coding 'true' if and only if the formula
is true, and otherwise to the term Xf.a.Xf-.a.fcoding 'false'. We wish to emphasise
both the abstract structural similarities between these results and the lower bounds
described in this paper, as well as the necessary and profound structural differences
at the level of detailed coding.

Introducing higher-order quantification and abstraction mechanisms in a calculus
allows greater expressiveness and succinctness, and as a consequence, decision
problems relating to expressions in the calculus invariably require greater
computational resources. For example, deciding whether a propositional formula is

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 473

true under a particular substitution of true and false for the variables is complete for
polynomial time; this is the well- known circuit value problem (Ladner, 1975). When
we existentially quantify over the propositional variables, asking instead whether
there exists a substitution for which the formula is true, we get the satisfiability
problem, complete for nondeterministic polynomial time (Cook, 1971; Garey and
Johnson, 1979). By alternating existential and universal quantifiers, we derive the
polynomial time hierarchy, and in the limit, the problem of quantified boolean
formulas, complete for polynomial space (Stockmeyer and Meyer, 1973; Garey and
Johnson, 1979). Finally, if we allow quantification over functions of Booleans,
functions of functions of Booleans, etc., we get a problem complete for nonelementary
time (Meyer, 1974; Statman, 1979).

The theorems described in this paper follow much the same pattern. First-order
unification is complete for polynomial time (Dwork et al., 1974) corresponding to the
complexity of first-order type inference. The progressively stronger lower bounds in
this paper are derived by similarly allowing greater and greater functional abstraction
on types. A further similarity between the Statman theorem and the
i^-bound is the particular use of the Church numeral for 2 as an iteration mechanism.

However, it is the problem of type inference, and not type equivalence, that is
addressed in this paper. The structural similarity we have outlined above is between
higher-order logic and the type language of Fa, yet the problem of type inference is not
really about the type language, but rather a decision problem about untyped A.-terms.
As a consequence, while in the problems of Meyer and Statman, where the logic
(equivalently, A.-terms) can be manipulated directly, there is a certain inescapable
indirection in our construction, where the types can only be ' manipulated' by terms
at the value level. To render this manipulation unambiguous, we have used the idea
of making reductions at the value level correspond exactly to constructs at the type
level. There is, of course, no such correspondence when the term at the value level
does not strongly normalise, a situation that has no proper analogue. To summarise,
while there are certainly high-level similarities - and indeed, this is what gives a
certain classical flavour to our analysis from the perspective of complexity theory - the
details are quite dissimilar, and for important structural reasons.

Finally, we should observe as well the pitfalls of the methods introduced and used
in this paper, or at least the hurdles which wait to be surmounted. The 'cranks'
described are all strongly normalising in a manner such that, while one might aspire
to better lower bounds (say, at the level of non-primitive recursion) we will never get
an undecidability result. As long as we pursue bounds for F2 based on expressiveness
of the type language, we are constrained by the strong normalisation theorem, and
the representation theorem (that the representable integer functions are those
provably total in second order Peano Arithmetic) (Girard, 1972, Girard et al., 1989).
We have some idea how to get around the first hurdle, but are a bit puzzled by the
second. Does it seem possible that the representation theorem would allow reduction
sequences of functionally unbounded length on typable terms?

This latter suggestion deserves further development; we sketch here how such an
undecidability proof might look. It is clear that any theorem of the form ' A.-term E
is typable iff TM M halts' cannot be proved if E contains the fixpoint combinator

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


474 F. Henglein and H. G. Mairson

Y = Xf. (Xx .J{xx)) (Xx .f(xx)), since Y is not strongly normalising, and hence not
typable in any of the type systems we have considered. However, consider the
following variant of Y:

Y = Xf.(Xx.f(Xy.yxx))(Xx.f(Xy.yxx))

Notice that Y is, in contrast, strongly normalising: writing Y = Xf.HfHf, its normal
form is Xf.f(Xy.yHfHf). Could we use such a combinator to code an unbounded
computation?

Consider a ^.-term F of the form:

F = Xchoose. XID. choose ((haltllD) (Xp .Xq.I) I) (5 ID)

where we code a halting predicate haltl on IDs, using conventional techniques. Let
ID0 be an initial ID; then in the case that haltl ID0 otrue = Xx.Xy.x, so that a
halting configuration has been reached, we have:

> F(Xy. yHF HF) ID0

^ (Xy. yHF HF) ((haltllD,) (Xp .Xq.I) I) (5ID0)

^(Xy.yHFHF)(Xp.Xq.I)(8lD0)

o~(Xp.Xq.r)HFHF(5ID0)

On the other hand, if haltl ID0 ofalse = Xx.Xy.y, we derive:

YFID0^F(Xy.yHFHF)ID0

c- (Xy. yHF HF) ((haltllD,) (Xp .Xq.I) I) (5 ID,)

o~(Xy.yHFHF)I(5ID0)

o*F(Xy.yHFHF)(8ID0)

where the latter term is also a reduct of Y F(5IDO). Instead of an uncontrolled
unwinding F(F(F(-))) via the Y-combinator, we get a controlled unwinding guided
at every step by the state of the TM computation.

This construction shows that the set of strongly normalising terms is not recursive,
by constructing a term that strongly normalises iff a particular TM computation
halts^ In the case of a divergent TM computation, the ^.-term is clearly not
normalising, and hence not typable. In the case of a convergent computation, can the
A.-term be typed? We mentioned above our puzzlement with the representation
theorem, yet the solution to the puzzle may be that unbounded computation is indeed
allowed; however, the type of the (strongly normalising) term explicitly codes the
reduction sequence.

We conclude with a final caveat lector. The lower bound we have proven for Fm is
unlikely to be improved further by naively trying a better 'crank', unless the

f This is, of course, a simple corollary of the Scott-Curry undecidability theorem (see, for example,
Hindley and Seldin, 1986).

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference 475

foundation of the simulation is changed substantially. The explanation of this
limitation is that the type language of Fa is fundamentally, as we have described
earlier, the first-order typed X-calculus with a single type constant (•). The 'duality'
approach forces reductions at the expression level to match those at the type level,
and a result of Schwichtenberg (1982) indicates that our construction is using the type
language at its maximum capacity. Encouraged and excited as we are to have made
progress on these open questions in programming language theory, the hard work
may have only just begun.

Acknowledgements

The results of section 3 were reported earlier by Henglein (1990). For their
encouragement, suggestions and criticisms, we thank Paris Kanellakis, Georg Kreisel,
Daniel Leivant, Angus Macintyre, Albert Meyer, Jon Riecke and Rick Statman.
Many thanks to David Klein for his willing help with the figures, and to the editors
for anglicising our spelling. The second author wishes to acknowledge the generosity
of the Computer Science Department at UC Santa Barbara, the Music Academy of
the West, and the Cate School of Carpenteria, for their hospitality during his visit to
Santa Barbara in the summer of 1990. He would also like to thank the Cambridge
Research Laboratory of Digital Equipment Corporation, where final work on the
paper was completed.

References

Appel, A.W. and Jim, T. (1989) Continuation-passing, closure-passing style. In: Proc. 16th
ACM Symposium on the Principles of Programming Languages, pp. 293-302, January.

Cardelli, L. (1989) Typeful programming. Lecture Notes for the IFIP Advanced Seminar on
Formal Methods in Programming Language Semantics, Rio de Janeiro, Brazil (see also SRC
Report 45, Digital Equipment Corporation).

Cook, S.A. (1971) The complexity of theorem-proving procedures. In: Proc. 3rd Annual ACM
Symposium on the Theory of Computing, pp. 151-158.

Damas, L. (1985) Type assignment in programming languages. PhD dissertation, CST-33-85,
Computer Science Department, Edinburgh University.

Damas, L. and Milner, R. (1982) Principal type schemes for functional programs. In: Proc. 9th
ACM Symposium on Principles of Programming Languages, pp. 207-212, January.

Dwork, C, Kanellakis, P.C. and Mitchell, J.C. (1984) On the sequential nature of unification.
J. Logic Programming 1:35-50.

Gallier, J. (1990) On Girard's 'Candidats de Reducibilite'. In: Logic and Computer Science (P.
Odifreddi, ed.), pp. 123-203. Academic Press.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractibility: A Guide to the Theory of
NP-Completeness. W.H. Freeman.

Giannini, P. and Ronchi Delia Rocca, S. (1988) Characterization of typings in polymorphic
type discipline. In: Proc. 3rd IEEE Symposium on Logic in Computer Science, pp. 61-70,
July.

Girard, J.-Y. (1972) Interpretation Fonctionnelle et Elimination des Coupures de FArithme'tique
dOrdre Supe'rieur. These de Doctorat d'Etat, Universite de Paris VII.

Girard, J.-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types. Cambridge University Press.
Harper, R., Milner, R. and Tofte, M. (1990) The Definition of Standard ML. MIT Press.
Hartmanis, J. and Stearns, R.E. (1965) On the computational complexity of algorithms. Trans.

American Math. Soc. 117: 285-306.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


476 F. Henglein and H. G. Mairson

Henglein, F. (1990) A lower bound for full polymorphic type inference: Girard/Reynolds
typability is DEXPTIME-hard. University of Utrecht, Technical Report RUU-CS-90-14,
April.

Henglein, F. and Mairson, H.G. (1991) The complexity of type inference for higher-order typed
lambda calculi. In. Proc. 18th ACM Symposium on the Principles of Programming Languages,
pp. 119-130, January.

Hindley, R. (1969) The principal type scheme of an object in combinatory logic. Trans.
American Math. Soc. 146:29-60.

Hindley, J.R. and Seldin, J.P. (1986) Introduction to Combinators and Lambda Calculus.
Cambridge University Press.

Hopcroft, J.E. and Ullman, J.D. (1979) Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Hudak, P. and Wadler, P.L. (eds.) (1988) Report on the functional programming language
Haskell. Yale University Technical Report YALEU/DCS/RR656.

Kanellakis, P.C. and Mitchell, J.C. (1989) Polymorphic unification and ML typing. Brown
University Technical Report CS-89-40, August 1989. (Also in Proc. 16th ACM Symposium
on the Principles of Programming Languages, pp. 105-115, January.)

Kanellakis, P.C, Mairson, H.G. and Mitchell, J.C. (1991) Unification and ML type
reconstruction. In: Computational Logic: Essays in Honor of Alan Robinson. (J.-L. Lassez
and G. Plotkin; eds.). MIT Press.

Kelsey, R. and Hudak, P. (1989) Realistic Compilation by Program Transformation. In: Proc.
16th ACM Symposium on the Principles of Programming Languages, pp. 281-292, January.

Kfoury, A.J., Tiuryn, J. and Urzyczyn, P. (1990) ML typability is DEXPTIME-complete. In:
Proc. 15th Colloquium on Trees in Algebra and Programming, May. (See also Boston
University Technical Report, October 1989.)

Kfoury, A.J. and Tiuryn, J. (1990) Type reconstruction infinite rank fragments of the second-
order lambda calculus. Technical Report BUCS 89-11, Boston University, October. (Also in
Proc. 5th IEEE Symposium on Logic in Computer Science, pp. 2-11, June.)

Ladner, R.E. (1975) The circuit value problem is log space complete for P. SIGA CT News 7( 1):
18-20.

Landin, P. (1966) The next 700 programming languages. Commun. ACM 9(3): 157-166.
Mairson, H.G. (1990) Deciding ML typability is complete for deterministic exponential time.

In: Proc. 17 th ACM Symposium on the Principles of Programming Languages, pp. 382-401,
January.

Mairson, H.G. (1992a) Quantifier elimination and parametric polymorphism in programming
languages. / . Functional Programming 2(2): 213-226, April.

Mairson, H.G. (1992b) A simple proof of a theory of Statman. Theoretical Computer Science
103: 387-394.

Meyer, A.R. (1974) The inherent computational complexity of theories of ordered sets. In:
Proc. Int. Congress of Mathematicians, pp. 477-482.

Milner, R. (1978) A theory of type polymorphism in programming. J. Computer and System
Sciences 17: 348-375.

Mitchell, J.C. (1990) Type systems for programming languages. In: Handbook of Theoretical
Computer Science, vol. B, pp. 365-468 (J. van Leeuwen et al., eds). North-Holland.

Paterson, M.S. and Wegman, M.N. (1978) Linear unification. J. Computer and System Sciences
16: 158-167.

Pfenning, F. and Lee, P. (1989) LEAP: a language with eval and polymorphism. In: TAPSOFT
1989: Proc. Int. Joint Conference on Theory and Practice in Software Development,
Barcelona, Spain. (See also CMU Ergo Report 88-065.)

Pfenning, F. (1988) Partial polymorphic type inference and higher-order unification. In: Proc.
ACM Conference on Lisp and Functional Programming, pp. 153-163.

Pierce, B., Dietzen, S. and Michaylov, S. (1989) Programming in higher-order typed lambda
calculi. Technical Report CMU-CS-89-111, Carnegie Mellon University, March.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143


Complexity of type inference All

Reynolds, J.C. (1974) Towards a theory of type structure. In Proc. Paris Colloquium on
Programming: Lecture Notes in Computer Science 19, pp. 408-425. Springer-Verlag.

Robinson, J.A. (1965) A machine oriented logic based on the resolution principle. J. ACM 12
(1): 23-41.

Sannella, D.T. (ed.) (1988) Postgraduate Examination Questions in Computation Theory,
1978-1988. Laboratory for Foundations of Computer Science, Report ECS-LFCS-88-64.

Schwichtenberg, H. (1982) Complexity of normalisation in the pure typed lambda calculus. In:
The L. E. J. Brouwer Centenary Symposium (A.S. Troelstra and D. van Dalen, eds.), pp.
453-457. North-Holland.

Scott, D.S. (1977) Logic and programming languages. Commun. ACM 20 (9): 634-641.
Statman, R. (1979) The typed .̂-calculus is not elementary recursive. Theoretical Computer

Science 9:73-81.
Stockmeyer, L.J. and Meyer, A.R. (1973) Word problems requiring exponential time. In: Proc.

5th Annual ACM Symposium on Theory of Computing, pp. 1-9.
Stoy, J. (1977) Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory. MIT Press.
Strachey, C. (1973) The varieties of programming language. Technical Monograph PRG-10,

Programming Research Group, Oxford University.
Tait, W.W. (1967) Intensional interpretation of functionals of finite type I. / . Symbolic Logic

32: 198-212.
Turner, D.A. (1985) Miranda: A non-strict functional language with polymorphic types. In:

IFIP Int. Conference on Functional Programming and Computer Architecture: Lecture Notes
in Computer Science 201, pp. 1-16. Springer-Verlag.

Wand, M. (1989) A simple algorithm and proof for type inference. Fundamenta Informaticae
10.

Wand, M. (1992) Correctness of Procedure Representations in Higher-Order Assembly
Language. In: Mathematical Foundations of Programming Language Semantics 1991:
Lecture Notes in Computer Science 598, (S. Brookes, ed.), pp. 294-311. Springer-Verlag.

https://doi.org/10.1017/S0956796800001143 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001143

