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Some Questions about Semisimple
Lie Groups Originating in Matrix Theory

Dragomir Ž. Doković and Tin-Yau Tam

Abstract. We generalize the well-known result that a square traceless complex matrix is unitarily sim-

ilar to a matrix with zero diagonal to arbitrary connected semisimple complex Lie groups G and their

Lie algebras g under the action of a maximal compact subgroup K of G. We also introduce a natural

partial order on g: x ≤ y if f (K · x) ⊆ f (K · y) for all f ∈ g∗, the complex dual of g. This partial

order is K-invariant and induces a partial order on the orbit space g/K. We prove that, under some

restrictions on g, the set f (K · x) is star-shaped with respect to the origin.

1 Introduction

In this paper we consider some interesting well known facts from matrix theory and
try to generalize them to arbitrary connected semisimple complex Lie groups. For
instance, it is known that every n by n complex matrix x with zero trace is unitarily

similar to a matrix with zero diagonal. We can view x as an element of the Lie algebra
g = sl(n, C) of the group G = SL(n, C) and the special unitary group K = SU(n)
as a maximal compact subgroup of G. The diagonal matrices in g form a Cartan
subalgebra h of g, and those with purely imaginary diagonal entries form a Cartan

subalgebra t of the Lie algebra k = su(n) of K. The subspace of g consisting of
matrices with zero diagonal is just the sum of all root spaces of (g, h). Two matrices
x, y ∈ g are unitarily similar if and only if they belong to the same orbit of K under
the restriction of the adjoint representation of G to K.

We show (see Theorem 3.4) that this matrix result continues to hold in general
when G is an arbitrary connected semisimple complex Lie group, K a maximal com-
pact subgroup of G, and h a Cartan subalgebra of g which is obtained as the com-

plexification of a Cartan subalgebra t of k. Then it says that every K-orbit, say K ·x, in
g meets the sum of all root spaces of (g, h), which is also the orthogonal complement
of h in g with respect to the Killing form of g.

As a real K-module, g is just the direct sum of two copies of the adjoint module
k of K: g = k ⊕ ik. While the orbit space k/K is homeomorphic to a closed Weyl
chamber in t, we do not know in general the description of the orbit space g/K. For
the special case G = SL(2, C) see Proposition 4.2.

We also introduce an interesting partial order “≤” in g: We say that x ≤ y for
x, y ∈ g if f (K · x) ⊆ f (K · y) for all complex linear functionals f ∈ g∗. This order
is compatible with the action of K and so it induces a partial order on the orbit space
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g/K. One of us has conjectured that the image f (K ·x) contains the origin and is star-
shaped with respect to the origin (see Conjecture 3.8). We prove (see Theorem 3.11)

that this conjecture is valid if g is simply laced and has no components of type E8.
We thank the referee for his valuable comments and suggestions.

2 Preliminaries

Let K be a connected compact semisimple Lie group, G its complexification, and let
k and g be their respective Lie algebras. Thus g = k ⊕ ik. We fix a maximal torus T of
K and denote its Lie algebra by t. Then h = t ⊕ it is a Cartan subalgebra of g.

Let l be the rank of G, i.e., l = dimC(h). By g∗ we denote the dual of g (as a
complex vector space).

Let R be the root system of (g, h) and Π a fixed base of R. The set of positive roots
(with respect to Π) is denoted by R+. As usual, gα denotes the root space of a root α.

We introduce the maximal nilpotent subalgebras n and n− of g:

n =

∑

α∈R+

gα, n−
=

∑

α∈R+

g−α.

Then b = h + n is a Borel subalgebra of g, and let B be the corresponding Borel
subgroup of G. The coroot corresponding to a root α is denoted by Hα. Recall that
[gα, g−α] is a 1-dimensional subspace of h and Hα is the unique element of [gα, g−α]
such that α(Hα) = 2. (For more details see e.g. [3, Chapitre 8, §2, Théorème 1].) The

Weyl group of (g, h) will be denoted by W .
We denote by θ the Cartan involution of g (when viewed as a real Lie algebra): it

is identity on k and negative identity on ik. It can be lifted to an anti-holomorphic
involutorial automorphism of G, which we also denote by θ. Then K = Gθ, i.e., K

is the set of θ-fixed points of G. We remark that θ(h) = h and θ(gα) = g−α for all
α ∈ R.

The Killing form of g will be denoted by ϕ. Unless stated otherwise, the orthog-
onal complements will be taken with respect to ϕ. As ϕ is nondegenerate, it induces

a vector space isomorphism g → g∗ sending x → ϕx where ϕx(y) = ϕ(x, y) for all
y ∈ g.

Definition 2.1 An element x ∈ g is nilpotent (resp. semisimple) if the linear operator
ad(x) : g → g has the same property. An element f = ϕx ∈ g∗ is nilpotent (resp.
semisimple) if x has the same property.

We shall consider the adjoint action, Ad, of G on g and its restriction to K. We

write a · x instead of Ad(a)(x) for a ∈ G and x ∈ g. The co-adjoint action of G

on g∗ is defined by a · f = f ◦ Ad(a−1), where a ∈ G and f ∈ g∗. Thus we have
(a · f )(x) = f (a−1 · x) for a ∈ G, f ∈ g∗, and x ∈ g.

Let us recall a few definitions that we will need. A connected Lie group is called

almost simple if its Lie algebra is simple, and the quotient of a direct product of Lie
groups by a discrete central subgroup is called an almost direct product. A root sub-
system R1 of a root system R is said to be closed if α, β ∈ R1 and α+β ∈ R imply that
α + β ∈ R1.
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We refer to the minimal ideals of g as its components. A subset F of g is star-shaped

with respect to the origin if x ∈ F and t ∈ [0, 1) imply that tx ∈ F.

3 The Action of K on g

It is well known that b meets every G-orbit in g (see e.g. [7, Section 16]), which may
be viewed as a generalization of the Jordan canonical form of an n by n complex
matrix. This is also true for the K-orbits in g. It generalizes Schur triangularization
theorem which asserts that each n by n complex matrix is unitarily similar to an upper

triangular matrix.

Proposition 3.1 b meets every K-orbit in g.

Proof This follows from the result just mentioned and the well known fact that
G = KB = BK, which is a consequence of the global Iwasawa decomposition (see

e.g. [5, Chapter VI, Theorem 6.3]).

We remark that Schur triangularization theorem also asserts that the diagonal ele-
ments in an upper triangular form of the n by n complex matrix x, i.e., the eigenvalues
of x, can be arranged in any order. Thus we ask Question (4) in Section 5.

In matrix theory, the following result is well known (see e.g. [6, Theorem 1.3.4]):

Proposition 3.2 Every n by n complex matrix of trace 0 is unitarily similar to a matrix

with zero diagonal.

Let H denote the (algebraic) maximal torus of G with Lie algebra h. In order to
extend the above result to complex semisimple Lie algebras, we need the following
lemma.

Lemma 3.3 There exists a closed connected θ-stable complex semisimple Lie subgroup

S of G containing H and such that S is an almost direct product of θ-stable almost simple

subgroups Si (i = 1, . . . , m) of type A.

Proof Without any loss of generality, we may assume that g is simple, and not of

type Al. We remark that if R1 is a closed root subsystem of R, then the corresponding
semisimple subalgebra g1 of g is θ-stable.

If −1 ∈ W then there exists a set {β1, . . . , βl} of l strongly orthogonal roots in R

[2, Chapitre VI, §1, Exercice 15]. We set m = l and take si = gβi + g−βi + CHβi
for

1 ≤ i ≤ l. In this case each Si is of type A1.

Next assume that g is of type Dl, with l odd. As R has a closed root subsystem of
type Al, we can take S to be the corresponding subgroup of type Al.

Finally, if g is of type E6, then R has a closed root subsystem s of type 3A2. The
corresponding subgroup S is an almost direct product S = S1S2S3, where each Si is
of type A2.

We have exhausted all possibilities (see [2, Planches I–IX]).
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Note that h⊥
= n+n−. The following theorem generalizes the above matrix result

to our setting.

Theorem 3.4 h⊥ meets every K-orbit in g.

Proof Let S = S1S2 · · · Sm be as in Lemma 3.3. Then hi = si∩h is a Cartan subalgebra
of si , and h is a direct sum of the hi . The algebra s is a direct sum of its ideals si .

Denote by q the sum of the root spaces gα that are not contained in s and note that
q = s⊥. Then g = s ⊕ q, q ⊆ h⊥, and q is S-stable. The subgroup Ki = K ∩ Si is a
maximal compact subgroup of Si .

An arbitrary x ∈ g can be decomposed uniquely as

x =

m
∑

i=1

xi + x ′

where xi ∈ si and x ′ ∈ q. Since each Si is of type A, Proposition 3.2 implies that there
exists ai ∈ Ki such that ai · xi ∈ h⊥ ∩ si . If a = a1a2 · · · am, then a ∈ K ∩ S and

a · x =

m
∑

i=1

ai · xi + a · x ′ ∈
m

∑

i=1

h⊥ ∩ si + q ⊆ h⊥.

Let us illustrate this theorem by a concrete matrix example which does not seem
to be known.

Example 3.5 Let x be an n by n skew-symmetric complex matrix. Then there exists
a real orthogonal matrix a such that the matrix y = axa−1 has the 2 by 2 diagonal

blocks along the diagonal corresponding to the partition {1, 2}, {3, 4}, . . . all zero.
This is obtained from Theorem 3.4 by taking G = SO(n, C), K = SO(n), g to be the
Lie algebra of all n by n skew-symmetric complex matrices, and h to be the Cartan
subalgebra [5, pp. 187–189] consisting of block-diagonal matrices with the diagonal

blocks of size 2 corresponding to the above partition (except, when n is odd, the last
block is of size 1).

Our next objective is to introduce a partial order on g (which depends on our

choice of K, a maximal compact subgroup of G).

Proposition 3.6 For x, y ∈ g the following are equivalent:

(i) f (K · x) ⊆ f (K · y), ∀ f ∈ g∗,

(ii) f (x) ∈ f (K · y), ∀ f ∈ g∗.

Proof It is obvious that (i) implies (ii). Assume that (ii) holds. Let a ∈ K and
f ∈ g∗ be arbitrary. As f ◦ Ad(a) ∈ g∗, the hypothesis gives:

f (a · x) = f ◦ Ad(a)(x) ∈ f ◦ Ad(a)(K · y) = f (aK · y) = f (K · y).

Hence (i) holds.
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Definition 3.7 For x, y ∈ g we write x ≤ y if the two conditions of the above
proposition are satisfied.

Clearly, the relation “≤” defines a partial order on g. This partial order is strongly
K-invariant in the sense that x ≤ y implies that a · x ≤ b · y for a, b ∈ K, and so
it induces a partial order on the orbit space g/K. A more transparent description of

this important partial order is lacking. We shall take a closer look at the special case
g = sl2 in the next section.

Recently Cheung and Tsing [4] proved that if g is of type Al then for every x ∈
g and every f ∈ g∗ the set f (K · x) is star-shaped with respect to the origin. In

particular, 0 ∈ f (K · x), i.e., ker( f ) meets K · x. Then the second author conjectured
that the result of Cheung and Tsing is valid in the general case.

Conjecture 3.8 ([12]) For x ∈ g and f ∈ g∗, the set f (K · x) is star-shaped with

respect to the origin.

This conjecture can be reformulated in terms of the partial order “≤”. The state-
ment is independent of the choice of k since the maximal compact subgroup K of G

is unique up to an inner automorphism of G [5, p. 256].

Conjecture 3.9 ([12]) For x ∈ g and t ∈ [0, 1], we have tx ≤ x.

It is not hard to reduce the proof of this conjecture to the case of simple Lie alge-
bras. We do this in the next lemma.

Lemma 3.10 Assume that k is a direct sum of two nonzero ideals k = k1 ⊕ k2 and let

K = K1K2 be the corresponding (almost direct) decomposition of K. Then g is a direct

sum of the ideals g1 = k1 + ik1 and g2 = k2 + ik2. Let x, y ∈ g be decomposed as

x = x1 + x2, y = y1 + y2 with x1, y1 ∈ g1 and x2, y2 ∈ g2. Then x1 ≤ y1 in g1 and

x2 ≤ y2 in g2 if and only if x ≤ y in g.

Proof We have K ·x = K1 ·x1 +K2 ·x2 and K · y = K1 · y1 +K2 · y2. Hence K ·x ⊆ K · y

if and only if K1 · x1 ⊆ K1 · y1 and K2 · x2 ⊆ K2 · y2.

We say that g is simply laced if the simple components of g are of type A, D, or

E. We can prove that the above conjecture is true if g is simply laced and has no
components of type E8.

Theorem 3.11 If g is simply laced and has no components of type E8, then Conjec-

ture 3.8 is valid.

Proof In view of Lemma 3.10 we may assume that g is simple. If g is of type Al then
the conjecture holds by the result of Cheung and Tsing [4].

Let x ∈ g be arbitrary. We have to show that tx ≤ x for t ∈ [0, 1). Since the partial

order “≤” is K-invariant, by Theorem 3.4 we may assume that x ∈ h⊥, i.e.,

(3.1) x =

∑

α∈R

xα, xα ∈ gα.
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Assume first that g is of type Dl. In this proof we assume that g is realized as a
Lie algebra of linear operators on a complex vector space V of dimension 2l as in

[3, Chapitre VIII, §13, No. 4]. We shall make use of the basis {H1, H2, . . . , Hl} of h

defined there, and its dual basis {ε1, ε2, . . . , εl} of h∗. We recall that R = {±εi ± ε j :
1 ≤ i < j ≤ l} where all four sign combinations should be taken. Observe that each
Hm ∈ it because all roots take real values on Hm.

Each m ∈ {1, 2, . . . , l} determines a partition R = Rm(−1) ∪ Rm(0) ∪ Rm(1),
where

(3.2) Rm(k) = {α ∈ R : α(Hm) = k}, k ∈ {0,±1}.

The subset Rm(0) is a closed root subsystem of R of type Dl−1, and each of the subsets
Rm(±1) has cardinality 2(l − 1).

Let Lm be the linear operator on g which fixes the elements of h and those of the

root spaces gα for α ∈ Rm(0) and on the other root spaces acts as multiplication by
the scalar

√
t . Thus we have

Lm(x) =

∑

α∈Rm(0)

xα +
√

t
∑

α∈Rm(±1)

xα.

We claim that Lm(x) ≤ x. To prove this claim, let f ∈ g∗ be arbitrary and we have
to show that f

(

Lm(x)
)

∈ f (K · x). Let s be a real parameter. Since Hm ∈ it, we

have isHm ∈ t, and so exp(isHm) ∈ K. Moreover this element sends xα to eisα(Hm)xα.

Consequently
f
(

exp(isHm) · x
)

= a + beis + ce−is,

where

a = f
(

∑

α∈Rm(0)

xα

)

, b = f
(

∑

α∈Rm(1)

xα

)

, c = f
(

∑

α∈Rm(−1)

xα

)

.

We now make use of an argument from [4]. As s varies, the point a + beis + ce−is

traces an ellipse E in the complex plane, with a as its center. If |b| = |c| the ellipse
degenerates to a line segment or just a point. Since t ∈ [0, 1), the point f

(

Lm(x)
)

=

a +
√

t(b + c) lies inside E, or on E in the degenerate case. Clearly, we can dismiss the
degenerate case.

Let y ∈ g be such that f = ϕy . By Proposition 3.1 there exist k1, k2 ∈ K such that
k1 · x, k2 · y ∈ b. Choose continuous maps u, v : [0, 1] → K such that u(1) = k1,
v(1) = k2, and u(0) = v(0) = e (the identity element of K). Since

f
(

v(r)−1 exp(isHm)u(r) · x
)

= ϕ
(

exp(isHm)u(r) · x, v(r) · y
)

,

the point f
(

v(r)−1 exp(isHm)u(r) · x
)

for fixed r and variable s traces an ellipse Er

in the complex plane (which may be degenerate). Since u(0) = v(0) = e, we have

E0 = E. For r = 1 we have

f
(

v(1)−1 exp(isHm)u(1) · x
)

= ϕ
(

exp(isHm)k1 · x, k2 · y
)

.
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338 D. Ž. Doković and T.-Y. Tam

Since k1 · x, k2 · y ∈ b, the above expression is independent of s, i.e., the “ellipse” E1 is
just a point. Since f

(

Lm(x)
)

is inside the ellipse E0 = E, there exists r0 ∈ [0, 1) such

that f
(

Lm(x)
)

lies on Er0
. This proves our claim.

Since x ∈ h⊥, we have tx = L1L2 · · · Ll(x) and our claim implies that tx ≤ x.

Now assume that g is of type E6. The proof in this case is similar to the one above
but requires some modifications.

Denote by Σ the collection of closed root subsystems of R of type D5. As |W | =

27 ·34 ·5 and the Weyl group of D5 has order 24 ·5! = 27 ·3 ·5, it folllows that |Σ| = 33.
For α ∈ R let m be the number of subsystems S ∈ Σ not containing α. Clearly m

does not depend on α, and so m|R| = 25|Σ| because |R| − |S| = 25 for S ∈ Σ. It

follows that m = 12.

For a fixed S ∈ Σ there exist exactly two elements h ∈ h such that α(h) = 0 for
all α ∈ S and {α(h) : α ∈ R} = {0,±1}. If h is one of these two elements, then

−h is the other one. We choose one of these two elements and denote it by hS. Let
Γ = {hS : S ∈ Σ} and for h ∈ Γ let

Rh(k) = {α ∈ R : α(h) = k}, k ∈ {0,±1}.

Then Rh(0) ∈ Σ and each of the subsets Rh(±1) has cardinality 16.

Let Lh be the linear operator on g which fixes the elements of h and those of the
root spaces gα for α ∈ Rh(0) and on the other root spaces acts as multiplication by
the scalar t1/12. Thus we have

Lh(x) =

∑

α∈Rh(0)

xα + t1/12
∑

α∈Rh(±1)

xα.

We claim that Lh(x) ≤ x. The proof of this claim is the same as in the case of root

systems of type Dl and we omit it. We just point out that Hm should be replaced by h

(∈ Γ), Lh should play the role of Lm, and
√

t has to be replaced by t1/12.

Since {Lh : h ∈ Γ} is a commuting set of operators and for each α ∈ R there are

exactly 12 elements h ∈ Γ such that α /∈ Rh(0), we obtain that

(

∏

h∈Γ

Lh

)

(x) = tx.

Hence our claim implies that tx ≤ x.

If g is of type E7 the argument is similar and we omit the details. We mention only
that one should take Σ to be the set of closed root subsystems of R of type E6.

As Conjecture 3.9 is still open, it is of interest to ask whether or not 0 ≤ x for all
x ∈ g. We address this question in the following proposition.

Proposition 3.12 The following three statements are equivalent to each other:

(i) ∀x ∈ g, 0 ≤ x;

(ii) ∀ f ∈ g∗, ∀x ∈ g, ker( f ) meets K · x;
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(iii) ∀ f ∈ g∗, g =
⋃

a∈K ker(a · f ).

If g has no components of type E8, F4, or G2, then these statements hold.

Proof The equivalence of (i) and (ii) is immediate from the definition of the partial
order “≤”. The equivalence of (ii) and (iii) follows from (a · f )(x) = f (a−1 ·x), where
a ∈ K, f ∈ g∗, and x ∈ g. The first assertion is proved.

We now prove the second assertion. In view of Lemma 3.10 we may assume that g

is simple. By Theorem 3.11 we may exclude the cases Al, Dl, E6, and E7. It remains to
consider the cases Bl and Cl.

Let g be of type Bl. Again we shall make use of notations from [3, Chapitre VIII,

§13, No. 2]. In this case

R = {±εi ± ε j : i 6= j, 1 ≤ i, j ≤ l} ∪ {±εi : 1 ≤ i ≤ l}.

The coroot of εi is the operator 2Hi . Let Σ be the collection of all closed root subsys-
tems S of type Bl−1 (if l = 2 we require that S consists of two short roots). Define the

subsets Rm(k), for 1 ≤ m ≤ l, k = 0,±1, by (3.2). Fix t ∈ [0, 1) and define the linear
operators Lm : g → g as in the proof of Theorem 3.11. As in that proof, one can show
that Lm(x) ≤ x. The difference is that now, for x given by (3.1), we obtain that

L1L2 · · · Ll(x) =
√

t
∑

α short

xα + t
∑

α long

xα ≤ x, t ∈ [0, 1).

In the special case t = 0, we obtain that 0 ≤ x.
The proof when g is of type C l is similar to that for the type Bl, and we omit it.

Remark 3.13 Assume that g is simple, and express the highest root as a linear com-
bination of Π. All coefficients in this linear combination are positive integers. The

exceptional cases E8, F4, and G2 are characterized by the property that all these coef-
ficients are ≥ 2.

An element x ∈ g is said to be normal if [x, θ(x)] = 0. When g = sl(n, C) and
k = su(n), it reduces to the usual notion of normality of a matrix.

Lemma 3.14 The element x ∈ g is normal if and only if K · x meets h.

Proof Let x be normal and write x = y + iz where y, z ∈ k. Then θ(x) = y − iz

and so [y, z] = 0. The assertion now follows from the fact that maximal abelian
subalgebras of k are its Cartan subalgebras and the latter are all K-conjugate. The
converse is obvious.

Since the maximal tori of K are conjugate, the normality of x ∈ g and Lemma 3.14
are independent of the choice of t and thus of h. It is evident from the definition.

The following proposition is useful, although it is an immediate consequence of
the definitions.
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Proposition 3.15 Let k1 be a semisimple subalgebra of k and g1 = k1 + ik1 its complex-

ification. If x, y ∈ g1 and x ≤ y in g1, then also x ≤ y in g.

Proof If f ∈ g∗ then f |g1
∈ g∗1 and so f (x) ∈ f (K1 · y), where K1 is the connected

subgroup of K with Lie algebra k1. Hence f (x) ∈ f (K · y) for all f ∈ g∗, i.e., x ≤ y is
valid also in g.

We can now show that Conjecture 3.9 is true for normal elements.

Proposition 3.16 If x is normal, then tx ≤ x for all t ∈ [0, 1].

Proof Since x is normal, by Lemma 3.14, we may assume that x ∈ h. Let S be

as in Lemma 3.3 and let s be its Lie algebra. Since S is θ-stable, k1 = s ∩ k is a
compact real form of s. Since all simple components of s are of type A and x ∈
h ⊆ s, Theorem 3.11 shows that tx ≤ x in s for all t ∈ [0, 1]. It remains to apply
Proposition 3.15.

4 The Case g = sl2

In this section it will be understood that G = SL(2, C), K = SU(2), g = sl(2, C),
and k = su(2). We also set

x =

(

x11 x12

x21 −x11

)

∈ g.

Define the K-invariant polynomial functions f1 : g → C and f2 : g → R by

f1(x) =
1

2
tr(x2), f2(x) =

1

2
tr(xx∗).

Explicitly, we have

f1(x) = x2
11 + x12x21, f2(x) = |x11|2 +

1

2
(|x12|2 + |x21|2).

Since | f1(x)| ≤ f2(x), the point
(

f1(x), f2(x)
)

belongs to the closed convex cone

C = {(z, t) ∈ C × R : |z| ≤ t}.

Define the continuous map F : g → C by F(x) =
(

f1(x), f2(x)
)

. It is well known that

the invariants f1 and f2 separate the K-orbits in g, i.e., two matrices x, y ∈ g belong to
the same K-orbit if and only if F(x) = F(y). This is an old result of F. D. Murnaghan
[9] (see also [11, Corollary 2.35]).

Let us define the closed subset S of g by:

S =

{

w

(

0 1

λ 0

)

: w ∈ C, λ ∈ [0, 1]

}

.

https://doi.org/10.4153/CMB-2003-035-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-035-1


Lie Groups and Matrix Theory 341

Lemma 4.1 F(S) = F(g) = C. Consequently, every K-orbit in g meets S, i.e., g =

K · S.

Proof In order to prove this assertion, it suffices to show that for a given point
(z, t) ∈ C there exist w ∈ C and λ ∈ [0, 1] such that

λw2
= z, (1 + λ2)|w|2 = 2t.

If t = 0 then also z = 0 and we can take w = 0 and λ = 0. If t > 0 and z = 0, we
can take λ = 0 and w =

√
2t . Finally let z 6= 0. Then the second equation above can

be replaced by

(1 + λ2)|z| = 2λt.

This equation has a unique solution for λ in the interval (0, 1]. After that we can
solve the equation λw2

= z for w.

We equip the orbit space g/K with the quotient topology and denote by π : g →
g/K the projection map. The map F0 : g/K → C induced by F is a continuous
bijection. We shall prove that it is in fact a homeomorphism.

Proposition 4.2 F0 : g/K → C is a homeomorphism.

Proof It suffices to show that F is a proper map, i.e., if X ⊆ C is compact, then
F−1(X) is also compact. Choose t0 ≥ 0 such that t ≤ t0 for all points (z, t) ∈ X.

Then f2(x) ≤ t0 for all matrices x ∈ F−1(X). Hence F−1(X) is a closed and bounded
subset of g, and so it is compact.

The closed subset S fails to be a section of the map F : g → C since, for x ∈ S\{0},

the intersection S ∩ K · x is {±x} if x2 6= 0, and {eiθx : θ ∈ R} if x2
= 0. However,

it will be convenient to use the elements of S as representatives of the K-orbits in g,
taking into account the ambiguities just mentioned.

We now discuss the partial order “≤”. The following theorem is a special case of a

result of Nakazato [10] (see [8] for another proof).

Theorem 4.3 Let g = sl(2, C), K = SU(2), and

a =

(

0 a12

a21 0

)

, b =

(

0 b12

b21 0

)

,

with a12 ≥ a21 ≥ 0 and b12 ≥ b21 ≥ 0. If f ∈ g∗ is defined by f (x) = tr(ax),

then f (K · b) is the elliptical disk in the complex plane in standard position with vertices

±(a12b12 + a21b21) and ±(a12b12 − a21b21)i.

In order to make the order “≤” useful, one needs a simple test for x ≤ y to hold.
Unfortunately, we were not able to find such a test for arbitrary x and y. By using the
above theorem, we can handle some particular cases. The proofs are straightforward
and are omitted.
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Lemma 4.4 Let

x = w

(

0 1
λ 0

)

, w ∈ C, λ ∈ [0, 1].

If b =
(

0 1
0 0

)

then

x ≤ b ⇐⇒ (1 + λ)|w| ≤ 1,

b ≤ x ⇐⇒ (1 − λ)|w| ≥ 1.

If b =
(

0 1
1 0

)

then

x ≤ b ⇐⇒ λ = 1, w ∈ R, |w| ≤ 1.

5 Some Open Questions

The readers may be interested in the following open questions:

(1) Are the assertions of Proposition 3.12 valid without any restrictions on g?
(2) Is Conjecture 3.8 true in general?
(3) Find a simple test for x ≤ y to hold for arbitrary x, y ∈ g when g = sl(2, C), or

(more ambitiously) for arbitrary semisimple g.

(4) If O is the orthogonal (with respect to the Killing form) projection of b ∩ K · x

to h, is it true that O is W -stable (or even a single W -orbit)?
(5) Describe the homeomorphism type of the orbit space g/K.

The following question was raised by the referee:

If P is the orthogonal (with respect to the Killing form) projection of K · x to h, is
it true that P is convex?

Unfortunately, the answer to this question is negative even for g = sl(n, C). This

follows from a result of Au-Yeung and Sing [1].
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