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ON DIRECT BIFURCATIONS INTO CHAOS AND ORDER FOR
A SIMPLE FAMILY OF INTERVAL MAPS

BAU-SEN DU

We present a simple one-parameter family of interval maps which has a direct
bifurcation from order to chaos and then a direct (reverse) bifurcation from chaos
back to order.

1. INTRODUCTION

In this note, we present a simple one-parameter family of interval maps which has
a direct bifurcation from order to chaos and then another direct bifurcation from chaos
back to order. (See also [4, 5].) In fact, for this family of interval maps, the creation
of the first non-fixed periodic point is more complicated than we expect. It is the limit
point of a series of bifurcations of period 2n (n ^ 3 odd) points. Consequently, the
creation of the first non-fixed periodic point is a bifurcation of period 12 points. After
the bifurcation into chaos, this family undergoes a series of bifurcations of period 2n
points with n (^ 3 odd) in decreasing order. After the period 6 points are created and
live for a while, then, all of a sudden, all chaotic phenomena cease to exist and we have
order again. To be more precise, we shall prove the following two results.

THEOREM 1. Let 6 be a fixed number in [3/8, 1/2). For 0 ^ c < 6, let

3/4, O^x^c,

fe{») = I x/(2 - 4c) + (3 - 8c)/(4 - 8c), c < x ^ 1/2,

I
and, for b ^ c ^ 1, let

( 3/4, 0 < x < 6,

fc{x) = | x/(2 - 46) + (3 - 86)/(4 - 86), 6 ̂  x ^ 1/2,

I 1 + (c - l)(2x - 1), 1/2 ^ x < l .

TJien the following hold:

(1) For c = 0, fc has a periodic orbit of least period 4 and no periodic orbit
of least period > 4.
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(2) For 0 < c < 1/2, fc has periodic points of least period 12.
(3) For c = 1/2, fc has infinitely many periodic orbits of least period 2 and

no periodic orbit of least period > 2.
(4) For 1/2 < c ^ 1, / c has exactly one fixed point and no other periodic

point.

REMARKS. (1) Parts (1) and (2) of Theorem 1 imply that c = 0 is a bifurcation point
of period 12 points for fc. Consequently, c = 0 is a bifurcation point of fc from order
to chaos.

(2) Parts (2)-(4) of Theorem 1 imply that c = 1/2 is a bifurcation point of fc

from chaos back to order. Note that the results in the following Theorem 2 are much
stronger than Part (2) of Theorem 1.

THEOREM 2 . Let gs(x) = 2x3 - 4x2 + 3x- 1/2 and, for odd integer k^3,let
gk+2{x) = x/2 + [(1 — x)2/(I - 2x)2]gk(x). For every odd integer n ^ 3 , let cn denote
the unique positive zero of gn(x) in [0, 1/2). For any fixed number b in [3/8, 1/2) and
any 0 ^ c ^ 1, let fc{x) be the continuous map from [0, 1] into itself defined as in
Theorem 1. Then the following hold:

(1) c3 > c5 > c-i > • • • > 0 and lim c2k+i = 0.
k — oo

(2) For every odd integer n ^ 3 and every cn ^ c < 1/2, fc has at least one

periodic point of least period 2n.

REMARKS. (1) We note that, in Theorem 2, the value cn is a value for which

{1/2, 1, cn , 3/4, . . . } is a period 2n orbit of fCn .

(2) Since the map [(1 - z ) / ( l — 2x)]2 is strictly increasing on [0, 1/2), it follows
by induction that each gk(x), fc ^ 3 odd, is also strictly increasing on [0, 1/2). So,
each gk{x), k ^ 3 odd, has a unique (positive) zero in [0, 1/2).

2. P R O O F S OF THEOREMS 1 AND 2

For the proofs of Theorems 1 and 2, we need the following two well-known results:

LEMMA 1 . (Sharkovskii's theorem [1-3, 6-8, 10-13]). Rearrange the set of posi-
tive integers according to the following order: 3 —> 5 —» 7 —»•••—> 2.3 —» 2.5 —> 2.7 —»
. . . _> 2*.3 -> 2*.5 - • 2*. 7 - > • • • - • 2> -+ 2''1 -> • • • - • 2 3 - » 2 2 - » 2 - > l . Assume
that / is a continuous map from [0, 1] into itself which has a periodic point of least
period m . Then / also has a periodic point of least period n for every n with m —» n.

LEMMA 2 . ([9]). Let f be a continuous map from [0, 1] into itself and let n ^ 3

be an odd integer. Assume that, for some XQ £ [0, 1], we Aave either fn(xo) ^ XQ <

f(xo) or f(xo) < XQ ̂  fn(xo). Then f has periodic points of least period n.
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PROOF OF THEOREM 1: Parts (1), (3) and (4) are quite obvious. So we only give a
proof of Part (2). It is clear that / * ( l / 2 ) = (1 + c)/2 > 1/2, / c

5 ( l /2) = c 2 - c + l > 1/2,
and f\ (1/2) = 2cs - 4c2 + 3c. Since / " (1/2) is a strictly increasing map of c, there
is a unique value a « .221855 such that / f (1/2) = 1/2. So, for a ^ c < 1/2, we
have / 2 ( l / 2 ) - c < 1/2 < / * ( l / 2 ) . By Lemma 2, / 2 has a period 3 point and so, by
Lemma 1, fc has a period 6 point for a ^ c < 1/2.

Now assume that 0 < c < a. Then / c
6 ( l /2) < 1/2 so, / c

8 ( l /2) = - ( c - 1/2)3 +
(c - 1/2)2 + (c - l / 2 ) /2 + 1/2 + l/[16(c - 1/2)]. Then,

= -3c2 + 5c - 5- < -3c2 + 5c - - < 0
4 [16(c -1/2)2] 4

(5--/TO)
for, say, 0 < c < - - ss .306.

6

That is, / | ( l /2 ) is a decreasing map of c for 0 < c < a. In particular, /*(l/2) <
/o (1/2) = 1/2 for 0 < c < a. Consequently, for 0 < c < a, we obtain that

1 0 / l \ 1 _[(c- l /2)3] 3[(c-l/2)3] / IN 1
c \2J 2 " 2 4 + V 2 / + 8 [32(c - 1/2)] + [64(c -

• « ( - 1 ) ' - ( - i )

Let C = c-1 / 2 . Then it is easy to see that the map 3 2 C S - 4 8 C 4 + 64C3 + 8 C 2 - 2 C + 1
has a unique negative zero at approximately Co * —.307141 or, equivalently, at Co «
.192859. Therefore, we easily obtain that / c

l o ( l /2 ) < 1/2 for 0 < c < c0 « .192859
and / c

l o ( l / 2 ) ^ 1/2 for c0 ^ c < a. So, assume that c0 ^ c < o. Then / c
l o ( l / 2 ) ^

1/2 > / 2 ( l / 2 ) . By Lemma 2, / 2 has a period 5 point and so, by Lemma 1, fc has a
period 10 point for c0 ^ c < a.

Finally assume that 0 < c < c0. Then / c
8 ( l /2) < 1/2, / c

8 ( l /2) < 1/2 and

/c
1 0( l /2) < 1/2. So

•G)-J „. 5(c-l/2) 11
4 2 16 16

3 1 1
[64(c - 1/2)] [64(c - 1/2)2] [256(c -
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Let C = c -1 /2 and let h(C) = -
1/(256C3) - 1 / 2 . Then

h(C) = f - , o J ^ 3 J [64C6 - 128C5 - 80C4 - 48C3 - 12C2 + AC - 1]
L (256G )J

= [- I 1 (2C + 1)(32C5 - 80C4 - 24C2 + 6C - l) ^ 0 when - J < C < 0.
L (256G )J 2

Consequently, /c
12(l/2) < 1/2 when 0 < c < c0. So, for 0 < c < c0, we have

/c
12(l/2) < 1/2 < /*( l /2) . By Lemma 2, / 4 has a period 3 point and so, by Lemma

1, / c has a period 12 point for 0 < c < Co.

By Lemma 1, we obtain that fc has a periodic point of least period 12 for every
0 < c < 1/2. This proves Part (2). The proof of Theorem 1 is now complete. D

PROOF OF THEOREM 2: By assumption, we have, for n > 3 odd,

1 — as \

x x ( l - x \ 2 / l - x V

2 + 2 \T
x (1-x
2

2 [ ( l -

In particular, 52m+i(0) = 53(0) = -1 /2 and

Since (1 — C2m+i)/(l — 2c2m+i) > 1, it is clear that the zeros of p2m+i tend to 0"1" as
m tends to infinity.

On the other hand, if x = cn, where n ^ 3 is odd, then gn{cn) — 0 and so

gn+2{cn) = cn/2 > 0. But gn+2(0) = -1/2 < 0. So 0 < cn+2 < cn. This proves Part

For the proof of Part (2), we note that g$ is strictly increasing and has a unique zero
at c3 « .221855. Furthermore, for c3 ^ c < 1/2, we have / | ( l / 2 ) = g3(c) + 1/2 ^ 1/2.
By Lemmas 1 and 2, fc has at least one period 6 orbit for C3 ^ c < 1/2. Let
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o = max{0 < c < cs | / c
8(l /2) = 1/2}. Then

On the other hand,

So, if cs = min{0 < c < ca | / i ° ( l / 2 ) ^ 1/2 on (c, c3)} , then cs > a and hence, for
c5 ^ c < c , we have /c

6(l/2) < 1/2, / J ( l / 2 ) > 1/2, / c
8( l /2) < 1/2, and /c

9(l /2) >
1/2. So, by direct computation,

for cs ^ c < C3. It then follows from Lemmas 1 and 2 and the above that fc has

periodic points of least period 10 for cs ^ c < 1/2.

Assume that c3 > c5 > c7 > • • • > c2t+i > 0 are defined with the following

properties:

(a) For each 2 ^ i ^ k, c2i+i = min{0 < s < c2 i - i | / c
2 ( " + 1 ) ( l / 2 ) ^

1/2 on (5, c 2 i _ i )} .

(b) For c2,-+i ^ c < c3i-i, 2 < t ^ fc, we have / e
2 ( 2 i + 1 ) ( l /2) = 5 2 t + 1 (c ) +

1/2 = c/2 + [(1 - c)2 / ( l - 2c)2][/c
2 (2 i-1 )(l/2) - 1/2] + 1/2 £ 1/2.

(c) For c2i4-i ^ c < 1/2, 1 ^ i ^ k, fc has periodic points of least period

2(2i + l ) .

Note that since, for each odd m ^ 3, gm+?{x) - x/2 + [(1 - i ) 2 / ( l - 2x)2]pm(z),
we see that 5m+2(z) ^ 0 whenever gn{x) ^ 0 and 0 < x < 1/2. Consequently, the
c2;+i 's defined here are exactly the same as those defined in Theorem 2. Now since

https://doi.org/10.1017/S0004972700029853 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029853


372 Bau-Sen Du [6]

= 1/2, hence

f4t+3 / 1 \ _ , f4*+4 ( l \ _ r 1 f4k+5 fl\ _ 3
•'ejfc+i ^ 2 / ~ ' / c«+ l \2J ~ +1 2' / c j t + l V2/ ~ 4'

If d= max{0 < c < c2k+1 | /c
4fc+4 Q ^ = 1 } ,

/ r ( i ) i r ( i )

Thus, if c2Jb+3 = min{0 < s < c2k+i | /c
2(2*+3) ( - J ^ - on (a, c2 J b + 1)},

then <£ < C2t+s < C2t+i • Therefore, for C2t+3 ^ c < C2k+i, we have

So, by direct computation, we obtain that

By Lemmas 1 and 2, / c has periodic points of least period 2(2fc -f 3) for C2k+3 ^ c <
C2it+i- Since fc has periodic points of least period 2(2A: + 1) for C2k+i ^ c < 1/2,
we obtain that, by Lemma 1, fc has periodic points of least period 2(2fc + 3) for
C2fc+3 ^ c < 1/2. Part (2) now follows from induction on k ^ 1.

This completes the proof of Theorem 2. U
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