ON DIRECT BIFURCATIONS INTO CHAOS AND ORDER FOR A SIMPLE FAMILY OF INTERVAL MAPS

Bau-Sen Du

We present a simple one-parameter family of interval maps which has a direct bifurcation from order to chaos and then a direct (reverse) bifurcation from chaos back to order.

1. Introduction

In this note, we present a simple one-parameter family of interval maps which has a direct bifurcation from order to chaos and then another direct bifurcation from chaos back to order. (See also [4, 5].) In fact, for this family of interval maps, the creation of the first non-fixed periodic point is more complicated than we expect. It is the limit point of a series of bifurcations of period $2 n$ ($n \geqslant 3$ odd) points. Consequently, the creation of the first non-fixed periodic point is a bifurcation of period 12 points. After the bifurcation into chaos, this family undergoes a series of bifurcations of period $2 n$ points with n ($\geqslant 3$ odd) in decreasing order. After the period 6 points are created and live for a while, then, all of a sudden, all chaotic phenomena cease to exist and we have order again. To be more precise, we shall prove the following two results.

Theorem 1. Let b be a fixed number in $[3 / 8,1 / 2)$. For $0 \leqslant c \leqslant b$, let

$$
f_{c}(x)= \begin{cases}3 / 4, & 0 \leqslant x \leqslant c \\ x /(2-4 c)+(3-8 c) /(4-8 c), & c \leqslant x \leqslant 1 / 2 \\ 1+(c-1)(2 x-1), & 1 / 2 \leqslant x \leqslant 1\end{cases}
$$

and, for $b \leqslant c \leqslant 1$, let

$$
f_{c}(x)= \begin{cases}3 / 4, & 0 \leqslant x \leqslant b \\ x /(2-4 b)+(3-8 b) /(4-8 b), & b \leqslant x \leqslant 1 / 2 \\ 1+(c-1)(2 x-1), & 1 / 2 \leqslant x \leqslant 1\end{cases}
$$

Then the following hold:
(1) For $c=0, f_{c}$ has a periodic orbit of least period 4 and no periodic orbit of least period >4.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.
(2) For $0<c<1 / 2, f_{c}$ has periodic points of least period 12.
(3) For $c=1 / 2, f_{c}$ has infinitely many periodic orbits of least period 2 and no periodic orbit of least period >2.
(4) For $1 / 2<c \leqslant 1$, f_{c} has exactly one fixed point and no other periodic point.

Remarks. (1) Parts (1) and (2) of Theorem 1 imply that $c=0$ is a bifurcation point of period 12 points for f_{c}. Consequently, $c=0$ is a bifurcation point of f_{c} from order to chaos.
(2) Parts (2)-(4) of Theorem 1 imply that $c=1 / 2$ is a bifurcation point of f_{c} from chaos back to order. Note that the results in the following Theorem 2 are much stronger than Part (2) of Theorem 1.

TheOrem 2. Let $g_{3}(x)=2 x^{3}-4 x^{2}+3 x-1 / 2$ and, for odd integer $k \geqslant 3$, let $g_{k+2}(x)=x / 2+\left[(1-x)^{2} /(1-2 x)^{2}\right] g_{k}(x)$. For every odd integer $n \geqslant 3$, let c_{n} denote the unique positive zero of $g_{n}(x)$ in $[0,1 / 2)$. For any fixed number b in $[3 / 8,1 / 2)$ and any $0 \leqslant c \leqslant 1$, let $f_{c}(x)$ be the continuous map from $[0,1]$ into itself defined as in Theorem 1. Then the following hold:
$c_{3}>c_{5}>c_{7}>\cdots>0$ and $\lim _{k \rightarrow \infty} c_{2 k+1}=0$.
(2) For every odd integer $n \geqslant 3$ and every $c_{n} \leqslant c<1 / 2, f_{c}$ has at least one periodic point of least period $2 n$.

Remarks. (1) We note that, in Theorem 2, the value c_{n} is a value for which $\left\{1 / 2,1, c_{n}, 3 / 4, \ldots\right\}$ is a period $2 n$ orbit of $f_{c_{n}}$.
(2) Since the map $[(1-x) /(1-2 x)]^{2}$ is strictly increasing on $[0,1 / 2)$, it follows by induction that each $g_{k}(x), k \geqslant 3$ odd, is also strictly increasing on $[0,1 / 2)$. So, each $g_{k}(x), k \geqslant 3$ odd, has a unique (positive) zero in [$0,1 / 2$).

2. Proofs of Theorems 1 and 2

For the proofs of Theorems 1 and 2, we need the following two well-known results:
Lemma 1. (Sharkovskii's theorem [1-3, 6-8, 10-13]). Rearrange the set of positive integers according to the following order: $3 \rightarrow 5 \rightarrow 7 \rightarrow \cdots \rightarrow 2.3 \rightarrow 2.5 \rightarrow 2.7 \rightarrow$ $\cdots \rightarrow 2^{k} .3 \rightarrow 2^{k} .5 \rightarrow 2^{k} .7 \rightarrow \cdots \rightarrow 2^{j} \rightarrow 2^{j-1} \rightarrow \cdots \rightarrow 2^{3} \rightarrow 2^{2} \rightarrow 2 \rightarrow 1$. Assume that f is a continuous map from $[0,1]$ into itself which has a periodic point of least period m. Then f also has a periodic point of least period n for every n with $\boldsymbol{m} \rightarrow \boldsymbol{n}$.

Lemma 2. ([9]). Let f be a continuous map from [0,1] into itself and let $n \geqslant 3$ be an odd integer. Assume that, for some $x_{0} \in[0,1]$, we have either $f^{n}\left(x_{0}\right) \leqslant x_{0}<$ $f\left(x_{0}\right)$ or $f\left(x_{0}\right)<x_{0} \leqslant f^{n}\left(x_{0}\right)$. Then f has periodic points of least period n.

Proof of Theorem 1: Parts (1), (3) and (4) are quite obvious. So we only give a proof of Part (2). It is clear that $f_{c}^{4}(1 / 2)=(1+c) / 2>1 / 2, f_{c}^{5}(1 / 2)=c^{2}-c+1>1 / 2$, and $f_{c}^{6}(1 / 2)=2 c^{3}-4 c^{2}+3 c$. Since $f_{c}^{6}(1 / 2)$ is a strictly increasing map of c, there is a unique value $a \approx .221855$ such that $f_{a}^{6}(1 / 2)=1 / 2$. So, for $a \leqslant c<1 / 2$, we have $f_{c}^{2}(1 / 2)=c<1 / 2 \leqslant f_{c}^{6}(1 / 2)$. By Lemma 2 , f_{c}^{2} has a period 3 point and so, by Lemma $1, f_{c}$ has a period 6 point for $a \leqslant c<1 / 2$.

Now assume that $0<c<a$. Then $f_{c}^{6}(1 / 2)<1 / 2$ so, $f_{c}^{8}(1 / 2)=-(c-1 / 2)^{3}+$ $(c-1 / 2)^{2}+(c-1 / 2) / 2+1 / 2+1 /[16(c-1 / 2)]$. Then,

$$
\begin{aligned}
& \quad \begin{aligned}
\frac{\partial}{\partial c}\left[f_{c}^{8}\left(\frac{1}{2}\right)\right] & =-3\left(c-\frac{1}{2}\right)^{2}+2\left(c-\frac{1}{2}\right)+\frac{1}{2}-\frac{1}{\left[16(c-1 / 2)^{2}\right]} \\
& =-3 c^{2}+5 c-\frac{5}{4}-\frac{1}{\left[16(c-1 / 2)^{2}\right]}<-3 c^{2}+5 c-\frac{5}{4}<0
\end{aligned} \\
& \text { for, say, } \quad 0<c<\frac{(5-\sqrt{10})}{6} \approx .306 .
\end{aligned}
$$

That is, $f_{c}^{8}(1 / 2)$ is a decreasing map of c for $0<c<a$. In particular, $f_{c}^{8}(1 / 2)<$ $f_{0}^{8}(1 / 2)=1 / 2$ for $0<c<a$. Consequently, for $0<c<a$, we obtain that

$$
\begin{aligned}
f_{c}^{10}\left(\frac{1}{2}\right)-\frac{1}{2}= & \frac{\left[(c-1 / 2)^{3}\right]}{2}-\frac{3\left[(c-1 / 2)^{2}\right]}{4}+\left(c-\frac{1}{2}\right)+\frac{1}{8}-\frac{1}{[32(c-1 / 2)]}+\frac{1}{\left[64(c-1 / 2)^{2}\right]} \\
= & \left\{\frac{1}{64}\left[\left(c-\frac{1}{2}\right)^{-2}\right]\right\}\left[32\left(c-\frac{1}{2}\right)^{5}-48\left(c-\frac{1}{2}\right)^{4}+64\left(c-\frac{1}{2}\right)^{3}\right. \\
& \left.+8\left(c-\frac{1}{2}\right)^{2}-2\left(c-\frac{1}{2}\right)+1\right] .
\end{aligned}
$$

Let $C=c-1 / 2$. Then it is easy to see that the map $32 C^{5}-48 C^{4}+64 C^{3}+8 C^{2}-2 C+1$ has a unique negative zero at approximately $C_{0} \approx-.307141$ or, equivalently, at $c_{0} \approx$.192859. Therefore, we easily obtain that $f_{c}^{10}(1 / 2)<1 / 2$ for $0<c<c_{0} \approx .192859$ and $f_{c}^{10}(1 / 2) \geqslant 1 / 2$ for $c_{0} \leqslant c<a$. So, assume that $c_{0} \leqslant c<a$. Then $f_{c}^{10}(1 / 2) \geqslant$ $1 / 2>f_{c}^{2}(1 / 2)$. By Lemma 2, f_{c}^{2} has a period 5 point and so, by Lemma $1, f_{c}$ has a period 10 point for $c_{0} \leqslant c<a$.

Finally assume that $0<c<c_{0}$. Then $f_{c}^{6}(1 / 2)<1 / 2, f_{c}^{8}(1 / 2)<1 / 2$ and $f_{c}^{10}(1 / 2)<1 / 2$. So

$$
\begin{aligned}
f_{c}^{12}\left(\frac{1}{2}\right)= & -\frac{\left[(c-1 / 2)^{3}\right]}{4}+\frac{\left[(c-1 / 2)^{2}\right]}{2}+\frac{5(c-1 / 2)}{16}+\frac{11}{16} \\
& +\frac{3}{[64(c-1 / 2)]}-\frac{1}{\left[64(c-1 / 2)^{2}\right]}+\frac{1}{\left[256(c-1 / 2)^{3}\right]}
\end{aligned}
$$

Let $C=c-1 / 2$ and let $h(C)=-C^{3} / 4+C^{2} / 2+5 C / 16+11 / 16+3 /(64 C)-1 /\left(64 C^{2}\right)+$ $1 /\left(256 C^{3}\right)-1 / 2$. Then

$$
\begin{aligned}
h(C) & =\left[-\frac{1}{\left(256 C^{3}\right)}\right]\left[64 C^{6}-128 C^{5}-80 C^{4}-48 C^{3}-12 C^{2}+4 C-1\right] \\
& =\left[-\frac{1}{\left(256 C^{3}\right)}\right](2 C+1)\left(32 C^{5}-80 C^{4}-24 C^{2}+6 C-1\right) \leqslant 0 \text { when }-\frac{1}{2}<C<0
\end{aligned}
$$

Consequently, $f_{c}^{12}(1 / 2)<1 / 2$ when $0<c<c_{0}$. So, for $0<c<c_{0}$, we have $f_{c}^{12}(1 / 2)<1 / 2<f_{c}^{4}(1 / 2)$. By Lemma $2, f_{c}^{4}$ has a period 3 point and so, by Lemma $1, f_{c}$ has a period 12 point for $0<c<c_{0}$.

By Lemma 1, we obtain that f_{c} has a periodic point of least period 12 for every $0<c<1 / 2$. This proves Part (2). The proof of Theorem 1 is now complete.

Proof of Theorem 2: By assumption, we have, for $n \geqslant 3$ odd,

$$
\begin{aligned}
g_{n+2}(x) & =\frac{x}{2}+\left(\frac{1-x}{1-2 x}\right)^{2} g_{n}(x) \\
& =\frac{x}{2}+\frac{x}{2}\left(\frac{1-x}{1-2 x}\right)^{2}+\left(\frac{1-x}{1-2 x}\right)^{4}\left[\frac{x}{2}+\left(\frac{1-x}{1-2 x}\right)^{2} g_{n-4}(x)\right] \\
& =\quad \cdots \\
& =\frac{x}{2}+\frac{x}{2}\left(\frac{1-x}{1-2 x}\right)^{2}+\frac{x}{2}\left(\frac{1-x}{1-2 x}\right)^{4}+\cdots+\left(\frac{1-x}{1-2 x}\right)^{2 k} g_{n-2 k+2}(x) \\
& =\frac{x}{2} \frac{[(1-x) /(1-2 x)]^{2 k}-1}{[(1-x) /(1-2 x)]^{2}-1}+\left(\frac{1-x}{1-2 x}\right)^{2 k} g_{n-2 k+2}(x)
\end{aligned}
$$

In particular, $g_{2 m+1}(0)=g_{3}(0)=-1 / 2$ and

$$
g_{2 m+1}(x)=\frac{x}{2} \frac{[(1-x) /(1-2 x)]^{2 m}-1}{[(1-x) /(1-2 x)]^{2}-1}+\left(\frac{1-x}{1-2 x}\right)^{2 m} g_{3}(x)
$$

Since $\left(1-c_{2 m+1}\right) /\left(1-2 c_{2 m+1}\right)>1$, it is clear that the zeros of $g_{2 m+1}$ tend to 0^{+}as m tends to infinity.

On the other hand, if $x=c_{n}$, where $n \geqslant 3$ is odd, then $g_{n}\left(c_{n}\right)=0$ and so $g_{n+2}\left(c_{n}\right)=c_{n} / 2>0$. But $g_{n+2}(0)=-1 / 2<0$. So $0<c_{n+2}<c_{n}$. This proves Part (1).

For the proof of Part (2), we note that g_{3} is strictly increasing and has a unique zero at $c_{3} \approx .221855$. Furthermore, for $c_{3} \leqslant c<1 / 2$, we have $f_{c}^{6}(1 / 2)=g_{3}(c)+1 / 2 \geqslant 1 / 2$. By Lemmas 1 and 2, f_{c} has at least one period 6 orbit for $c_{3} \leqslant c<1 / 2$. Let
$a=\max \left\{0<c<c_{3} \mid f_{c}^{8}(1 / 2)=1 / 2\right\}$. Then

$$
f_{a}^{8}\left(\frac{1}{2}\right)=\frac{1}{2}, f_{a}^{9}\left(\frac{1}{2}\right)=1, f_{a}^{10}\left(\frac{1}{2}\right)=a<\frac{1}{2} .
$$

On the other hand,
and

$$
\begin{gathered}
f_{c_{3}}^{6}\left(\frac{1}{2}\right)=\frac{1}{2}, f_{c_{3}}^{7}\left(\frac{1}{2}\right)=1, f_{c_{3}}^{8}\left(\frac{1}{2}\right)=c_{3}<\frac{1}{2}, f_{c_{3}}^{9}\left(\frac{1}{2}\right)=\frac{3}{4}, \\
f_{c_{3}}^{10}\left(\frac{1}{2}\right)=\frac{\left(1+c_{3}\right)}{2}>1 / 2 .
\end{gathered}
$$

So, if $c_{5}=\min \left\{0<c<c_{3} \mid f_{c}^{10}(1 / 2) \geqslant 1 / 2\right.$ on $\left.\left(c, c_{3}\right)\right\}$, then $c_{5}>a$ and hence, for $c_{5} \leqslant c<c_{3}$, we have $f_{c}^{6}(1 / 2)<1 / 2, f_{c}^{7}(1 / 2)>1 / 2, f_{c}^{8}(1 / 2)<1 / 2$, and $f_{c}^{9}(1 / 2)>$ $1 / 2$. So, by direct computation,

$$
f_{c}^{10}\left(\frac{1}{2}\right)=g_{5}(c)+\frac{1}{2}=\frac{c}{2}+\left[\frac{(1-c)^{2}}{(1-2 c)^{2}}\right]\left[f_{c}^{6}\left(\frac{1}{2}\right)-\frac{1}{2}\right]+\frac{1}{2} \geqslant \frac{1}{2}
$$

for $c_{5} \leqslant c<c_{3}$. It then follows from Lemmas 1 and 2 and the above that f_{c} has periodic points of least period 10 for $c_{5} \leqslant c<1 / 2$.

Assume that $c_{3}>c_{5}>c_{7}>\cdots>c_{2 k+1}>0$ are defined with the following properties:
(a) For each $2 \leqslant i \leqslant k, c_{2 i+1}=\min \left\{0<s<c_{2 i-1} \mid f_{c}^{2(2 i+1)}(1 / 2) \geqslant\right.$ $1 / 2$ on ($s, c_{2 i-1}$) $\}$.
(b) For $c_{2 i+1} \leqslant c<c_{2 i-1}, 2 \leqslant i \leqslant k$, we have $f_{c}^{2(2 i+1)}(1 / 2)=g_{2 i+1}(c)+$ $1 / 2=c / 2+\left[(1-c)^{2} /(1-2 c)^{2}\right]\left[f_{c}^{2(2 i-1)}(1 / 2)-1 / 2\right]+1 / 2 \geqslant 1 / 2$.
(c) For $c_{2 i+1} \leqslant c<1 / 2,1 \leqslant i \leqslant k, f_{c}$ has periodic points of least period $2(2 i+1)$.

Note that since, for each odd $m \geqslant 3, g_{m+2}(x)=x / 2+\left[(1-x)^{2} /(1-2 x)^{2}\right] g_{m}(x)$, we see that $g_{m+2}(x) \geqslant 0$ whenever $g_{n}(x) \geqslant 0$ and $0<x<1 / 2$. Consequently, the $c_{2 i+1}$'s defined here are exactly the same as those defined in Theorem 2. Now since
$f_{c_{2 k+1}}^{2(2 k+1)}(1 / 2)=1 / 2$, hence
and

$$
f_{c_{2 k+1}}^{4 k+3}\left(\frac{1}{2}\right)=1, f_{c_{2 k+1}}^{4 k+4}\left(\frac{1}{2}\right)=c_{2 k+1}<\frac{1}{2}, f_{c_{2 k+1}}^{4 k+5}\left(\frac{1}{2}\right)=\frac{3}{4}
$$

$$
f_{c_{2 k+1}}^{4 k+6}\left(\frac{1}{2}\right)=\frac{\left(1+c_{2 k+1}\right)}{2}>\frac{1}{2}
$$

If

$$
d=\max \left\{0<c<c_{2 k+1} \left\lvert\, f_{c}^{4 k+4}\left(\frac{1}{2}\right)=\frac{1}{2}\right.\right\}
$$

then

$$
f_{d}^{4 k+4}\left(\frac{1}{2}\right)=\frac{1}{2}, f_{d}^{4 k+5}\left(\frac{1}{2}\right)=1
$$

$$
f_{c}^{4 k+6}\left(\frac{1}{2}\right)=d<\frac{1}{2}
$$

$$
f_{d}^{4 k+6}\left(\frac{1}{2}\right)=d<\frac{1}{2}<f_{c_{2 k+1}}^{4 k+6}\left(\frac{1}{2}\right) .
$$

Thus, if $\quad c_{2 k+3}=\min \left\{0<s<c_{2 k+1} \left\lvert\, f_{c}^{2(2 k+3)}\left(\frac{1}{2}\right) \geqslant \frac{1}{2}\right.\right.$ on $\left.\left(s, c_{2 k+1}\right)\right\}$,
then $d<c_{2 k+3}<c_{2 k+1}$. Therefore, for $c_{2 k+3} \leqslant c<c_{2 k+1}$, we have

$$
f_{c}^{2(2 k+1)}\left(\frac{1}{2}\right)<\frac{1}{2}, f_{c}^{4 k+3}\left(\frac{1}{2}\right)>\frac{1}{2}, f_{c}^{4 k+4}\left(\frac{1}{2}\right)<\frac{1}{2}, \text { and } f_{c}^{4 k+5}\left(\frac{1}{2}\right)>\frac{1}{2}
$$

So, by direct computation, we obtain that

$$
f_{c}^{2(2 k+3)}\left(\frac{1}{2}\right)=g_{2 k+3}(c)+\frac{1}{2}=\frac{c}{2}+\left[\frac{(1-c)^{2}}{(1-2 c)^{2}}\right]\left[f_{c}^{2(2 k+1)}\left(\frac{1}{2}\right)-\frac{1}{2}\right]+\frac{1}{2} \geqslant \frac{1}{2} .
$$

By Lemmas 1 and 2, f_{c} has periodic points of least period $2(2 k+3)$ for $c_{2 k+3} \leqslant c<$ $c_{2 k+1}$. Since f_{c} has periodic points of least period $2(2 k+1)$ for $c_{2 k+1} \leqslant c<1 / 2$, we obtain that, by Lemma $1, f_{c}$ has periodic points of least period $2(2 k+3)$ for $c_{2 k+3} \leqslant c<1 / 2$. Part (2) now follows from induction on $k \geqslant 1$.

This completes the proof of Theorem 2.

References

[1] L. Block, J. Guckenheimer, M. Misiurewicz and L.-S. Young, 'Periodic points and topological entropy of one dimensional maps', Lecture Notes in Math. 819, pp. 18-34 (Springer-Verlag, Berlin, Heidelberg, New York, 1980).
[2] U. Burkart, 'Interval mapping graphs and periodic points of continuous functions', J. Combin. Theory Ser. B 32 (1982), 57-68.
[3] B.-S. Du, 'The minimal number of periodic orbits of periods guaranteed in Sharkovskii's theorem', Bull. Austral. Math. Soc. 31 (1985), 89-103.
[4] B.-S. Du, 'A note on periodic points of expanding maps of the interval', Bull. Austral. Math. Soc. 33 (1986), 435-447.
[5] B.-S. Du, 'An example of a bifurcation from fixed points to period 3 points', Nonlinear Analysis 10 (1986), 639-641.
[6] B. Gawel, 'On the theorem of Sarkovskii and Stefan on cycles', Proc. Amer. Math. Soc. 107 (1989), 125-132.
[7] C.-W. Ho and C. Morris, 'A graph theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions', Pacific J. Math. 96 (1981), 361-370.
[8] H. Kaplan, 'A cartoon-assisted proof of Sarkowskii's theorem', Amer. J. Phys. 55 (1987), 1023-1032.
[9] T.-Y. Li, M. Misiurewicz, G. Pianigiani and J.A. Yorke, 'No division implies chaos', Trans. Amer. Math. Soc. 273 (1982), 191-199.
[10] M. Osikawa and Y. Oono, 'Chaos in C^{0}-endomorphism of interval', Publ. RIMS, Kyoto Univ. 17 (1981), 165-177.
[11] A.N. Sharkovskii, 'Coexistence of cycles of a continuous map of a line into itself’, Ukrain. Mat. Zh. 16 (1964), 61-71.
[12] P. Stefan, 'A theorem of Sharkovsky on the existence of periodic orbits of continuous endomorphisms of the real line', Comm. Math. Phys. 54 (1977), 237-248.
[13] P.D. Straffin Jr., 'Periodic points of continuous functions', Math. Mag. 51 (1978), 99-105.

[^1]
[^0]: Received 20 November 1990

[^1]: Institute of Mathematics
 Academia Sinica
 Taipei, Taiwan 11529
 Republic of China

